Hybrid organic-inorganic metal halide perovskites have recently emerged as exciting new light-harvesting and charge-transporting materials for efficient photovoltaic devices. Yet knowledge of the nature of the photogenerated excitations and their subsequent dynamics is only just emerging. This article reviews the current state of the field, focusing first on a description of the crystal and electronic band structure that give rise to the strong optical transitions that enable light harvesting. An overview is presented of the numerous experimental approaches toward determining values for exciton binding energies, which appear to be small (a few milli-electron volts to a few tens of milli-electron volts) and depend significantly on temperature because of associated changes in the dielectric function. Experimental evidence for charge-carrier relaxation dynamics within the first few picoseconds after excitation is discussed in terms of thermalization, cooling, and many-body effects. Charge-carrier recombination mechanisms are reviewed, encompassing trap-assisted nonradiative recombination that is highly specific to processing conditions, radiative bimolecular (electron-hole) recombination, and nonradiative many-body (Auger) mechanisms.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED. 1.  2015. Solar cell efficiency tables (Version 45). Prog. Photovolt. Res. Appl. 23:1–9 [Google Scholar]
  2. Kojima A, Teshima K, Shirai Y, Miyasaka T. 2.  2009. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131:6050–51 [Google Scholar]
  3. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. 3.  2012. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–47 [Google Scholar]
  4. Kim HS, Lee CR, Im JH, Lee KB, Moehl T. 4.  et al. 2012. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2:591 [Google Scholar]
  5. Ball JM, Lee MM, Hey A, Snaith HJ. 5.  2013. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 6:1739–43 [Google Scholar]
  6. Liu M, Johnston MB, Snaith HJ. 6.  2013. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501:395–98 [Google Scholar]
  7. Chen Q, Zhou H, Hong Z, Luo S, Duan HS. 7.  et al. 2013. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136:622–25 [Google Scholar]
  8. Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P. 8.  et al. 2013. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499:316–19 [Google Scholar]
  9. Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S. 9.  et al. 2015. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348:1234–37 [Google Scholar]
  10. Zhang Y, Liu M, Eperon GE, Leijtens T. 10.  et al. 2015. Charge selective contacts, mobile ions and anomalous hysteresis in organic-inorganic perovskite solar cells. Mater. Horiz. 2:315–22 [Google Scholar]
  11. Tan ZK, Moghaddam RS, Lai ML, Docampo P, Higler R. 11.  et al. 2014. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9:687–92 [Google Scholar]
  12. Wetzelaer GJAH, Scheepers M, Sempere AM, Momblona C, Avila J, Bolink HJ. 12.  2015. Trap-assisted non-radiative recombination in organic-inorganic perovskite solar cells. Adv. Mater. 27:1837–41 [Google Scholar]
  13. Xing G, Mathews N, Lim SS, Yantara N, Liu X. 13.  et al. 2014. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13:476–80 [Google Scholar]
  14. Chen K, Barker AJ, Morgan FLC, Halpert JE, Hodgkin JM. 14.  2014. Effect of carrier thermalization dynamics on light emission and amplification in organometal halide perovskites. J. Phys. Chem. Lett. 6:153–58 [Google Scholar]
  15. Stranks SD, Wood SM, Wojciechowski K, Deschler F, Saliba M. 15.  et al. 2015. Enhanced amplified spontaneous emission in perovskites using a flexible cholesteric liquid crystal reflector. Nano Lett. 15:4935–41 [Google Scholar]
  16. Deschler F, Price M, Pathak S, Klintberg LE, Jarausch DD. 16.  et al. 2014. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5:1421–26 [Google Scholar]
  17. Saliba M, Wood SM, Patel JB, Nayak PK. 17.  et al. 2016. Structured organic–inorganic perovskite toward a distributed feedback laser. Adv. Mater. 28:923–29 [Google Scholar]
  18. Gao P, Grätzel M, Nazeeruddin MK. 18.  2014. Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7:2448–63 [Google Scholar]
  19. Goldschmidt VM. 19.  1926. Die Gesetze der Krystallochemie. Die Naturwissenschaften 21:477–85 [Google Scholar]
  20. Pena MA, Fierro JLG. 20.  2001. Chemical structures and performance of perovskite oxides. Chem. Rev. 101:1981–2017 [Google Scholar]
  21. Glazer AM. 21.  1972. The classification of tilted octahedra in perovskites. Acta Cryst. B 28:3384–91 [Google Scholar]
  22. Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ. 22.  2014. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7:982–88 [Google Scholar]
  23. 23. US Geol. Surv 2015. Mineral commodity summaries 2015 Rep., US Geol. Surv., Washington, DC [Google Scholar]
  24. Noel NK, Stranks SD, Abate A, Wehrenfennig C, Guarnera S. 24.  et al. 2014. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7:3061–68 [Google Scholar]
  25. Hao F, Stoumpos CC, Cao DH, Chang RPH, Kanatzidis MG. 25.  2014. Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat. Photon. 8:489–94 [Google Scholar]
  26. Noh JH, Im SH, Heo JH, Mandal TN, Seok SI. 26.  2013. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13:1764–69 [Google Scholar]
  27. Colella S, Mosconi E, Fedeli P, Listort A, Gazza F. 27.  et al. 2013. MAPbI3−xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties. Chem. Mater. 25:4613–18 [Google Scholar]
  28. de Quilettes DW, Vorpahl SM, Stranks SD, Nagaoka H, Eperon GE. 28.  et al. 2015. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348:683–86 [Google Scholar]
  29. Dar M, Arora N, Gao P, Ahmad S, Grätzel M, Nazeeruddin MK. 29.  2014. Investigation regarding the role of chloride in organic-inorganic halide perovskites obtained from chloride containing precursors. Nano Lett. 14:6991–96 [Google Scholar]
  30. Mosconi E, Amat A, Nazeeruddin MK, Grätzel M, De Angelis F. 30.  2013. First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J. Phys. Chem. C 117:13902–13 [Google Scholar]
  31. Edri E, Kirmayer S, Henning A, Mukhopadhyay S, Gartsman K. 31.  et al. 2014. Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). Nano Lett. 14:1000–4 [Google Scholar]
  32. Wehrenfennig C, Eperon GE, Johnston MB, Snaith HJ, Herz LM. 32.  2014. High charge carrier mobilities and lifetimes in organo lead trihalide perovskites. Adv. Mater. 26:1584–89 [Google Scholar]
  33. Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP. 33.  et al. 2013. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342:341–44 [Google Scholar]
  34. Stoumpos CC, Malliakas CD, Kanatzidis MG. 34.  2013. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52:9019–38 [Google Scholar]
  35. Weber D. 35.  1978. CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur. Z. Naturforsch. B 33:1443–45 [Google Scholar]
  36. Poglitsch A, Weber D. 36.  1987. Dynamic disorder in methylammoniumtrihalogenplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87:6373–78 [Google Scholar]
  37. Kawamura Y, Mashiyama H, Hasebe K. 37.  2002. Structural study on cubic–tetragonal transition of CH3NH3PbI3. Phys. Soc. Jpn. 71:1694–97 [Google Scholar]
  38. Baikie T, Fang Y, Kadro JM, Schreyer M, Wei F. 38.  et al. 2013. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1:5628–41 [Google Scholar]
  39. Wasylishen R, Knop O, Macdonald J. 39.  1985. Cation rotation in methylammonium lead halides. Solid State Commun. 56:581–82 [Google Scholar]
  40. Even J, Pedesseau L, Katan C, Kepenekian M, Laurent J. 40.  et al. 2015. Solid-state physics perspective on hybrid perovskite. J. Phys. Chem. C 119:10161–77 [Google Scholar]
  41. Onada-Yamamuro N, Matsuo T, Suga H. 41.  1992. Dielectric study of CH3NH3PbX3 (X=Cl, Br, I). J. Phys. Chem. Solids 53:935–39 [Google Scholar]
  42. Onada-Yamamuro N, Matsuo T, Suga H. 42.  1990. Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II). J. Phys. Chem. Solids 51:1383–95 [Google Scholar]
  43. Bakulin AA, Selig O, Bakker HJ, Rezus YLA. 43.  et al. 2015. Real-time observation of organic cation reorientation in methylammonium lead iodide perovskites. J. Phys. Chem. Lett. 6:3663–69 [Google Scholar]
  44. Milot RL, Eperon GE, Snaith HJ, Johnston MB, Herz LM. 44.  2015. Temperature-dependent charge-carrier dynamics in CH3NH3PbI3. Adv. Funct. Mater. 25:6218–27 [Google Scholar]
  45. Even J, Pedesseau L, Katan C. 45.  2014. Analysis of multivalley and multibandgap absorption and enhancement of free carriers related to exciton screening in hybrid perovskites. J. Phys. Chem. C 118:11566–72 [Google Scholar]
  46. Wehrenfennig C, Liu M, Snaith HJ, Johnston MB, Herz LM. 46.  2014. Homogeneous emission line broadening in the organo lead halide perovskite CH3NH3PbI3−xClx. J. Phys. Chem. Lett. 5:1300–6 [Google Scholar]
  47. Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N. 47.  2003. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Commun. 127:619–23 [Google Scholar]
  48. Even J, Pedesseau L, Jancu JM, Katan C. 48.  2013. Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J. Phys. Chem. Lett. 4:2999–3005 [Google Scholar]
  49. Brivio F, Walker A, Walsh A. 49.  2013. Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. APL Mater. 1:042111 [Google Scholar]
  50. Frost JM, Butler KT, Brivio F, Hendon CH, van Schilfgaarde M, Walsh A. 50.  2014. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14:2584–90 [Google Scholar]
  51. Filip MR, Giustino F. 51.  2014. GW quasiparticle band gap of the hybrid organic-inorganic perovskite CH3NH3PbI3: effect of spin-orbit interaction, semicore electrons, and self-consistency. Phys. Rev. B 90:245145 [Google Scholar]
  52. Amat A, Mosconi E, Ronca E, Quarti C, Umari P. 52.  et al. 2014. Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. Nano Lett. 14:3608–16 [Google Scholar]
  53. Katan C, Pedesseau L, Kepenekian M, Rolland A, Even J. 53.  2015. Interplay of spin-orbit coupling and lattice distortion in metal substituted 3D tri-chloride hybrid perovskites. J. Mater. Chem. A 3:9232–40 [Google Scholar]
  54. Hirasawa M, Ishihara T, Goto T, Uchida K, Miura N. 54.  1994. Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3. Physica B 201:427–30 [Google Scholar]
  55. Lin Q, Armin A, Nagiri RCR, Burn PL, Meredith P. 55.  2015. Electro-optics of perovskite solar cells. Nat. Photon. 9:106–12 [Google Scholar]
  56. Miyata A, Mitioglu A, Plochocka P, Portugall O, Wang JTW. 56.  et al. 2015. Direct measurement of the exciton binding energy and effective masses for charge carriers in an organic-inorganic tri-halide perovskite. Nat. Phys. 11:582–87 [Google Scholar]
  57. D’Innocenzo V, Grancini G, Alcocer MJ, Kandada ARS, Stranks SD. 57.  et al. 2014. Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5:3586 [Google Scholar]
  58. Sun S, Salim T, Mathews N, Duchamp M, Boothroyd C. 58.  et al. 2014. The origin of high efficiency in low-temperature solution-processed bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 7:399–407 [Google Scholar]
  59. Savenije TJ, Ponseca CS, Kunneman L, Abdellah M, Zheng K. 59.  et al. 2014. Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite. J. Phys. Chem. Lett. 5:2189–94 [Google Scholar]
  60. Wu K, Bera A, Ma C, Du Y, Yang Y. 60.  et al. 2014. Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. Phys. Chem. Chem. Phys. 16:22476–81 [Google Scholar]
  61. Yamada Y, Nakamura T, Endo M, Wakamiya A, Kanemitsu Y. 61.  2015. Photoelectronic responses in solution-processed perovskite CH3NH3PbI3 solar cells studied by photoluminescence and photoabsorption spectroscopy. IEEE J. Photovoltaics 5:401–5 [Google Scholar]
  62. Saba M, Cadelano M, Marongiu D, Chen F, Sarritzu V. 62.  et al. 2014. Correlated electron-hole plasma in organometal perovskites. Nat. Commun. 5:5049 [Google Scholar]
  63. Yang Y, Ostrowski DP, France RM, Zhu K. 63.  et al. 2016. Observation of a hot-phonon bottleneck in lead-iodide perovskite. Nat. Photon. 10:53–59 [Google Scholar]
  64. Sestu N, Cadelano M, Sarritzu V, Chen F. 64.  et al. 2015. Absorption f-sum rule for the exciton binding energy in methylammonium lead halide perovskites. J. Phys. Chem. Lett. 6:4566–72 [Google Scholar]
  65. Yan J, Saunders BR. 65.  2014. Third-generation solar cells: a review and comparison of polymer:fullerene, hybrid polymer and perovskite solar cells. RSC Adv. 4:43286–314 [Google Scholar]
  66. Tang CW. 66.  1986. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48:183–85 [Google Scholar]
  67. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. 67.  1995. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789–90 [Google Scholar]
  68. Bach U, Lupo D, Comte P, Moser JE, Weissortel F. 68.  et al. 1998. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395:583–85 [Google Scholar]
  69. Kersting R, Lemmer U, Deussen M, Bakker HJ, Mahrt RF. 69.  et al. 1994. Ultrafast field-induced dissociation of excitons in conjugated polymers. Phys. Rev. Lett. 73:1440–43 [Google Scholar]
  70. Knupfer M. 70.  2003. Exciton binding energies in organic semiconductors. Appl. Phys. A 77:623–26 [Google Scholar]
  71. Pope M, Swenberg CE. 71.  1999. Electronic Processes in Organic Crystals and Polymers New York: Oxford Sci. [Google Scholar]
  72. Yamada Y, Nakamura T, Endo M, Wakamiya A, Kanemitsu Y. 72.  2014. Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. J. Am. Chem. Soc. 136:11610–13 [Google Scholar]
  73. Ponseca CS, Savenije TJ, Abdellah M, Zheng K, Yartsev A. 73.  et al. 2014. Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities and slow recombination. J. Am. Chem. Soc. 136:5189–92 [Google Scholar]
  74. Klingshirn CF. 74.  1997. Semiconductor Optics New York: Springer, 1st ed.. [Google Scholar]
  75. Dvorak M, Wei SH, Wu Z. 75.  2013. Origin of the variation of exciton binding energy in semiconductors. Phys. Rev. Lett. 110:016402 [Google Scholar]
  76. Patel JB, Milot RL, Wright AD, Herz LM. 76.  et al. 2016. Formation dynamics of CH3NH3PbI3 perovskite following two-step layer deposition. J. Phys. Chem. Lett. 7:96–102 [Google Scholar]
  77. Juarez-Perez AJ, Sanchez RS, Badia L, Garcia-Belmonte G, Kang YS. 77.  et al. 2014. Photoinduced giant dielectric constant in lead-halide perovskite solar cells. J. Phys. Chem. Lett. 5:2390–94 [Google Scholar]
  78. Wehrenfennig C, Liu M, Snaith HJ, Johnston MB, Herz LM. 78.  2014. Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3−xClx. Energy Environ. Sci. 7:2269–75 [Google Scholar]
  79. Quarti C, Grancini G, Mosconi E, Bruno P, Ball JM. 79.  et al. 2014. The Raman spectrum of the CH3NH3PbI3 hybrid perovskite: interplay of theory and experiment. J. Phys. Chem. Lett. 5:279–84 [Google Scholar]
  80. Perez-Osorio MA, Milot RL, Filip MR, Patel JB. 80.  et al. 2015. Vibrational properties of the organic–inorganic halide perovskite CH3NH3PbI3 from theory and experiment: factor group analysis, first-principles calculations, and low-temperature infrared spectra. J. Phys. Chem. C 119:25703–18 [Google Scholar]
  81. Tvingstedt K, Malinkiewicz O, Baumann A, Diebel C, Snaith HJ. 81.  et al. 2014. Radiative efficiency of lead iodide based perovskite solar cells. Sci. Rep. 4:6071 [Google Scholar]
  82. Stranks SD, Burlakov VM, Leitens T, Ball JM, Goriely A, Snaith HJ. 82.  2014. Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states. Phys. Rev. Appl. 2:034007 [Google Scholar]
  83. Elliott RJ. 83.  1957. Intensity of optical absorption by excitons. Phys. Rev. 108:1384–89 [Google Scholar]
  84. Yu PY, Cardona M. 84.  1996. Fundamentals of Semiconductors New York: Springer, 1st ed.. [Google Scholar]
  85. Shah J. 85.  1999. Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures New York: Springer, 1st ed.. [Google Scholar]
  86. Johnston MB, Herz LM. 86.  2016. Hybrid perovskites for photovoltaics: charge-carrier recombination, diffusion and radiative efficiencies. Acc. Chem. Res. 49:146–54 [Google Scholar]
  87. von der Linde D, Lambrich R. 87.  1979. Direct measurement of hot-electron relaxation by picosecond spectroscopy. Phys. Rev. Lett. 42:1090–93 [Google Scholar]
  88. Klimov V, Haring Bolivar P, Kurz H. 88.  1995. Hot-phonon effects in femtosecond luminescence spectra of electron-hole plasmas in CdS. Phys. Rev. B 52:4728–31 [Google Scholar]
  89. Yong CK, Wong-Leung J, Joyce HJ, Lloyd-Hughes J, Gao Q. 89.  et al. 2013. Direct observation of charge-carrier heating at WZ-ZB InP nanowire heterojunctions. Nano Lett. 13:4280–87 [Google Scholar]
  90. Burstein E. 90.  1954. Anomalous optical absorption limit in InSb. Phys. Rev. 93:632–33 [Google Scholar]
  91. Moss TS. 91.  1954. The interpretation of the properties of indium antimonide. Proc. Phys. Soc. B 67:775–82 [Google Scholar]
  92. Xing G, Mathews N, Sun S, Lim SS, Lam YM. 92.  et al. 2013. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342:344–47 [Google Scholar]
  93. Manser JS, Kamat PV. 93.  2014. Band filling with free charge carriers in organometal halide perovskites. Nat. Photon. 8:737–43 [Google Scholar]
  94. Stamplecoskie KG, Manser JS, Kamat PV. 94.  2015. Dual nature of the excited state in organic-inorganic lead halide perovskites. Energy Environ. Sci. 8:208–15 [Google Scholar]
  95. Wang L, McCleese C, Kovalsky A, Zhao Y, Burda C. 95.  2014. Femtosecond time-resolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films: evidence for passivation effect of PbI2. J. Am. Chem. Soc. 136:12205–8 [Google Scholar]
  96. Kawai H, Giorgi G, Marini A, Yamashita K. 96.  2015. The mechanism of slow hot-hole cooling in lead-iodide perovskite: first-principles calculation on carrier lifetime from electron-phonon interaction. Nano Lett. 15:3103–8 [Google Scholar]
  97. Trinh MT, Wu X, Niesner D, Zhu X. 97.  2015. Many-body interactions in photoexcited lead iodide perovskite. J. Mater. Chem. A 3:9285–90 [Google Scholar]
  98. Hsu H, Wang C, Fathi A, Shiu JW, Chung CC. 98.  et al. 2014. Femtosecond excitonic relaxation dynamics of perovskite on mesoporous films of Al2O3 and NiO nanoparticles. Angew. Chem. Int. Ed. 126:9493–96 [Google Scholar]
  99. Price MB, Butkus J, Jellicoe TC, Sadhanala A. 99.  et al. 2015. Hot-carrier cooling and photoinduced refractive index changes in organic–inorganic lead halide perovkites. Nat. Commun. 6:8429 [Google Scholar]
  100. Gancini G, Kandada ARS, Frost JM, Barker AJ. 100.  et al. 2016. Role of microstructure in the electron-hole interaction of hybrid lead halide perovskite. Nat. Photon. 9:695–702 [Google Scholar]
  101. Christians JA, Manser JS, Kamat PV. 101.  2015. Multifaceted excited state of CH3NH3PbI3. charge separation, recombination, and trapping. J. Phys. Chem. Lett. 6:2086–95 [Google Scholar]
  102. Beattie AR, Landsberg PT. 102.  1959. Auger effect in semiconductors. Proc. R. Soc. Lond. A 249:16–29 [Google Scholar]
  103. Nie W, Tsai H, Asadpour R, Blancon JC, Neukirch AJ. 103.  et al. 2015. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347:522–25 [Google Scholar]
  104. Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E. 104.  et al. 2015. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347:519–22 [Google Scholar]
  105. Zhou H, Chen Q, Li G, Luo S, Song TB. 105.  et al. 2015. Interface engineering of highly efficient perovskite solar cells. Science 345:542–46 [Google Scholar]
  106. Oga H, Saeki A, Ogomi Y, Hayase S, Seki S. 106.  2014. Improved understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps. J. Am. Chem. Soc. 136:13818–25 [Google Scholar]
  107. D’Innocenzo V, Kandada ARS, De Bastiani M, Gandini M, Petrozza A. 107.  2014. Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite. J. Am. Chem. Soc. 136:17730–33 [Google Scholar]
  108. Edri E, Kirmayer S, Mukhopadhyay S, Gartsman K, Hodes G, Cahen D. 108.  2014. Elucidating the charge carrier separation and working mechanisms of CH3NH3PbI3−xClx perovskite solar cells. Nat. Commun. 5:3461 [Google Scholar]
  109. Wehrenfennig C, Liu M, Snaith HJ, Johnston MB, Herz LM. 109.  2014. Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films. APL Mater. 2:081513 [Google Scholar]
  110. Guo Z, Manser JS, Wan Y, Kamat PV, Huang L. 110.  2015. Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy. Nat. Commun. 6:7471 [Google Scholar]
  111. Sadhanala A, Deschler F, Thomas TH, Dutton SE, Goedel KC. 111.  et al. 2014. Preparation of single-phase films of CH3NH3Pb(I1−xBrx)3 with sharp optical band edges. J. Phys. Chem. Lett. 5:2501–5 [Google Scholar]
  112. Rehman W, Milot RL, Eperon GE, Wehrenfennig C, Boland JL. 112.  et al. 2015. Charge-carrier dynamics and mobilities in formamidinium lead mixed-halide perovskites. Adv. Mater. 27:7938–44 [Google Scholar]
  113. McMeekin DP, Sadoughi G, Rehman W, Eperon GE. 113.  et al. 2016. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351:151–55 [Google Scholar]
  114. Yin WJ, Shi T, Yan Y. 114.  2014. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104:063903 [Google Scholar]
  115. Kim J, Lee SH, Lee JH, Hong KH. 115.  2014. The role of intrinsic defects in methylammonium lead iodide perovskite. J. Phys. Chem. Lett. 5:1312–17 [Google Scholar]
  116. De Wolf S, Holovski J, Moon SJ, Löper P, Niesen B. 116.  et al. 2014. Organometal halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5:1035–39 [Google Scholar]
  117. Wu X, Trinh T, Niesner D, Zhu H, Norman Z. 117.  et al. 2015. Trap states in lead iodide perovskites. J. Am. Chem. Soc. 137:2089–96 [Google Scholar]
  118. Samiee M, Konduri S, Ganapathy B, Kottokkaran R, Abbas HA. 118.  et al. 2014. Defect density and dielectric constant in perovskite solar cells. Appl. Phys. Lett. 105:153502 [Google Scholar]
  119. Herz LM, Silva C, Grimsdale AC, Müllen K, Phillips RT. 119.  2004. Time-dependent energy transfer rates in a conjugated polymer guest-host system. Phys. Rev. B 70:165207 [Google Scholar]
  120. Langevin P. 120.  1903. The recombination and mobilities of ions in gases. Ann. Chim. Phys. 28:433–530 [Google Scholar]
  121. Yang W, Yao Y, W CQ. 121.  2015. Origin of the high open circuit voltage in planar heterojunction perovskite solar cells: role of the reduced bimolecular recombination. J. Appl. Phys. 117:095502 [Google Scholar]
  122. Li D, Liang C, Zhang H, Zhang C, You F, He Z. 122.  2015. Spatially separated charge densities of electrons and holes in organic-inorganic halide perovskites. J. Appl. Phys. 117:074901 [Google Scholar]
  123. Parkinson P, Lloyd-Hughes J, Johnston MB, Herz LM. 123.  2008. Efficient generation of charges via below-gap photoexcitation of polymer-fullerene blend films investigated by terahertz spectroscopy. Phys. Rev. B 78:115321 [Google Scholar]
  124. de Haas MP, Warman JM, Anthopoulos TD. 124.  2006. The mobility and decay kinetics of charge carriers in pulse-ionized microcrystalline PCBM powder. Adv. Funct. Mater. 16:2274–80 [Google Scholar]
  125. Pivrikas A, Juška G, Mozer AJ, Scharber M, Arlauskas K. 125.  et al. 2005. Bimolecular recombination coefficient as a sensitive testing parameter for low-mobility solar-cell materials. Phys. Rev. Lett. 94:176806 [Google Scholar]
  126. Adriaenssens GJ, Arkhipov VI. 126.  1997. Non-Langevin recombination in disordered materials with random potential distributions. Solid State Commun. 103:541–43 [Google Scholar]
  127. Haug A. 127.  1983. Auger recombination in direct-gap semiconductors: band-structure effects. J. Phys. C 16:4159–72 [Google Scholar]
  128. Haug A. 128.  1988. Band-to-band Auger recombination in semiconductors. J. Phys. Chem. Solids 49:599–605 [Google Scholar]
  129. Landsberg PT. 129.  1987. The band-band Auger effect in semiconductors. Solid-State Electron. 30:1107–15 [Google Scholar]
  130. Takeshima M. 130.  1982. Unified theory of the impurity and phonon scattering effects on Auger recombination in semiconductors. Phys. Rev. B 25:5390–414 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error