1932

Abstract

This review focuses on papers published since 2000 on the topic of the properties of solutes in water. More specifically, it evaluates the state of the art of our understanding of the complex relationship between the shape of a hydrophobe and the hydrophobic effect. To highlight this, we present a selection of references covering both empirical and molecular dynamics studies of small (molecular-scale) solutes. These include empirical studies of small molecules, synthetic hosts, crystalline monolayers, and proteins, as well as in silico investigations of entities such as idealized hard and soft spheres, small solutes, hydrophobic plates, artificial concavity, molecular hosts, carbon nanotubes and spheres, and proteins.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040215-112316
2016-05-27
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/physchem/67/1/annurev-physchem-040215-112316.html?itemId=/content/journals/10.1146/annurev-physchem-040215-112316&mimeType=html&fmt=ahah

Literature Cited

  1. Lynden-Bell RM, Morris SC, Barrow JD, Finney JL, Harper RLJ. 1.  2010. Water and Life Boca Raton, FL: CRC [Google Scholar]
  2. Lo Nostro P, Ninham BW. 2.  2012. Hofmeister phenomena: an update on ion specificity in biology. Chem. Rev. 112:2286–322 [Google Scholar]
  3. Zhang Y, Cremer PS. 3.  2010. Chemistry of Hofmeister anions and osmolytes. Annu. Rev. Phys. Chem. 61:63–83 [Google Scholar]
  4. Jungwirth P, Tobias DJ. 4.  2006. Specific ion effects at the air/water interface. Chem. Rev. 106:1259–81 [Google Scholar]
  5. van der Post ST, Scheidelaar S, Bakker HJ. 5.  2013. Water dynamics in aqueous solutions of tetra-n-alkylammonium salts: hydrophobic and Coulomb interactions disentangled. J. Phys. Chem. B 117:15101–10 [Google Scholar]
  6. Assaf KI, Ural MS, Pan F, Georgiev T, Simova S. 6.  et al. 2015. Water structure recovery in chaotropic anion recognition: high-affinity binding of dodecaborate clusters to γ-cyclodextrin. Angew. Chem. Int. Ed. 54:6852–56 [Google Scholar]
  7. Hummer G, Garde S, García AE, Pratt LR. 7.  2000. New perspectives on hydrophobic effects. Chem. Phys. 258:349–70 [Google Scholar]
  8. Berne BJ, Weeks JD, Zhou R. 8.  2009. Dewetting and hydrophobic interaction in physical and biological systems. Annu. Rev. Phys. Chem. 60:85–103 [Google Scholar]
  9. Koga K. 9.  2011. Solvation of hydrophobes in water and simple liquids. Phys. Chem. Chem. Phys. 13:19749–58 [Google Scholar]
  10. Pratt LR, Pohorille A. 10.  2002. Hydrophobic effects and modeling of biophysical aqueous solution interfaces. Chem. Rev. 102:2671–92 [Google Scholar]
  11. Sharp KA, Vanderkooi JM. 11.  2010. Water in the half shell: structure of water, focusing on angular structure and solvation. Acc. Chem. Res. 43:231–39 [Google Scholar]
  12. Kumar R, Schmidt JR, Skinner JL. 12.  2007. Hydrogen bonding definitions and dynamics in liquid water. J. Chem. Phys. 126:204107 [Google Scholar]
  13. Liu K, Brown MG, Carter C, Saykally RJ, Gregory JK, Clary DC. 13.  1996. Characterization of a cage form of the water hexamer. Nature 381:501–3 [Google Scholar]
  14. Perez C, Muckle MT, Zaleski DP, Seifert NA, Temelso B. 14.  et al. 2012. Structures of cage, prism, and book isomers of water hexamer from broadband rotational spectroscopy. Science 336:897–901 [Google Scholar]
  15. Algara-Siller G, Lehtinen O, Wang FC, Nair RR, Kaiser U. 15.  et al. 2015. Square ice in graphene nanocapillaries. Nature 519:443–45 [Google Scholar]
  16. Wernet P, Nordlund D, Bergmann U, Cavalleri M, Odelius M. 16.  et al. 2004. The structure of the first coordination shell in liquid water. Science 304:995–99 [Google Scholar]
  17. Frank HS, Wen W-Y. 17.  1957. III. Ion-solvent interaction: structural aspects of ion-solvent interaction in aqueous solutions: a suggested picture of water structure. Discuss. Faraday Soc. 24:133–40 [Google Scholar]
  18. Ben-Amotz D. 18.  2016. Water-mediated hydrophobic interactions. Annu. Rev. Phys. Chem. 67:617–38 [Google Scholar]
  19. Ben-Amotz D. 19.  2015. Hydrophobic ambivalence: teetering on the edge of randomness. J. Phys. Chem. Lett. 6:1696–701 [Google Scholar]
  20. Chandler D. 20.  2005. Interfaces and the driving force of hydrophobic assembly. Nature 437:640–47 [Google Scholar]
  21. Frank HS, Evans MW. 21.  1945. Free volume and entropy in condensed systems. III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. J. Chem. Phys. 13:507–32 [Google Scholar]
  22. Kauzmann W. 22.  1959. Some factors in the interpretation of protein denaturation. Adv. Protein Chem. 14:1–63 [Google Scholar]
  23. Snyder PW, Lockett MR, Moustakas DT, Whitesides GM. 23.  2014. Is it the shape of the cavity, or the shape of the water in the cavity?. Euro. Phys. J. Spec. Top. 223:853–91 [Google Scholar]
  24. Ball P. 24.  2008. Water as an active constituent in cell biology. Chem. Rev. 108:74–108 [Google Scholar]
  25. Blokzijl W, Engberts JBFN. 25.  1993. Hydrophobic effects. Opinions and facts. Angew. Chem. Int. Ed. 32:1545–79 [Google Scholar]
  26. Lucas M. 26.  1976. Size effect in transfer of nonpolar solutes from gas or solvent to another solvent with a view on hydrophobic behavior. J. Phys. Chem. 80:359–62 [Google Scholar]
  27. Lee B. 27.  1991. Solvent reorganization contribution to the transfer thermodynamics of small nonpolar molecules. Biopolymers 31:993–1008 [Google Scholar]
  28. Lynden-Bell RM, Giovambattista N, Debenedetti PG, Head-Gordon T, Rossky PJ. 28.  2011. Hydrogen bond strength and network structure effects on hydration of non-polar molecules. Phys. Chem. Chem. Phys. 13:2748–57 [Google Scholar]
  29. Lazaridis T. 29.  2001. Solvent size versus cohesive energy as the origin of hydrophobicity. Acc. Chem. Res. 34:931–37 [Google Scholar]
  30. Baldwin RL. 30.  2013. The new view of hydrophobic free energy. FEBS Lett. 587:1062–66 [Google Scholar]
  31. Stillinger FH. 31.  1973. Structure in aqueous solutions of nonpolar solutes from the standpoint of scaled particle theory. J. Soln. Chem. 2:141–58 [Google Scholar]
  32. Pratt LR, Chandler D. 32.  1977. Theory of the hydrophobic effect. J. Chem. Phys. 67:3683–704 [Google Scholar]
  33. Pratt LR. 33.  2002. Molecular theory of hydrophobic effects: “She is too mean to have her name repeated.”. Annu. Rev. Phys. Chem. 53:409–36 [Google Scholar]
  34. Lum K, Chandler D, Weeks JD. 34.  1999. Hydrophobicity at small and large length scales. J. Phys. Chem. B 103:4570–77 [Google Scholar]
  35. Poynor A, Hong L, Robinson IK, Granick S, Zhang Z, Fenter PA. 35.  2006. How water meets a hydrophobic surface. Phys. Rev. Lett. 97:266101 [Google Scholar]
  36. Mezger M, Reichert H, Schoder S, Okasinski J, Schroder H. 36.  et al. 2006. High-resolution in situ X-ray study of the hydrophobic gap at the water-octadecyl-trichlorosilane interface. PNAS 103:18401–4 [Google Scholar]
  37. Buchanan P, Soper AK, Thompson H, Westacott RE, Creek JL. 37.  et al. 2005. Search for memory effects in methane hydrate: structure of water before hydrate formation and after hydrate decomposition. J. Chem. Phys. 123:164507 [Google Scholar]
  38. Buchanan P, Aldiwan N, Soper AK, Creek JL, Koh CA. 38.  2005. Decreased structure on dissolving methane in water. Chem. Phys. Lett. 415:89–93 [Google Scholar]
  39. Ashbaugh H. 39.  2003. Hydration of krypton and consideration of clathrate models of hydrophobic effects from the perspective of quasi-chemical theory. Biophys. Chem. 105:323–38 [Google Scholar]
  40. Chaudhari MI, Holleran SA, Ashbaugh HS, Pratt LR. 40.  2013. Molecular-scale hydrophobic interactions between hard-sphere reference solutes are attractive and endothermic. PNAS 110:20557–62 [Google Scholar]
  41. Czaplewski C, Liwo A, Ripoll DR, Scheraga HA. 41.  2005. Molecular origin of anticooperativity in hydrophobic association. J. Phys. Chem. B 109:8108–19 [Google Scholar]
  42. Ashbaugh HS, Paulaitis ME. 42.  2001. Effect of solute size and solute–water attractive interactions on hydration water structure around hydrophobic solutes. J. Am. Chem. Soc. 123:10721–28 [Google Scholar]
  43. Li ITS, Walker GC. 43.  2011. Signature of hydrophobic hydration in a single polymer. PNAS 108:16527–32 [Google Scholar]
  44. Garde S, Patel AJ. 44.  2011. Unraveling the hydrophobic effect, one molecule at a time. PNAS 108:16491–92 [Google Scholar]
  45. Huang DM, Geissler PL, Chandler D. 45.  2001. Scaling of hydrophobic solvation free energies. J. Phys. Chem. B 105:6704–9 [Google Scholar]
  46. Huang DM, Chandler D. 46.  2002. The hydrophobic effect and the influence of solute-solvent attractions. J. Phys. Chem. B 106:2047–53 [Google Scholar]
  47. Rajamani S, Truskett TM, Garde S. 47.  2005. Hydrophobic hydration from small to large lengthscales: understanding and manipulating the crossover. PNAS 102:9475–80 [Google Scholar]
  48. Athawale MV, Jamadagni SN, Garde S. 48.  2009. How hydrophobic hydration responds to solute size and attractions: theory and simulations. J. Chem. Phys. 131:115102 [Google Scholar]
  49. Mittal J, Hummer G. 49.  2008. Static and dynamic correlations in water at hydrophobic interfaces. PNAS 105:20130–35 [Google Scholar]
  50. Ashbaugh HS. 50.  2009. Entropy crossover from molecular to macroscopic cavity hydration. Chem. Phys. Lett. 477:109–11 [Google Scholar]
  51. Huang X, Margulis CJ, Berne BJ. 51.  2003. Do molecules as small as neopentane induce a hydrophobic response similar to that of large hydrophobic surfaces?. J. Phys. Chem. B 107:11742–48 [Google Scholar]
  52. Gallicchio E, Kubo MM, Levy RM. 52.  2000. Enthalpy–entropy and cavity decomposition of alkane hydration free energies: numerical results and implications for theories of hydrophobic solvation. J. Phys. Chem. B 104:6271–85 [Google Scholar]
  53. Perera PN, Fega KR, Lawrence C, Sundstrom EJ, Tomlinson-Phillips J, Ben-Amotz D. 53.  2009. Observation of water dangling OH bonds around dissolved nonpolar groups. PNAS 106:12230–34 [Google Scholar]
  54. Davis JG, Rankin BM, Gierszal KP, Ben-Amotz D. 54.  2013. On the cooperative formation of non-hydrogen-bonded water at molecular hydrophobic interfaces. Nat. Chem. 5:796–802 [Google Scholar]
  55. Rankin BM, Ben-Amotz D, van der Post ST, Bakker HJ. 55.  2015. Contacts between alcohols in water are random rather than hydrophobic. J. Phys. Chem. Lett. 6:688–92 [Google Scholar]
  56. Davis JG, Gierszal KP, Wang P, Ben-Amotz D. 56.  2012. Water structural transformation at molecular hydrophobic interfaces. Nature 491:582–85 [Google Scholar]
  57. Davis JG, Zukowski SR, Rankin BM, Ben-Amotz D. 57.  2015. Influence of a neighboring charged group on hydrophobic hydration shell structure. J. Phys. Chem. B 119:9417–22 [Google Scholar]
  58. Ferguson AL, Debenedetti PG, Panagiotopoulos AZ. 58.  2009. Solubility and molecular conformations of n-alkane chains in water. J. Phys. Chem. B 113:6405–14 [Google Scholar]
  59. Underwood R, Tomlinson-Phillips J, Ben-Amotz D. 59.  2010. Are long-chain alkanes hydrophilic?. J. Phys. Chem. B 114:8646–51 [Google Scholar]
  60. Bakulin AA, Pshenichnikov MS, Bakker HJ, Petersen C. 60.  2011. Hydrophobic molecules slow down the hydrogen-bond dynamics of water. J. Phys. Chem. A 115:1821–29 [Google Scholar]
  61. Pascal TA, Lin S-T, Goddard W, Jung Y. 61.  2012. Stability of positively charged solutes in water: a transition from hydrophobic to hydrophilic. J. Phys. Chem. Lett. 3:294–98 [Google Scholar]
  62. Rankin BM, Ben-Amotz D. 62.  2013. Expulsion of ions from hydrophobic hydration shells. J. Am. Chem. Soc. 135:8818–21 [Google Scholar]
  63. Gibb CL, Gibb BC. 63.  2011. Anion binding to hydrophobic concavity is central to the salting-in effects of Hofmeister chaotropes. J. Am. Chem. Soc. 133:7344–47 [Google Scholar]
  64. Carnegie RS, Gibb CL, Gibb BC. 64.  2014. Anion complexation and the Hofmeister effect. Angew. Chem. Int. Ed. 53:11498–500 [Google Scholar]
  65. Fox JM, Kang K, Sherman W, Heroux A, Sastry GM. 65.  et al. 2015. Interactions between Hofmeister anions and the binding pocket of a protein. J. Am. Chem. Soc. 137:3859–66 [Google Scholar]
  66. Jensen T, Østergaard Jensen M, Reitzel N, Balashev K, Peters G. 66.  et al. 2003. Water in contact with extended hydrophobic surfaces: direct evidence of weak dewetting. Phys. Rev. Lett. 90:086101 [Google Scholar]
  67. Wallqvist A, Gallicchio E, Levy RM. 67.  2001. A model for studying drying at hydrophobic interfaces: structural and thermodynamic properties. J. Phys. Chem. B 105:6745–53 [Google Scholar]
  68. Patel HA, Nauman EB, Garde S. 68.  2003. Molecular structure and hydrophobic solvation thermodynamics at an octane–water interface. J. Chem. Phys. 119:9199–206 [Google Scholar]
  69. Godawat R, Jamadagni SN, Garde S. 69.  2009. Characterizing hydrophobicity of interfaces by using cavity formation, solute binding, and water correlations. PNAS 106:15119–24 [Google Scholar]
  70. Malaspina DC, Schulz EP, Alarcon LM, Frechero MA, Appignanesi GA. 70.  2010. Structural and dynamical aspects of water in contact with a hydrophobic surface. Euro. Phys. J. E 32:35–42 [Google Scholar]
  71. Alarcón LM, Malaspina DC, Schulz EP, Frechero MA, Appignanesi GA. 71.  2011. Structure and orientation of water molecules at model hydrophobic surfaces with curvature: from graphene sheets to carbon nanotubes and fullerenes. Chem. Phys. 388:47–56 [Google Scholar]
  72. Gierszal KP, Davis JG, Hands MD, Wilcox DS, Slipchenko LV, Ben-Amotz D. 72.  2011. π-Hydrogen bonding in liquid water. J. Phys. Chem. Lett. 2:2930–33 [Google Scholar]
  73. Patel AJ, Varilly P, Chandler D. 73.  2010. Fluctuations of water near extended hydrophobic and hydrophilic surfaces. J. Phys. Chem. B 114:1632–37 [Google Scholar]
  74. Patel AJ, Varilly P, Jamadagni SN, Acharya H, Garde S, Chandler D. 74.  2011. Extended surfaces modulate hydrophobic interactions of neighboring solutes. PNAS 108:17678–83 [Google Scholar]
  75. Strazdaite S, Versluis J, Backus EH, Bakker HJ. 75.  2014. Enhanced ordering of water at hydrophobic surfaces. J. Chem. Phys. 140:054711 [Google Scholar]
  76. Willard AP, Chandler D. 76.  2014. The molecular structure of the interface between water and a hydrophobic substrate is liquid-vapor like. J. Chem. Phys. 141:18C519 [Google Scholar]
  77. Huang X, Margulis CJ, Berne BJ. 77.  2003. Dewetting-induced collapse of hydrophobic particles. PNAS 100:11953–58 [Google Scholar]
  78. Jensen MO, Mouritsen OG, Peters GH. 78.  2004. The hydrophobic effect: molecular dynamics simulations of water confined between extended hydrophobic and hydrophilic surfaces. J. Chem. Phys. 120:9729–44 [Google Scholar]
  79. Koga K. 79.  2002. Solvation forces and liquid–solid phase equilibria for water confined between hydrophobic surfaces. J. Chem. Phys. 116:10882–89 [Google Scholar]
  80. Giovambattista N, Rossky P, Debenedetti P. 80.  2006. Effect of pressure on the phase behavior and structure of water confined between nanoscale hydrophobic and hydrophilic plates. Phys. Rev. E 73:041604 [Google Scholar]
  81. Zangi R, Hagen M, Berne BJ. 81.  2007. Effect of ions on the hydrophobic interaction between two plates. J. Am. Chem. Soc. 129:4678–86 [Google Scholar]
  82. Zangi R, Zhou R, Berne BJ. 82.  2009. Urea's action on hydrophobic interactions. J. Am. Chem. Soc. 131:1535–41 [Google Scholar]
  83. Hua L, Zangi R, Berne BJ. 83.  2009. Hydrophobic interactions and dewetting between plates with hydrophobic and hydrophilic domains. J. Phys. Chem. C 113:5244–53 [Google Scholar]
  84. Wang L, Friesner RA, Berne BJ. 84.  2010. Competition of electrostatic and hydrophobic interactions between small hydrophobes and model enclosures. J. Phys. Chem. B 114:7294–301 [Google Scholar]
  85. Sharma S, Debenedetti PG. 85.  2012. Free energy barriers to evaporation of water in hydrophobic confinement. J. Phys. Chem. B 116:13282–89 [Google Scholar]
  86. Sharma S, Debenedetti PG. 86.  2012. Evaporation rate of water in hydrophobic confinement. PNAS 109:4365–70 [Google Scholar]
  87. Li J, Morrone JA, Berne BJ. 87.  2012. Are hydrodynamic interactions important in the kinetics of hydrophobic collapse?. J. Phys. Chem. B 116:11537–44 [Google Scholar]
  88. Ashbaugh HS. 88.  2013. Solvent cavitation under solvophobic confinement. J. Chem. Phys. 139:064702 [Google Scholar]
  89. Cheng YK, Rossky PJ. 89.  1998. Surface topography dependence of biomolecular hydrophobic hydration. Nature 392:696–99 [Google Scholar]
  90. Liu P, Huang X, Zhou R, Berne BJ. 90.  2005. Observation of a dewetting transition in the collapse of the melittin tetramer. Nature 437:159–62 [Google Scholar]
  91. Patel AJ, Varilly P, Jamadagni SN, Hagan MF, Chandler D, Garde S. 91.  2012. Sitting at the edge: how biomolecules use hydrophobicity to tune their interactions and function. J. Phys. Chem. B 116:2498–503 [Google Scholar]
  92. Giovambattista N, Lopez CF, Rossky PJ, Debenedetti PG. 92.  2008. Hydrophobicity of protein surfaces: separating geometry from chemistry. PNAS 105:2274–79 [Google Scholar]
  93. Zhou R, Huang X, Margulis CJ, Berne BJ. 93.  2004. Hydrophobic collapse in multidomain protein folding. Science 305:1605–9 [Google Scholar]
  94. Hua L, Huang X, Zhou R, Berne BJ. 94.  2006. Dynamics of water confined in the interdomain region of a multidomain protein. J. Phys. Chem. B 110:3704–11 [Google Scholar]
  95. Meister K, Strazdaite S, DeVries AL, Lotze S, Olijve LL. 95.  et al. 2014. Observation of ice-like water layers at an aqueous protein surface. PNAS 111:17732–36 [Google Scholar]
  96. Ross PD, Subramanian S. 96.  1981. Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–102 [Google Scholar]
  97. Rekharsky MV, Inoue Y. 97.  1998. Complexation thermodynamics of cyclodextrins. Chem. Rev. 98:1875–917 [Google Scholar]
  98. VanEtten RL, Sebastian JF, Clowes GA, Bender ML. 98.  1967. Acceleration of phenyl ester cleavage by cycloamyloses. A model for enzymatic specificity. J. Am. Chem. Soc. 89:3242–53 [Google Scholar]
  99. Biedermann F, Nau WM, Schneider HJ. 99.  2014. The hydrophobic effect revisited—studies with supramolecular complexes imply high-energy water as a noncovalent driving force. Angew. Chem. Int. Ed. 53:11158–71 [Google Scholar]
  100. Jordan JH, Gibb BC. 100.  2015. Molecular containers assembled through the hydrophobic effect. Chem. Soc. Rev. 44:547–85 [Google Scholar]
  101. Crini G. 101.  2014. Review: a history of cyclodextrins. Chem. Rev. 114:10940–75 [Google Scholar]
  102. Appel EA, del Barrio J, Loh XJ, Scherman OA. 102.  2012. Supramolecular polymeric hydrogels. Chem. Soc. Rev. 41:6195–214 [Google Scholar]
  103. Oshovsky GV, Reinhoudt DN, Verboom W. 103.  2007. Supramolecular chemistry in water. Angew. Chem. Int. Ed. 46:2366–93 [Google Scholar]
  104. Biros SM, Rebek J Jr. 104.  2007. Structure and binding properties of water-soluble cavitands and capsules. Chem. Soc. Rev. 36:93–104 [Google Scholar]
  105. Corbellini F, Knegtel RM, Grootenhuis PD, Crego-Calama M, Reinhoudt DN. 105.  2004. Water-soluble molecular capsules: self-assembly and binding properties. Chemistry 11:298–307 [Google Scholar]
  106. Meyer EA, Castellano RK, Diederich F. 106.  2003. Interactions with aromatic rings in chemical and biological recognition. Angew. Chem. Int. Ed. 42:1210–50 [Google Scholar]
  107. Xue M, Yang Y, Chi X, Zhang Z, Huang F. 107.  2012. Pillararenes, a new class of macrocycles for supramolecular chemistry. Acc. Chem. Res. 45:1294–308 [Google Scholar]
  108. Strutt NL, Zhang H, Schneebeli ST, Stoddart JF. 108.  2014. Functionalizing pillar[n]arenes. Acc. Chem. Res. 47:2631–42 [Google Scholar]
  109. Barboiu M, Gilles A. 109.  2013. From natural to bioassisted and biomimetic artificial water channel systems. Acc. Chem. Res. 46:2814–23 [Google Scholar]
  110. Si W, Chen L, Hu XB, Tang G, Chen Z. 110.  et al. 2011. Selective artificial transmembrane channels for protons by formation of water wires. Angew. Chem. Int. Ed. 50:12564–68 [Google Scholar]
  111. Hu XB, Chen Z, Tang G, Hou JL, Li ZT. 111.  2012. Single-molecular artificial transmembrane water channels. J. Am. Chem. Soc. 134:8384–87 [Google Scholar]
  112. Freeman WA, Mock WL, Shih N-Y. 112.  1981. Cucurbituril. J. Am. Chem. Soc. 103:7367–68 [Google Scholar]
  113. Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L. 113.  2005. The cucurbit[n]uril family. Angew. Chem. Int. Ed. 44:4844–70 [Google Scholar]
  114. Moghaddam S, Yang C, Rekharsky M, Ko YH, Kim K. 114.  et al. 2011. New ultrahigh affinity host-guest complexes of cucurbit[7]uril with bicyclo[2.2.2]octane and adamantane guests: thermodynamic analysis and evaluation of M2 affinity calculations. J. Am. Chem. Soc. 133:3570–81 [Google Scholar]
  115. Cao L, Sekutor M, Zavalij PY, Mlinaric-Majerski K, Glaser R, Isaacs L. 115.  2014. Cucurbit[7]uril-guest pair with an attomolar dissociation constant. Angew. Chem. Int. Ed. 53:988–93 [Google Scholar]
  116. Zouhair A, Böhmer V, Harrowfield J, Vicens J, Saadioui M. 116.  2001. Calixarenes 2001 Dordrecht: Kluwer Acad. [Google Scholar]
  117. Ewell J, Gibb BC, Rick SW. 117.  2008. Water inside a hydrophobic cavitand molecule. J. Phys. Chem. B 112:10272–79 [Google Scholar]
  118. Hummer G, Rasaiah JC, Noworyta JP. 118.  2001. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414:188–90 [Google Scholar]
  119. Kofinger J, Hummer G, Dellago C. 119.  2011. Single-file water in nanopores. Phys. Chem. Chem. Phys. 13:15403–17 [Google Scholar]
  120. Kalra A, Garde S, Hummer G. 120.  2003. Osmotic water transport through carbon nanotube membranes. PNAS 100:10175–80 [Google Scholar]
  121. Ohba T, Kaneko K, Endo M, Hata K, Kanoh H. 121.  2013. Rapid water transportation through narrow one-dimensional channels by restricted hydrogen bonds. Langmuir 29:1077–82 [Google Scholar]
  122. Takaiwa D, Hatano I, Koga K, Tanaka H. 122.  2008. Phase diagram of water in carbon nanotubes. PNAS 105:39–43 [Google Scholar]
  123. Ohba T. 123.  2014. Size-dependent water structures in carbon nanotubes. Angew. Chem. Int. Ed. 53:8032–36 [Google Scholar]
  124. Pascal TA, Goddard WA, Jung Y. 124.  2011. Entropy and the driving force for the filling of carbon nanotubes with water. PNAS 108:11794–98 [Google Scholar]
  125. Mashl RJ, Joseph S, Aluru NR, Jakobsson E. 125.  2003. Anomalously immobilized water: a new water phase induced by confinement in nanotubes. Nano Lett. 3:589–92 [Google Scholar]
  126. Kyakuno H, Matsuda K, Yahiro H, Inami Y, Fukuoka T. 126.  et al. 2011. Confined water inside single-walled carbon nanotubes: global phase diagram and effect of finite length. J. Chem. Phys. 134:244501 [Google Scholar]
  127. Koga K, Gao GT, Tanaka H, Zeng XC. 127.  2001. Formation of ordered ice nanotubes inside carbon nanotubes. Nature 412:802–5 [Google Scholar]
  128. Mikami F, Matsuda K, Kataura H, Maniwa Y. 128.  2009. Dielectric properties of water inside single-walled carbon nanotubes. Nano 3:1279–87 [Google Scholar]
  129. Tanaka H, Koga K. 129.  2005. Formation of ice nanotube with hydrophobic guests inside carbon nanotube. J. Chem. Phys. 123:94706 [Google Scholar]
  130. Setny P, Geller M. 130.  2006. Water properties inside nanoscopic hydrophobic pocket studied by computer simulations. J. Chem. Phys. 125:144717 [Google Scholar]
  131. Setny P. 131.  2007. Water properties and potential of mean force for hydrophobic interactions of methane and nanoscopic pockets studied by computer simulations. J. Chem. Phys. 127:054505 [Google Scholar]
  132. Setny P. 132.  2008. Hydrophobic interactions between methane and a nanoscopic pocket: three dimensional distribution of potential of mean force revealed by computer simulations. J. Chem. Phys. 128:125105 [Google Scholar]
  133. Baron R, Setny P, McCammon JA. 133.  2010. Water in cavity-ligand recognition. J. Am. Chem. Soc. 132:12091–97 [Google Scholar]
  134. Setny P, Baron R, McCammon JA. 134.  2010. How can hydrophobic association be enthalpy driven?. J. Chem. Theory Comput. 6:2866–71 [Google Scholar]
  135. Baron R, Setny P, Paesani F. 135.  2012. Water structure, dynamics, and spectral signatures: changes upon model cavity-ligand recognition. J. Phys. Chem. B 116:13774–80 [Google Scholar]
  136. Setny P, Baron R, Kekenes-Huskey PM, McCammon JA, Dzubiella J. 136.  2013. Solvent fluctuations in hydrophobic cavity-ligand binding kinetics. PNAS 110:1197–202 [Google Scholar]
  137. Vaitheeswaran S, Yin H, Rasaiah JC, Hummer G. 137.  2004. Water clusters in nonpolar cavities. PNAS 101:17002–5 [Google Scholar]
  138. Young T, Abel R, Kim B, Berne BJ, Friesner RA. 138.  2007. Motifs for molecular recognition exploiting hydrophobic enclosure in protein-ligand binding. PNAS 104:808–13 [Google Scholar]
  139. Young T, Hua L, Huang X, Abel R, Friesner R, Berne BJ. 139.  2010. Dewetting transitions in protein cavities. Proteins 78:1856–69 [Google Scholar]
  140. Raghavender US, Kantharaju, Aravinda S, Shamala N, Balaram P. 140.  2010. Hydrophobic peptide channels and encapsulated water wires. J. Am. Chem. Soc. 132:1075–86 [Google Scholar]
  141. Ghadiri MR, Kobayashi K, Granja JR, Chadha RK, McRee DE. 141.  1995. The structural and thermodynamic basis for the formation of self-assembled peptide nanotubes. Angew. Chem. Int. Ed. 34:93–95 [Google Scholar]
  142. Wang L, Berne BJ, Friesner RA. 142.  2011. Ligand binding to protein-binding pockets with wet and dry regions. PNAS 108:1326–30 [Google Scholar]
  143. Dunitz JD. 143.  1994. The entropic cost of bound water in crystals and biomolecules. Science 264:670 [Google Scholar]
  144. Ladbury JE. 144.  1996. Just add water! The effect of water on the specificity of protein-ligand binding sites and its potential application to drug design. Chem. Biol. 3:973–80 [Google Scholar]
  145. Olano LR, Rick SW. 145.  2004. Hydration free energies and entropies for water in protein interiors. J. Am. Chem. Soc. 126:7991–8000 [Google Scholar]
  146. Yin H, Hummer G, Rasaiah JC. 146.  2007. Metastable water clusters in the nonpolar cavities of the thermostable protein tetrabrachion. J. Am. Chem. Soc. 129:7369–77 [Google Scholar]
  147. Barratt E, Bingham RJ, Warner DJ, Laughton CA, Phillips SE, Homans SW. 147.  2005. Van der Waals interactions dominate ligand-protein association in a protein binding site occluded from solvent water. J. Am. Chem. Soc. 127:11827–34 [Google Scholar]
  148. Malham R, Johnstone S, Bingham RJ, Barratt E, Phillips SE. 148.  et al. 2005. Strong solute-solute dispersive interactions in a protein-ligand complex. J. Am. Chem. Soc. 127:17061–67 [Google Scholar]
  149. Shimokhina N, Bronowska A, Homans SW. 149.  2006. Contribution of ligand desolvation to binding thermodynamics in a ligand-protein interaction. Angew. Chem. Int. Ed. 45:6374–76 [Google Scholar]
  150. Syme NR, Dennis C, Phillips SE, Homans SW. 150.  2007. Origin of heat capacity changes in a “nonclassical” hydrophobic interaction. Chembiochem 8:1509–11 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040215-112316
Loading
/content/journals/10.1146/annurev-physchem-040215-112316
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error