As we approach the Lewis model centennial, it may be timely to discuss novel bonding motifs. Accordingly, this review discusses no-pair ferromagnetic (NPFM) bonds that hold together monovalent metallic atoms using exclusively parallel spins. Thus, without any traditional electron-pair bonds, the bonding energy per atom in these clusters can reach 20 kcal mol−1. This review describes the origins of NPFM bonding using a valence bond (VB) analysis, which shows that this bonding motif arises from bound triplet electron pairs that are delocalized over all the close neighbors of a given atom in the cluster. The VB model accounts for the tendency of NPFM clusters to assume polyhedral shapes with rather high symmetry and for the very steep rise of the bonding energy per atom. The advent of NPFM clusters offers new horizons in chemistry of highly magnetic species sensitive to magnetic and electric fields.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Grimme S, Schreiner PR. 1.  2011. Steric crowding can stabilize a labile molecule: solving the hexaphenylethane riddle. Angew. Chem. Int. Ed. 50:12639–42 [Google Scholar]
  2. Fokin AA, Chernish LV, Gunchenko PA, Tikhonchuk EY, Hausmann H. 2.  et al. 2012. Stable alkanes containing very long carbon-carbon bonds. J. Am. Chem. Soc. 134:13641–50 [Google Scholar]
  3. Danovich D, Wu W, Shaik S. 3.  1999. No-pair bonding in the high-spin 3Σ+ustate of Li2. A valence bond study of its origins. J. Am. Chem. Soc. 121:3165–74 [Google Scholar]
  4. de Visser SP, Alpert Y, Danovich D, Shaik S. 4.  2000. “No-pair bonding” in high-spin lithium clusters: n+1Lin (n=2–6). J. Phys. Chem. A 104:11223–31 [Google Scholar]
  5. de Visser SP. 5.  Danovich D, Wu W, Shaik S. 2002. Ferromagnetic bonding: properties of high-spin lithium clusters n+1Lin (n=2–12) devoid of electron pairs. J. Phys. Chem. A 106:4961–69 [Google Scholar]
  6. de Visser SP, Danovich D, Shaik S. 6.  2003. Ferromagnetic bonding in high-spin alkali metal clusters. How does sodium compare to lithium?. Phys. Chem. Chem. Phys. 5:158–64 [Google Scholar]
  7. de Visser SP, Kumar D, Danovich M, Nevo N, Danovich D. 7.  et al. 2006. Ferromagnetic bonding: high spin copper clusters (n+1Cun; n=1–14) devoid of electron pairs but possessing strong bonding. J. Phys. Chem. A 110:8510–18 [Google Scholar]
  8. Danovich D, Filatov M. 8.  2008. No-pair bonding in coinage metal dimers. J. Phys. Chem. A 112:12995–3001 [Google Scholar]
  9. Danovich D, Shaik S. 9.  2010. Bound triplet pairs in the highest spin states of coinage metal clusters. J. Chem. Theory Comput. 6:1479–89 [Google Scholar]
  10. Danovich D, Shaik S. 10.  2014. Bonding with parallel spins: high-spin clusters of monovalent metal atoms. Acc. Chem. Res. 47:417–26 [Google Scholar]
  11. Danovich D, Shaik S. 11.  2015. Bound triplet pairs in the highest spin states of monovalent metal clusters. The Chemical Bond: Chemical Bonding Across the Periodic Table G Frenking, S Shaik 149–74 New York: Wiley [Google Scholar]
  12. Glukhovtsev MN, Schleyer PVR. 12.  1993. Polyatomic molecules without electron-pair bonds: high-spin trigonal, tetrahedral and octahedral lithium clusters. Isr. J. Chem. 33:455–66This paper coined the term no-pair clusters. [Google Scholar]
  13. Higgins J, Callegari C, Reho J, Stienkemeier F, Ernst WE. 13.  et al. 1996. Photoinduced chemical dynamics of high-spin alkali trimers. Science 273:629–31 [Google Scholar]
  14. Higgins J, Callegari C, Reho J, Stienkemeier F, Ernst WE. 14.  et al. 1998. Helium cluster isolation spectroscopy of alkali dimers in the triplet manifold. J. Phys. Chem. A 102:4952–65 [Google Scholar]
  15. Brühl FR, Miron RA, Ernst WE. 15.  2001. Triplet states of rubidium dimers on helium nanodroplets. J. Chem. Phys. 115:10275–81 [Google Scholar]
  16. Higgins J, Hollebeck T, Reho J, Ho T-S, Lehmann KK. 16.  et al. 2000. On the importance of exchange effects in three-body interactions: the lowest quartet state of Na3. J. Chem. Phys. 112:5751–61 [Google Scholar]
  17. Higgins J, Ernst WE, Callegari C, Reho J, Lehmann KK, Scoles G. 17.  1996. Spin polarized alkali clusters: observation of quartet states of the sodium trimer. Phys. Rev. Lett. 77:4532–35 [Google Scholar]
  18. Reho J, Higgins J, Nooijen M, Lehmann KK, Scoles G, Gutowski M. 18.  2001. Photoinduced nonadiabatic dynamics in quartet Na3 and K3 formed using helium nanodroplet isolation. J. Chem. Phys. 115:10265–74 [Google Scholar]
  19. Fioretti A, Comparat D, Crubellier A, Dulieu O, Masnou-Seeuws F, Pillet P. 19.  1998. Formation of cold Cs2 molecules through photoassociation. Phys. Rev. Lett. 80:4402–5 [Google Scholar]
  20. Bondybey VE. 20.  1982. The lowest a3Σ+ustate of Cu2. J. Chem. Phys. 77:3771–72 [Google Scholar]
  21. Nagl J, Auböck G, Hauser AW, Allard O, Callegari C, Ernst WE. 21.  2008. Heteronuclear and homonuclear high-spin alkali trimers on helium nanodroplets. Phys. Rev. Lett. 100:063001 [Google Scholar]
  22. Kutzelnigg W, Staemler V, Gélus M. 22.  1972. Potential curve of the lowest triplet state of Li2. Chem. Phys. Lett. 13:496–500 [Google Scholar]
  23. Olson ML, Konowalow DD. 23.  1977. Accurate potential energy curves for the 3Σ+u and b3Σ+g states of Li2. Chem. Phys. 21:393–99 [Google Scholar]
  24. Konowalow DD, Fish JL. 24.  1984. The molecular electronic structure of the twenty-six lowest lying states of Li2 at short and intermediate internuclear separations. Chem. Phys. 84:463–75This paper provides a few of the earlier calculations of these bound dimers. [Google Scholar]
  25. Kaldor U. 25.  1990. Li2 ground states by open-shell coupled cluster method. Chem. Phys. 140:1–6 [Google Scholar]
  26. Kolos W, Wolniewicz L. 26.  1965. Potential-energy curves for the X1Σ+g, b3Σ+u, and C1 Πu states of the hydrogen molecule. J. Chem. Phys. 43:2429–41 [Google Scholar]
  27. McAdon MH, Goddard WA III. 27.  1987. Generalized valence bond studies of metallic bonding: naked clusters and application to bulk metals. J. Phys. Chem. 91:2607–26 [Google Scholar]
  28. McAdon MH, Goddard WA III. 28.  1988. Charge density waves, spin density waves, and Peierls distortions in one-dimension metals. 1. Hartree-Fock studies of Cu, Ag, Au, Li, and Na. J. Chem. Phys. 88:277–302 [Google Scholar]
  29. McAdon MH, Goddard WA III. 29.  1988. Charge density waves, spin density waves, and Peierls distortions in one-dimension metals. 2. Generalized valence bond studies of Cu, Ag, Au, Li, and Na. J. Phys. Chem. 92:1352–65 [Google Scholar]
  30. Grimme S, Antony J, Ehrlich S, Krieg H. 30.  2010. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132:154104 [Google Scholar]
  31. Monari A, Pitarch-Ruiz J, Bendazzoli GL, Evangelisti S, Sanches-Martin J. 31.  2008. Full configuration interaction study on the tetrahedral Li4 cluster. J. Chem. Theory Comput. 4:404–13This paper confirmed the nature of the no-pair bond by an independent method. [Google Scholar]
  32. Verdicchio M, Evangelisti S, Leininger T, Sánchez-Marín J, Monari A. 32.  2011. Coupled-cluster study of ‘no-pair’ bonding in the tetrahedral Cu4 cluster. Chem. Phys. Lett. 503:215–19 [Google Scholar]
  33. Soldán P, Cvitas MT, Huston JM. 33.  2003. Three-body nonadditive forces between spin-polarizes alkali-metal atoms. Phys. Rev. A 67:054702 [Google Scholar]
  34. Wu W, Su P, Shaik S, Hiberty PC. 34.  2011. Classical valence bond approach by modern methods. Chem. Rev. 111:7557–93 [Google Scholar]
  35. Shaik S, Hiberty PC. 35.  2008. A Chemist's Guide to Valence Bond Theory Hoboken, NJ: Wiley Intersci. [Google Scholar]
  36. Hiberty PC, Humbel S, Archirel P. 36.  1994. Nature of the differential electron correlation in three-electron bond dissociation. Efficiency of a simple two-configuration valence bond method with breathing orbitals. J. Phys. Chem. 98:11697–704 [Google Scholar]
  37. Hiberty PC. 37.  1997. Reconciling simplicity and accuracy: compact valence bond wave functions with breathing orbitals. J. Mol. Struct. 398–99:35–43 [Google Scholar]
  38. Huber KP, Herzberg G. 38.  1979. Constants of Diatomic Molecules New York: Van Nostrand Reinhold [Google Scholar]
  39. Rohlfing EA, Valentini JJ. 39.  1986. UV laser excited fluorescence spectroscopy of the jet-cooled copper dimer. J. Chem. Phys. 84:6560–66 [Google Scholar]
  40. Morse MD. 40.  1986. Clusters of transition-metal atoms. Chem. Rev. 86:1049–109 [Google Scholar]
  41. Pyykkö P. 41.  2002. Relativity, gold, closed-shell interactions, and CsAu·NH3. Angew. Chem. Int. Ed. 41:3573–78 [Google Scholar]
  42. Pyykkö P. 42.  1997. Strong closed-shell interactions in inorganic chemistry. Chem. Rev. 97:597–636 [Google Scholar]
  43. Pyykkö P, Desclaux J-P. 43.  1979. Relativity and the periodic systems of elements. Acc. Chem. Res. 12:276–81 [Google Scholar]
  44. Zayit A, Pinsky M, Elgavi H, Dryzun C, Avnir D. 44.  2011. A website for calculating the degree of chirality. Chirality 23:17–23 [Google Scholar]
  45. Elgavi H, Krekeler C, Berger R, Avnir D. 45.  2012. Chirality in copper nanoalloy clusters. J. Phys. Chem. C 116:330–35 [Google Scholar]
  46. Silvi A, Savin A. 46.  1994. Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371:683–86 [Google Scholar]
  47. Alikhani ME, Shaik S. 47.  2006. A topological study of the ferromagnetic “no-pair bonding” in maximum-spin lithium clusters n+1Lin (n=2–6). Theor. Chem. Acc. 116:490–97 [Google Scholar]
  48. Hauser AW, Auböck G, Ernst WE. 48.  2012. Jahn-Teller effects in spin-orbit coupling in heavy alkali trimers. Progr. Theor. Chem. Phys. 23:301–6 [Google Scholar]
  49. Green SP, Jones C, Stasch A. 49.  2007. Stable magnesium(I) compounds with Mg-Mg bonds. Science 318:1754–57 [Google Scholar]
  50. Neese F, Pantazis DA. 50.  2011. What is not required to make a single molecule magnet. Faraday Discuss. 148:229–38 [Google Scholar]
  51. Lange KK, Tellgren EI, Hoffmann MR, Helgaker T. 51.  2012. A paramagnetic bonding mechanism for diatomics in strong magnetic fields. Science 337:327–31 [Google Scholar]
  52. Carmeli I, Leitus G, Naaman R, Reich S, Vager Z. 52.  2003. Magnetism induced by the organization of self-assembled monolayers. J. Chem. Phys. 118:10372–75 [Google Scholar]
  53. L’vov VS, Naaman R, Tiberkevich V, Vager Z. 53.  2003. Cooperative effect in electron transfer between metal substrate and organized organic layers. Chem. Phys. Lett. 381:650–53 [Google Scholar]
  54. Naaman R, Vager Z. 54.  2006. New electronic and magnetic properties emerging from adsorption of organized organic layers. Phys. Chem. Chem. Phys. 8:2217–24 [Google Scholar]
  55. El-Sayed MA. 55.  2001. Some interesting properties of metals confined in time and nanometer space of different shape. Acc. Chem. Res. 34:257–64 [Google Scholar]
  56. Huang X, El-Sayed IH, Qian W, El-Sayed MA. 56.  2006. Cancer cell imaging and photothermal therapy in the near-infrared by using gold nanorods. J. Am. Chem. Soc. 128:2115–20 [Google Scholar]
  57. Schwerdtfeger P. 57.  2003. Gold goes nano: from small clusters to low-dimensional assemblies. Angew. Chem. Int. Ed. 42:1892–95 [Google Scholar]
  58. Burda C, Chen X, Narayanan R, El-Sayed MA. 58.  2005. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105:1025–102 [Google Scholar]
  59. Shin T-Y, Choi Y, Kim S, Cheon J. 59.  2015. Recent advances in magnetic nanoparticle-based multi-model imaging. Chem. Soc. Rev. 44:4501–16 [Google Scholar]
  60. Cvitas MT, Soldan P, Houston JM. 60.  2005. Ultracold collisions involving heteronuclear alkali metal dimers. Phys. Rev. Lett. 94:033201 [Google Scholar]
  61. Theisen NM, Lackner F, Ernst WE. 61.  2011. Rb and Cs oligomers in different spin configurations on helium nanodroplets. J. Phys. Chem. A 115:7005–9 [Google Scholar]
  62. Bertlet A, Close JD, Federmann F, Quaas N, Toennies JP. 62.  1996. Gold metal clusters: helium droplets as a nanoscale cryostat. Phys. Rev. Lett. 77:3525–28 [Google Scholar]
  63. Loginov E, Gomez LF, Viselov AF. 63.  2011. Surface deposition of large Ag clusters formed in He droplets. J. Phys. Chem. A 115:7199–209 [Google Scholar]
  64. Gutsev GL, Mochena MD, Buaschlicher CW Jr. 64.  2006. Structure and properties of Mnn, Mnn, and Mnn+ clusters (n=3–10). J. Phys. Chem. A 110:9758–66 [Google Scholar]
  65. Wang W-G, Zhou A-J, Zhang W-X, Tong M-L, Chen X-M. 65.  et al. 2007. Giant heterometallic Cu17Mn28 clusters with Td symmetry and high-spin ground state. J. Am. Chem. Soc. 129:1014–15 [Google Scholar]
  66. Krylov A. 66.  2005. Triradicals. J. Phys. Chem. A 109:10638–45 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error