We summarize how gas-phase ultrafast charged-particle spectroscopy has been used to provide an understanding of the photophysics of DNA building blocks. We focus on adenine and discuss how, following UV excitation, specific interactions determine the fates of its excited states. The dynamics can be probed using a systematic bottom-up approach that provides control over these interactions and that allows ever-larger complexes to be studied. Starting from a chromophore in adenine, the excited state decay mechanisms of adenine and chemically substituted or clustered adenine are considered and then extended to adenosine mono-, di-, and trinucleotides. We show that the gas-phase approach can offer exquisite insight into the dynamics observed in aqueous solution, but we also highlight stark differences. An outlook is provided that discusses some of the most promising developments in this bottom-up approach.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Crespo-Hernández CE, Cohen B, Hare PM, Kohler B. 1.  2004. Ultrafast excited-state dynamics in nucleic acids. Chem. Rev. 104:1977–2019 [Google Scholar]
  2. Middleton CT, de La Harpe K, Su C, Law YK, Crespo-Hernández CE, Kohler B. 2.  2009. DNA excited-state dynamics: from single bases to the double helix. Annu. Rev. Phys. Chem. 60:217–39 [Google Scholar]
  3. Schreier WJ, Schrader TE, Koller FO, Gilch P, Crespo-Hernández CE. 3.  et al. 2007. Thymine dimerization in DNA is an ultrafast photoreaction. Science 315:625–29 [Google Scholar]
  4. Pfeifer GP, You YH, Besaratinia A. 4.  2005. Mutations induced by ultraviolet light. Mutat. Res. 571:19–31 [Google Scholar]
  5. Ashfold MNR, King GA, Murdock D, Nix MGD, Oliver TAA, Sage AG. 5.  2010. πσ* excited states in molecular photochemistry. Phys. Chem. Chem. Phys. 12:1218–38 [Google Scholar]
  6. Staniforth M, Stavros VG. 6.  2013. Recent advances in experimental techniques to probe fast excited-state dynamics in biological molecules in the gas phase: dynamics in nucleotides, amino acids and beyond. Proc. R. Soc. A 469:20130458 [Google Scholar]
  7. Roberts GM, Stavros VG. 7.  2014. The role of πσ* states in the photochemistry of heteroaromatic biomolecules and their subunits: insights from gas-phase femtosecond spectroscopy. Chem. Sci. 5:1698–722 [Google Scholar]
  8. Sobolewski AL, Domcke W. 8.  2010. Molecular mechanisms of the photostability of life. Phys. Chem. Chem. Phys. 12:4897–98 [Google Scholar]
  9. Domcke W, Yarkony DR, Köppel H. 9.  2011. Conical Intersections Theory, Computation and Experiment Singapore: World Sci.
  10. Verlet JRR. 10.  2008. Femtosecond spectroscopy of cluster anions: insights into condensed-phase phenomena from the gas-phase. Chem. Soc. Rev. 37:505–17 [Google Scholar]
  11. Stolow A, Bragg AE, Neumark DM. 11.  2004. Femtosecond time-resolved photoelectron spectroscopy. Chem. Rev. 104:1719–57 [Google Scholar]
  12. Ashfold MNR, Nahler NH, Orr-Ewing AJ, Vieuxmaire OPJ, Toomes RL. 12.  et al. 2006. Imaging the dynamics of gas phase reactions. Phys. Chem. Chem. Phys. 8:26–53 [Google Scholar]
  13. Proch D, Trickl T. 13.  1989. A high-intensity multi-purpose piezoelectric pulsed molecular beam source. Rev. Sci. Instrum. 60:713–16 [Google Scholar]
  14. Even U, Jortner J, Noy D, Lavie N, Cossart-Magos C. 14.  2000. Cooling of large molecules below 1 K and He clusters formation. J. Chem. Phys. 112:8068–71 [Google Scholar]
  15. Nir E, Kleinermanns K, de Vries MS. 15.  2000. Pairing of isolated nucleic-acid bases in the absence of the DNA backbone. Nature 408:949–51 [Google Scholar]
  16. Smits M, de Lange CA, Ullrich S, Schultz T, Schmitt M. 16.  et al. 2003. Stable kilohertz rate molecular beam laser ablation sources. Rev. Sci. Instrum. 74:4812–17 [Google Scholar]
  17. Zhou J, Kostko O, Nicolas C, Tang X, Belau L. 17.  et al. 2009. Experimental observation of guanine tautomers with VUV photoionization. J. Phys. Chem. A 113:4829–32 [Google Scholar]
  18. Gahlmann A, Lee IR, Zewail AH. 18.  2010. Direct structural determination of conformations of photoswitchable molecules by laser desorption–electron diffraction. Angew Chem. Int. Ed. 49:6524–27 [Google Scholar]
  19. Belshaw L, Calegari F, Duffy MJ, Trabattoni A, Poletto L. 19.  et al. 2012. Observation of ultrafast charge migration in an amino acid. J. Phys. Chem. Lett. 3:3751–54 [Google Scholar]
  20. Calvert CR, Belshaw L, Duffy MJ, Kelly O, King RB. 20.  et al. 2012. LIAD-fs scheme for studies of ultrafast laser interactions with gas phase biomolecules. Phys. Chem. Chem. Phys. 14:6289–97 [Google Scholar]
  21. Fenn JB. 21.  2003. Electrospray wings for molecular elephants. Angew. Chem. Int. Ed. 42:3871–94 [Google Scholar]
  22. Lecointre J, Roberts GM, Horke DA, Verlet JRR. 22.  2010. Ultrafast relaxation dynamics observed through time-resolved photoelectron angular distributions. J. Phys. Chem. A 114:11216–24 [Google Scholar]
  23. Horke DA, Chatterley AS, Verlet JRR. 23.  2012. Femtosecond photoelectron imaging of aligned polyanions: probing molecular dynamics through the electron–anion Coulomb repulsion. J. Phys. Chem. Lett. 3:834–38 [Google Scholar]
  24. Wiley WC, McLaren IH. 24.  1955. Time-of-flight mass spectrometer with improved resolution. Rev. Sci. Instrum. 26:1150–57 [Google Scholar]
  25. Lippert H, Ritze H-H, Hertel IV, Radloff W. 25.  2004. Femtosecond time-resolved hydrogen-atom elimination from photoexcited pyrrole molecules. ChemPhysChem 5:1423–27 [Google Scholar]
  26. Iqbal A, Pegg LJ, Stavros VG. 26.  2008. Direct versus indirect H atom elimination from photoexcited phenol molecules. J. Phys. Chem. A 112:9531–34 [Google Scholar]
  27. Chandler DW, Houston PL. 27.  1987. Two-dimensional imaging of state-selected photodissociation products detected by multiphoton ionization. J. Chem. Phys. 87:1445–47This landmark paper demonstrates ion imaging for the first time. [Google Scholar]
  28. Eppink ATJB, Parker DH. 28.  1997. Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 68:3477–84The introduction of velocity map imaging has transformed gas-phase spectroscopy. [Google Scholar]
  29. Vallance C. 29.  2004. “Molecular photography”: velocity-map imaging of chemical events. Philos. Trans. R. Soc. Lond. A 362:2591–609 [Google Scholar]
  30. Whitaker BJ. 30.  2003. Imaging in Molecular Dynamics: Technology and Applications Cambridge, UK: Cambridge Univ. Press
  31. Garcia GA, Nahon L, Powis I. 31.  2004. Two-dimensional charged particle image inversion using a polar basis function expansion. Rev. Sci. Instrum. 75:4989–96 [Google Scholar]
  32. Roberts GM, Nixon JL, Lecointre J, Wrede E, Verlet JRR. 32.  2009. Toward real-time charged-particle image reconstruction using polar ion-peeling. Rev. Sci. Instrum. 80:053104 [Google Scholar]
  33. Ashfold MNR, Devine AL, Dixon RN, King GA, Nix MGD, Oliver TAA. 33.  2008. Exploring nuclear motion through conical intersections in the UV photodissociation of phenols and thiophenol. PNAS 105:12701–706 [Google Scholar]
  34. Stolow A. 34.  2003. Femtosecond time-resolved photoelectron spectroscopy of polyatomic molecules. Annu. Rev. Phys. Chem. 54:89–119 [Google Scholar]
  35. Suzuki T. 35.  2006. Femtosecond time-resolved photoelectron imaging. Annu. Rev. Phys. Chem. 57:555–92 [Google Scholar]
  36. Suzuki T. 36.  2012. Time-resolved photoelectron spectroscopy of non-adiabatic electronic dynamics in gas and liquid phases. Int. Rev. Phys. Chem. 31:265–318 [Google Scholar]
  37. Cooper J, Zare RN. 37.  1968. Angular distribution of photoelectrons. J. Chem. Phys. 48:942–43 [Google Scholar]
  38. Reid KL. 38.  2003. Photoelectron angular distributions. Annu. Rev. Phys. Chem. 54:397–424 [Google Scholar]
  39. Reid KL. 39.  2012. Photoelectron angular distributions: developments in applications to isolated molecular systems. Mol. Phys. 110:131–47 [Google Scholar]
  40. Sanov A, Mabbs R. 40.  2008. Photoelectron imaging of negative ions. Int. Rev. Phys. Chem. 27:53–85 [Google Scholar]
  41. Oana CM, Krylov AI. 41.  2009. Cross sections and photoelectron angular distributions in photodetachment from negative ions using equation-of-motion coupled-cluster Dyson orbitals. J. Chem. Phys. 131:124114 [Google Scholar]
  42. Bisgaard CZ, Clarkin OJ, Wu G, Lee AMD, Gessner O. 42.  et al. 2009. Time-resolved molecular frame dynamics of fixed-in-space CS2 molecules. Science 323:1464–68 [Google Scholar]
  43. Lucchese RR, Stolow A. 43.  2012. Molecular-frame photoelectron angular distributions. J. Phys. B 45:190201 [Google Scholar]
  44. Thompson JOF, Saalbach L, Crane SW, Paterson MJ, Townsend D. 44.  2015. Ultraviolet relaxation dynamics of aniline, N,N-dimethylaniline and 3,5-dimethylaniline at 250 nm. J. Chem. Phys. 142:114309 [Google Scholar]
  45. Strasser D, Goulay F, Leone SR. 45.  2007. Transient photoelectron spectroscopy of the dissociative Br2(1πu) state. J. Chem. Phys. 127:184305 [Google Scholar]
  46. Spesyvtsev R, Horio T, Suzuki Y-I, Suzuki T. 46.  2015. Excited-state dynamics of furan studied by sub-20-fs time-resolved photoelectron imaging using 159-nm pulses. J. Chem. Phys. 143:014302 [Google Scholar]
  47. Spesyvtsev R, Horio T, Suzuki Y-I, Suzuki T. 47.  2015. Observation of the wavepacket dynamics on the 1B2(1Σ+u)state of CS2 by sub-20 fs photoelectron imaging using 159 nm probe pulses. J. Chem. Phys. 143:074308 [Google Scholar]
  48. Adachi S, Sato M, Suzuki T. 48.  2015. Direct observation of ground-state product formation in a 1,3-cyclohexadiene ring-opening reaction. J. Phys. Chem. Lett. 6:343–46 [Google Scholar]
  49. Greenblatt BJ, Zanni MT, Neumark DM. 49.  1997. Photodissociation of I2(Ar)n clusters studied with anion femtosecond photoelectron spectroscopy. Science 276:1675–78 [Google Scholar]
  50. Sheps L, Miller EM, Horvath S, Thompson MA, Parson R. 50.  et al. 2010. Solvent-mediated electron hopping: long-range charge transfer in IBr(CO2) photodissociation. Science 328:220–24 [Google Scholar]
  51. Horke DA, Li Q, Blancafort L, Verlet JRR. 51.  2013. Ultrafast above-threshold dynamics of the radical anion of a prototypical quinone electron-acceptor. Nat. Chem. 5:711–17 [Google Scholar]
  52. Mooney CRS, Horke DA, Chatterley AS, Simperler A, Fielding HH, Verlet JRR. 52.  2013. Taking the green fluorescence out of the protein: dynamics of the isolated GFP chromophore anion. Chem. Sci. 4:921–27 [Google Scholar]
  53. Sobolewski AL, Domcke W, Dedonder-Lardeux C, Jouvet C. 53.  2002. Excited-state hydrogen detachment and hydrogen transfer driven by repulsive 1πσ* states: a new paradigm for nonradiative decay in aromatic biomolecules. Phys. Chem. Chem. Phys. 4:1093–100This key paper proposes the generality of 1πσ* states as a decay mechanism. [Google Scholar]
  54. Cronin B, Nix MGD, Qadiri RH, Ashfold MNR. 54.  2004. High resolution photofragment translational spectroscopy studies of the near ultraviolet photolysis of pyrrole. Phys. Chem. Chem. Phys. 6:5031–41 [Google Scholar]
  55. Dixon RN, Oliver TAA, Ashfold MNR. 55.  2011. Tunnelling under a conical intersection: application to the product vibrational state distributions in the UV photodissociation of phenols. J. Chem. Phys. 134:194303 [Google Scholar]
  56. Yarkony DR. 56.  1996. Diabolical conical intersections. Rev. Mod. Phys. 68:985–1013 [Google Scholar]
  57. Matsika S, Krause P. 57.  2011. Nonadiabatic events and conical intersections. Annu. Rev. Phys. Chem. 62:621–43 [Google Scholar]
  58. Crespo-Otero R, Barbatti M, Yu H, Evans NL, Ullrich S. 58.  2011. Ultrafast dynamics of UV-excited imidazole. ChemPhysChem 12:3365–75 [Google Scholar]
  59. Hadden DJ, Wells KL, Roberts GM, Bergendahl LT, Paterson MJ, Stavros VG. 59.  2011. Time resolved velocity map imaging of H-atom elimination from photoexcited imidazole and its methyl substituted derivatives. Phys. Chem. Chem. Phys. 13:10342–49 [Google Scholar]
  60. Montero R, Conde AP, Ovejas V, Fernandez-Fernandez M, Castaño F, Longarte A. 60.  2012. Ultrafast evolution of imidazole after electronic excitation. J. Phys. Chem. A 116:10752–58 [Google Scholar]
  61. Bisgaard CZ, Satzger H, Ullrich S, Stolow A. 61.  2009. Excited-state dynamics of isolated DNA bases: a case study of adenine. ChemPhysChem 10:101–10 [Google Scholar]
  62. Kang H, Lee KT, Jung B, Ko YJ, Kim SK. 62.  2002. Intrinsic lifetimes of the excited state of DNA and RNA bases. J. Am. Chem. Soc. 124:12958–59This was the first paper to study the excited state dynamics of nucleobases in the gas phase. [Google Scholar]
  63. Broo A. 63.  1998. A theoretical investigation of the physical reasons for the very different luminescence properties of the two isomers adenine and 2-aminopurine. J. Phys. Chem. A 102:526–31 [Google Scholar]
  64. Kang H, Jung B, Kim SK. 64.  2003. Mechanism for ultrafast internal conversion of adenine. J. Chem. Phys. 118:6717–19 [Google Scholar]
  65. Perun S, Sobolewski AL, Domcke W. 65.  2005. Photostability of 9H-adenine: mechanisms of the radiationless deactivation of the lowest excited singlet states. Chem. Phys. 313:107–12 [Google Scholar]
  66. Canuel C, Mons M, Piuzzi F, Tardivel B, Dimicoli I, Elhanine M. 66.  2005. Excited states dynamics of DNA and RNA bases: characterization of a stepwise deactivation pathway in the gas phase. J. Chem. Phys. 122:074316 [Google Scholar]
  67. Satzger H, Townsend D, Zgierski MZ, Patchkovskii S, Ullrich S, Stolow A. 67.  2006. Primary processes underlying the photostability of isolated DNA bases: adenine. PNAS 103:10196–201 [Google Scholar]
  68. Chung WC, Lan Z, Ohtsuki Y, Shimakura N, Domcke W, Fujimura Y. 68.  2007. Conical intersections involving the dissociative 1πσ* state in 9H-adenine: a quantum chemical ab initio study. Phys. Chem. Chem. Phys. 9:2075–84 [Google Scholar]
  69. Yamazaki S, Kato S. 69.  2007. Solvent effect on conical intersections in excited-state 9H-adenine: radiationless decay mechanism in polar solvent. J. Am. Chem. Soc. 129:2901–9 [Google Scholar]
  70. Conti I, Garavelli M, Orlandi G. 70.  2009. Deciphering low energy deactivation channels in adenine. J. Am. Chem. Soc. 131:16108–18 [Google Scholar]
  71. Nix MGD, Devine AL, Cronin B, Ashfold MNR. 71.  2007. Ultraviolet photolysis of adenine: dissociation via the 1πσ* state. J. Chem. Phys. 126:124312 [Google Scholar]
  72. Evans NL, Ullrich S. 72.  2010. Wavelength dependence of electronic relaxation in isolated adenine using UV femtosecond time-resolved photoelectron spectroscopy. J. Phys. Chem. A 114:11225–30 [Google Scholar]
  73. Wells KL, Hadden DJ, Nix MGD, Stavros VG. 73.  2010. Competing πσ* states in the photodissociation of adenine. J. Phys. Chem. Lett. 1:993–96 [Google Scholar]
  74. Barbatti M, Aquino AJA, Szymczak JJ, Nachtigallová D, Hobza P, Lischka H. 74.  2010. Relaxation mechanisms of UV-photoexcited DNA and RNA nucleobases. PNAS 107:21453–58 [Google Scholar]
  75. Barbatti M, Lan Z, Crespo-Otero R, Szymczak JJ, Lischka H, Thiel W. 75.  2012. Critical appraisal of excited state nonadiabatic dynamics simulations of 9H-adenine. J. Chem. Phys. 137:22A503 [Google Scholar]
  76. Chatterley AS, West CW, Roberts GM, Stavros VG, Verlet JRR. 76.  2014. Mapping the ultrafast dynamics of adenine onto its nucleotide and oligonucleotides by time-resolved photoelectron imaging. J. Phys. Chem. Lett. 5:843–48This was a demonstration of ultrafast dynamics probed in large isolated complexes. [Google Scholar]
  77. Roberts GM, Marroux HJB, Grubb MP, Ashfold MNR, Orr-Ewing AJ. 77.  2014. On the participation of photoinduced N–H bond fission in aqueous adenine at 266 and 220 nm: a combined ultrafast transient electronic and vibrational absorption spectroscopy study. J. Phys. Chem. A 118:11211–25 [Google Scholar]
  78. Smith VR, Samoylova E, Ritze H-H, Radloff W, Schultz T. 78.  2010. Excimer states in microhydrated adenine clusters. Phys. Chem. Chem. Phys. 12:9632–36 [Google Scholar]
  79. Ritze H-H, Lippert H, Samoylova E, Smith VR, Hertel IV. 79.  et al. 2005. Relevance of πσ* states in the photoinduced processes of adenine, adenine dimer, and adenine–water complexes. J. Chem. Phys. 122:224320 [Google Scholar]
  80. Ashfold MNR, Cronin B, Devine AL, Dixon RN, Nix MGD. 80.  2006. The role of πσ* excited states in the photodissociation of heteroaromatic molecules. Science 312:1637–40This important paper experimentally demonstrated the prominent role of 1πσ* states. [Google Scholar]
  81. Asami H, Yagi K, Ohba M, Urashima S, Saigusa H. 81.  2013. Stacked base-pair structures of adenine nucleosides stabilized by the formation of hydrogen-bonding network involving the two sugar groups. Chem. Phys. 419:84–89 [Google Scholar]
  82. Tuna D, Sobolewski L, Domcke W. 82.  2014. Mechanisms of ultrafast excited-state deactivation in adenosine. J. Phys. Chem. A 118:122–27 [Google Scholar]
  83. Yang X, Wang XB, Vorpagel ER, Wang LS. 83.  2004. Direct experimental observation of the low ionization potentials of guanine in free oligonucleotides by using photoelectron spectroscopy. PNAS 101:17588–92 [Google Scholar]
  84. Chatterley AS, Johns AS, Stavros VG, Verlet JRR. 84.  2013. Base-specific ionization of deprotonated nucleotides by resonance enhanced two-photon detachment. J. Phys. Chem. A 117:5299–305 [Google Scholar]
  85. Stuhldreier MC, Temps F. 85.  2013. Ultrafast photo-initiated molecular quantum dynamics in the DNA dinucleotide d(ApG) revealed by broadband transient absorption spectroscopy. Faraday Discuss. 163:173–88 [Google Scholar]
  86. Ludwig V, da Costa ZM, do Amaral MS, Borin AC, Canuto S, Serrano-Andrés L. 86.  2010. Photophysics and photostability of adenine in aqueous solution: a theoretical study. Chem. Phys. Lett. 492:164–69 [Google Scholar]
  87. Gustavsson T, Sarkar N, Vayá I, Jiménez MC, Markovitsi D, Improta R. 87.  2013. A joint experimental/theoretical study of the ultrafast excited state deactivation of deoxyadenosine and 9-methyladenine in water and acetonitrile. Photochem. Photobiol. Sci. 12:1375–86 [Google Scholar]
  88. Lan Z, Lu Y, Fabiano E, Thiel W. 88.  2011. QM/MM nonadiabatic decay dynamics of 9H-adenine in aqueous solution. ChemPhysChem 12:1989–98 [Google Scholar]
  89. Chatterley AS, West CW, Stavros VG, Verlet JRR. 89.  2014. Time-resolved photoelectron imaging of the isolated deprotonated nucleotides. Chem. Sci. 5:3963–75 [Google Scholar]
  90. Chen H, Li S. 90.  2006. Ab initio study on deactivation pathways of excited 9H-guanine. J. Chem. Phys. 124:154315 [Google Scholar]
  91. Lan Z, Fabiano E, Thiel W. 91.  2009. Photoinduced nonadiabatic dynamics of 9H-guanine. ChemPhysChem 10:1225–29 [Google Scholar]
  92. Parac M, Doerr M, Marian CM, Thiel W. 92.  2010. QM/MM calculation of solvent effects on absorption spectra of guanine. J. Comput. Chem. 31:90–106 [Google Scholar]
  93. Barbatti M, Szymczak JJ, Aquino AJA, Nachtigallová D, Lischka H. 93.  2011. The decay mechanism of photoexcited guanine—a nonadiabatic dynamics study. J. Chem. Phys. 134:014304 [Google Scholar]
  94. Heggen B, Lan Z, Thiel W. 94.  2012. Nonadiabatic decay dynamics of 9H-guanine in aqueous solution. Phys. Chem. Chem. Phys. 14:8137–46 [Google Scholar]
  95. Winter B, Faubel M. 95.  2006. Photoemission from liquid aqueous solutions. Chem. Rev. 106:1176–211 [Google Scholar]
  96. Lübcke A, Buchner F, Heine N, Hertel IV, Schultz T. 96.  2010. Time-resolved photoelectron spectroscopy of solvated electrons in aqueous NaI solution. Phys. Chem. Chem. Phys. 12:14629–34 [Google Scholar]
  97. Suzuki YI, Shen H, Tang Y, Kurahashi N, Sekiguchi K. 97.  et al. 2011. Isotope effect on ultrafast charge-transfer-to-solvent reaction from I to water in aqueous NaI solution. Chem. Sci. 2:1094–102 [Google Scholar]
  98. Elkins MH, Williams HL, Shreve AT, Neumark DM. 98.  2013. Relaxation mechanism of the hydrated electron. Science 342:1496–99 [Google Scholar]
  99. Buchner F, Nakayama A, Yamazaki S, Ritze H-H, Lübcke A. 99.  2015. Excited-state relaxation of hydrated thymine and thymidine measured by liquid-jet photoelectron spectroscopy: experiment and simulation. J. Am. Chem. Soc. 137:2931–38 [Google Scholar]
  100. Buchner F, Ritze H-H, Lahl J, Lübcke A. 100.  2013. Time-resolved photoelectron spectroscopy of adenine and adenosine in aqueous solution. Phys. Chem. Chem. Phys. 15:11402–8 [Google Scholar]
  101. Weber JM, Loffe IN, Berndt KM, Löffler D, Friedrich J. 101.  et al. 2004. Photoelectron spectroscopy of isolated multiply negatively charged oligonucleotides. J. Am. Chem. Soc. 126:8585–89 [Google Scholar]
  102. Gabelica V, Tabarin T, Antoine R, Rosu F, Compagnon I. 102.  et al. 2006. Electron photodetachment dissociation of DNA polyanions in a quadrupole ion trap mass spectrometer. Anal. Chem. 78:6564–72 [Google Scholar]
  103. Gabelica V, Rosu F, Tabarin T, Kinet C, Antoine R. 103.  et al. 2007. Base-dependent electron photodetachment from negatively charged DNA strands upon 260-nm laser irradiation. J. Am. Chem. Soc. 129:4706–13 [Google Scholar]
  104. Vonderach M, Ehrler OT, Matheis K, Weis P, Kappes MM. 104.  2012. Isomer-selected photoelectron spectroscopy of isolated DNA oligonucleotides: phosphate and nucleobase deprotonation at high negative charge states. J. Am. Chem. Soc. 134:7830–41 [Google Scholar]
  105. Takaya T, Su C, de La Harpe K, Crespo-Hernández CE, Kohler B. 105.  2008. UV excitation of single DNA and RNA strands produces high yields of exciplex states between two stacked bases. PNAS 105:10285–90 [Google Scholar]
  106. Gidden J, Bowers MT. 106.  2002. Gas-phase conformational and energetic properties of deprotonated dinucleotides. Eur. Phys. J. D 20:409–19 [Google Scholar]
  107. Chen J, Thazhathveetil AK, Lewis FD, Kohler B. 107.  2013. Ultrafast excited-state dynamics in hexaethyleneglycol-linked DNA homoduplexes made of A·T base pairs. J. Am. Chem. Soc. 135:10290–93 [Google Scholar]
  108. Gruenloh CJ, Carney JR, Arrington CA, Zwier TS, Fredericks SY, Jordan KD. 108.  1997. Infrared spectrum of a molecular ice cube: the S4 and D2d water octamers in benzene-(water)8. Science 276:1678–81 [Google Scholar]
  109. Zwier TS. 109.  2001. Laser spectroscopy of jet-cooled biomolecules and their water-containing clusters: water bridges and molecular conformation. J. Phys. Chem. A 105:8827–39 [Google Scholar]
  110. Plützer C, Kleinermanns K. 110.  2002. Tautomers and electronic states of jet-cooled adenine investigated by double resonance spectroscopy. Phys. Chem. Chem. Phys. 4:4877–82 [Google Scholar]
  111. Snoek LC, Kroemer RT, Hockridge MR, Simons JP. 111.  2001. Conformational landscapes of aromatic amino acids in the gas phase: infrared and ultraviolet ion dip spectroscopy of tryptophan. Phys. Chem. Chem. Phys. 3:1819–26 [Google Scholar]
  112. de Vries MS, Hobza P. 112.  2007. Gas-phase spectroscopy of biomolecular building blocks. Annu. Rev. Phys. Chem. 58:585–612 [Google Scholar]
  113. Féraud G, Dedonder C, Jouvet C, Inokuchi Y, Haino T. 113.  et al. 2014. Development of ultraviolet-ultraviolet hole-burning spectroscopy for cold gas-phase ions. J. Phys. Chem. Lett. 5:1236–40 [Google Scholar]
  114. Lanucara F, Holman SW, Gray CJ, Eyers CE. 114.  2014. The power of ion mobility–mass spectrometry for structural characterization and the study of conformational dynamics. Nat. Chem. 6:281–94 [Google Scholar]
  115. Wyttenbach T, Pierson NA, Clemmer DE, Bowers MT. 115.  2014. Ion mobility analysis of molecular dynamics. Annu. Rev. Phys. Chem. 65:175–96 [Google Scholar]
  116. Montero R, Conde AP, Ovejas V, Martínez R, Castaño F, Longarte A. 116.  2011. Ultrafast dynamics of aniline in the 294–234 nm excitation range: the role of the πσ* state. J. Chem. Phys. 135:054308 [Google Scholar]
  117. Roberts GM, Williams CA, Young JD, Ullrich S, Paterson MJ, Stavros VG. 117.  2012. Unravelling ultrafast dynamics in photoexcited aniline. J. Am. Chem. Soc. 134:12578–89 [Google Scholar]
  118. Spesyvtsev R, Kirkby OM, Fielding HH. 118.  2012. Ultrafast dynamics of aniline following 269–238 nm excitation and the role of the S2(π3s/πσ*) state. Faraday Discuss. 157:165–79 [Google Scholar]
  119. Spesyvtsev R, Kirkby OM, Vacher M, Fielding HH. 119.  2012. Shedding new light on the role of the Rydberg state in the photochemistry of aniline. Phys. Chem. Chem. Phys. 14:9942–47 [Google Scholar]
  120. Thompson JOF, Livingstone RA, Townsend D. 120.  2013. Following the relaxation dynamics of photoexcited aniline in the 273–266 nm region using time-resolved photoelectron imaging. J. Chem. Phys. 139:034316 [Google Scholar]
  121. Kirkby OM, Sala M, Balerdi G, de Nalda R, Bañares L. 121.  et al. 2015. Comparing the electronic relaxation dynamics of aniline and d7-aniline following excitation at 272–238 nm. Phys. Chem. Chem. Phys. 17:16270–76 [Google Scholar]
  122. Schultz T, Samoylova E, Radloff W, Hertel IV, Sobolewski AL, Domcke W. 122.  2004. Efficient deactivation of a model base pair via excited-state hydrogen transfer. Science 306:1765–68 [Google Scholar]
  123. Samoylova E, Smith VR, Ritze H-H, Radloff W, Kabelac M, Schultz T. 123.  2006. Ultrafast deactivation processes in aminopyridine clusters: excitation energy dependence and isotope effects. J. Am. Chem. Soc. 128:15652–56 [Google Scholar]
  124. Samoylova E, Radloff W, Ritze H-H, Schultz T. 124.  2009. Observation of proton transfer in 2-aminopyridine dimer by electron and mass spectroscopy. J. Phys. Chem. A 113:8195–201 [Google Scholar]
  125. Wang XB, Wang LS. 125.  2008. Development of a low-temperature photoelectron spectroscopy instrument using an electrospray ion source and a cryogenically controlled ion trap. Rev. Sci. Instrum. 79:073108This paper showed the instrumental development of coupling electrospray ionization to a cryogenic ion trap and photoelectron spectroscopy. [Google Scholar]
  126. Wolk AB, Leavitt CM, Garand E, Johnson MA. 126.  2014. Cryogenic ion chemistry and spectroscopy. Acc. Chem. Res. 47:202–10 [Google Scholar]
  127. Slavíček P, Winter B, Faubel M, Bradforth SE, Jungwirth P. 127.  2009. Ionization energies of aqueous nucleic acids: photoelectron spectroscopy of pyrimidine nucleosides and ab initio calculations. J. Am. Chem. Soc. 131:6460–67 [Google Scholar]
  128. Schroeder CA, Pluhařová E, Seidel R, Schroeder WP, Faubel M. 128.  et al. 2015. Oxidation half-reaction of aqueous nucleosides and nucleotides via photoelectron spectroscopy augmented by ab initio calculations. J. Am. Chem. Soc. 137:201–9 [Google Scholar]
  129. Oliver TAA, Zhang Y, Ashfold MNR, Bradforth SE. 129.  2011. Linking photochemistry in the gas and solution phase: S–H bond fission in p-methylthiophenol following UV photoexcitation. Faraday Discuss. 150:439–58This was a key demonstration of the way in which gas- and solution-phase experiments complement each other. [Google Scholar]
  130. Murdock D, Harris SJ, Karsili TNV, Greetham GM, Clark IP. 130.  et al. 2012. Photofragmentation dynamics in solution probed by transient IR absorption spectroscopy: πσ*-mediated bond cleavage in p-methylthiophenol and p-methylthioanisole. J. Phys. Chem. Lett. 3:3715–20 [Google Scholar]
  131. Zhang Y, Oliver TAA, Das S, Roy A, Ashfold MNR, Bradforth SE. 131.  2013. Exploring the energy disposal immediately after bond-breaking in solution: the wavelength-dependent excited state dissociation pathways of para-methylthiophenol. J. Phys. Chem. A 117:12125–37 [Google Scholar]
  132. Harris SJ, Murdock D, Zhang Y, Oliver TAA, Grubb MP. 132.  et al. 2013. Comparing the photofragmentation dynamics in the gas and liquid phases. Phys. Chem. Chem. Phys. 15:6567–82 [Google Scholar]
  133. Greenough SE, Horbury MD, Thompson JOF, Roberts GM, Karsili TNV. 133.  et al. 2014. Solvent induced conformer specific photochemistry of guaiacol. Phys. Chem. Chem. Phys. 16:16187–95 [Google Scholar]
  134. Horbury MD, Greenough SE, Baker L, Quan WD, Young JD. 134.  et al. 2015. Bridging the gap between the gas and solution phase: solvent specific photochemistry of tert-butyl catechol. J. Phys. Chem. A 119:11989–96 [Google Scholar]
  135. Röttger K, Marroux HJB, Grubb MP, Coulter PM, Böhnke H. 135.  et al. 2015. Ultraviolet absorption induces hydrogen-atom transfer in G·C Watson–Crick DNA base pairs in solution. Angew Chem. Int. Ed. Engl. 54:14719–22This key work showed H-atom transfer between base pairs after UV absorption. [Google Scholar]
  136. Schwalb NK, Temps F. 136.  2007. Ultrafast electronic relaxation in guanosine is promoted by hydrogen bonding with cytidine. J. Am. Chem. Soc. 129:9272–73 [Google Scholar]
  137. Biemann L, Kovalenko SA, Kleinermanns K, Mahrwald R, Markert M, Improta R. 137.  2011. Excited state proton transfer is not involved in the ultrafast deactivation of guanine–cytosine pair in solution. J. Am. Chem. Soc. 133:19664–67 [Google Scholar]
  138. Bucher DB, Schlueter A, Carell T, Zinth W. 138.  2014. Watson–Crick base pairing controls excited-state decay in natural DNA. Angew. Chem. Int. Ed. 53:11366–69 [Google Scholar]
  139. Zhang Y, de La Harpe K, Beckstead AA, Improta R, Kohler B. 139.  2015. UV-induced proton transfer between DNA strands. J. Am. Chem. Soc. 137:7059–62This key paper showed H-atom transfer between base pairs in DNA duplexes after UV absorption. [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error