Liquid cell transmission electron microscopy (TEM) has attracted significant interest in recent years. With nanofabricated liquid cells, it has been possible to image through liquids using TEM with subnanometer resolution, and many previously unseen materials dynamics have been revealed. Liquid cell TEM has been applied to many areas of research, ranging from chemistry to physics, materials science, and biology. So far, topics of study include nanoparticle growth and assembly, electrochemical deposition and lithiation for batteries, tracking and manipulation of nanoparticles, catalysis, and imaging of biological materials. In this article, we first review the development of liquid cell TEM and then highlight progress in various areas of research. In the study of nanoparticle growth, the electron beam can serve both as the illumination source for imaging and as the input energy for reactions. However, many other research topics require the control of electron beam effects to minimize electron beam damage. We discuss efforts to understand electron beam–liquid matter interactions. Finally, we provide a perspective on future challenges and opportunities in liquid cell TEM.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Haider M, Uhlemann S, Schwan E, Rose H, Kabius B, Urban K. 1.  1998. Electron microscopy image enhanced. Nature 392:768–69 [Google Scholar]
  2. Urban KW. 2.  2009. Is science prepared for atomic-resolution electron microscopy?. Nat. Mater. 8:260–62 [Google Scholar]
  3. Muller DA. 3.  2009. Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat. Mater. 8:263–70 [Google Scholar]
  4. Marton L. 4.  1934. La microscopie electronique des objets biologiques. Acad. R. Belg. Bull. Cl. Sci. 20:439–46 [Google Scholar]
  5. Abrams IM, McBain JW. 5.  1944. A closed cell for electron microscopy. J. Appl. Phys. 15:607–9 [Google Scholar]
  6. Swift JA, Brown AC. 6.  1970. Environmental cell for examination of wet biological specimens at atmospheric pressure by transmission scanning electron microscopy. J. Phys. E 3:924–26 [Google Scholar]
  7. Butler EP. 7.  1979. In situ experiments in the transmission electron microscope. Rep. Prog. Phys. 42:833–95 [Google Scholar]
  8. Fullam EF. 8.  1972. Closed wet cell for electron microscope. Rev. Sci. Instrum. 43:245–47 [Google Scholar]
  9. Dupouy G, Perrier F, Durrieu L. 9.  1962. Microscopie électronique—l’observation des objets en milieu gazeux—application à l’étude de la contamination dans le microscope électronique. C. R. 254:3786–91 [Google Scholar]
  10. Allinson DL. 10.  1970. Environmental cell for use in a high voltage electron microscope. Proc. 7th Int. Congr. Electron Microsc. 1 P Favard 169–70 Paris: Soc. Fr. Microsc. Electron. [Google Scholar]
  11. Fukami A, Etoh T, Ishihara N, Katoh M, Fujiwara K. 11.  1970. Pressurized specimen chamber for electron microscope. Proc. 7th Int. Congr. Electron Microsc. 1 P Favard 171–72 Paris: Soc. Fr. Microsc. Electron. [Google Scholar]
  12. Harutyunyan AR, Chen GG, Paronyan TM, Pigos EM, Kuznetsov OA. 12.  et al. 2009. Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science 326:116–20 [Google Scholar]
  13. Kim BJ, Tersoff J, Kodambaka S, Reuter MC, Stach EA, Ross FM. 13.  2008. Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth. Science 322:1070–73 [Google Scholar]
  14. Zheng HM, Smith RK, Jun YW, Kisielowski C, Dahmen U, Alivisatos AP. 14.  2009. Observation of single colloidal platinum nanocrystal growth trajectories. Science 324:1309–12 [Google Scholar]
  15. Liao H-G, Cui LK, Whitelam S, Zheng HM. 15.  2012. Real-time imaging of Pt3Fe nanorod growth in solution. Science 336:1011–14 [Google Scholar]
  16. Evans JE, Jungjohann KL, Browning ND, Arslan I. 16.  2011. Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett. 11:2809–13 [Google Scholar]
  17. Zheng HM, Claridge SA, Minor AM, Alivisatos AP, Dahmen U. 17.  2009. Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett. 9:2460–65 [Google Scholar]
  18. Williamson MJ, Tromp RM, Vereecken PM, Hull R, Ross FM. 18.  2003. Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat. Mater. 2:532–36 [Google Scholar]
  19. White ER, Singer SB, Augustyn V, Hubbard WA, Mecklenburg M. 19.  et al. 2012. In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano 6:6308–17 [Google Scholar]
  20. Gu M, Parent LR, Mehdi BL, Unocic RR, McDowell MT. 20.  et al. 2013. Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett. 13:6106–12 [Google Scholar]
  21. Chen X, Noh KW, Wen JG, Dillon SJ. 21.  2012. In situ electrochemical wet cell transmission electron microscopy characterization of solid-liquid interactions between Ni and aqueous NiCl. Acta Mater. 60:192–98 [Google Scholar]
  22. Mirsaidov U, Ohl C-D, Matsudaira P. 22.  2012. A direct observation of nanometer-size void dynamics in an ultra-thin water film. Soft Matter 8:7108 [Google Scholar]
  23. White ER, Mecklenburg M, Singer SB, Aloni S, Regan BC. 23.  2011. Imaging nanobubbles in water with scanning transmission electron microscopy. Appl. Phys. Express 4:055201 [Google Scholar]
  24. Li D, Nielsen MH, Lee JR, Frandsen C, Banfield JF, De Yoreo JJ. 24.  2012. Direction-specific interactions control crystal growth by oriented attachment. Science 336:1014–18 [Google Scholar]
  25. Huang TW, Liu SY, Chuang YJ, Hsieh HY, Tsai CY. 25.  et al. 2013. Dynamics of hydrogen nanobubbles in KLH protein solution studied with in situ wet-TEM. Soft Matter 9:8856–61 [Google Scholar]
  26. Proetto MT, Rush AM, Chien M-P, Abellan Baeza P, Patterson JP. 26.  et al. 2014. Dynamics of soft nanomaterials captured by transmission electron microscopy in liquid water. J. Am. Chem. Soc. 136:1162–65 [Google Scholar]
  27. de Jonge N, Peckys DB, Kremers GJ, Piston DW. 27.  2009. Electron microscopy of whole cells in liquid with nanometer resolution. PNAS 106:2159–64 [Google Scholar]
  28. Mirsaidov UM, Zheng HM, Casana Y, Matsudaira P. 28.  2012. Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy. Biophys. J. 102:L15–17 [Google Scholar]
  29. Evans JE, Jungjohann KL, Wong PCK, Chiu P-L, Dutrow GH. 29.  et al. 2012. Visualizing macromolecular complexes with in situ liquid scanning transmission electron microscopy. Micron 43:1085–90 [Google Scholar]
  30. Radisic A, Vereecken PM, Hannon JB, Season PC, Ross FM. 30.  2006. Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett. 6:238–42 [Google Scholar]
  31. Radisic A, Ross F, Searson P. 31.  2006. In situ study of the growth kinetics of individual island electrodeposition of copper. J. Phys. Chem. B 110:7862–68 [Google Scholar]
  32. Liu K-L, Wu C-C, Huang Y-J, Peng H-L, Chang H-Y. 32.  et al. 2008. Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions. Lab Chip 8:1915–21 [Google Scholar]
  33. Donev EU, Hastings JT. 33.  2009. Electron-beam-induced deposition of platinum from a liquid precursor. Nano Lett. 9:2715–18 [Google Scholar]
  34. Peckys DB, Veith GM, Joy DC, de Jonge N. 34.  2009. Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope. PLOS ONE 4:e8214 [Google Scholar]
  35. de Jonge N, Poirier-Demers N, Demers H, Peckys DB, Drouin D. 35.  2010. Nanometer-resolution electron microscopy through micrometers-thick water layers. Ultramicroscopy 110:1114–19 [Google Scholar]
  36. Grogan JM, Bau HH. 36.  2010. The nanoaquarium: a platform for in situ transmission electron microscopy in liquid media. J. Microelectromech. Syst. 19:885–94 [Google Scholar]
  37. Ring EA, de Jonge N. 37.  2010. Microfluidic system for transmission electron microscopy. Microsc. Microanal. 16:622–29 [Google Scholar]
  38. Peckys DB, Dukes MJ, Ring EA, Piston DW, de Jonge N. 38.  2011. Imaging specific protein labels on eukaryotic cells in liquid with scanning transmission electron microscopy. Microsc. Today 19:16–20 [Google Scholar]
  39. Grogan JM, Rotkina L, Bau HH. 39.  2011. In situ liquid-cell electron microscopy of colloid aggregation and growth dynamics. Phys. Rev. E 83:061405 [Google Scholar]
  40. Donev EU, Schardein G, Wright JC, Hastings JT. 40.  2011. Substrate effects on the electron-beam-induced deposition of platinum from a liquid precursor. Nanoscale 3:2709–17 [Google Scholar]
  41. Klein KL, Anderson IM, de Jonge N. 41.  2011. Transmission electron microscopy with a liquid flow cell. J. Microsc. 242:117–23 [Google Scholar]
  42. Suga M, Nishiyama H, Konyuba Y, Iwamatsu S, Watanabe Y. 42.  et al. 2011. The Atmospheric Scanning Electron Microscope with open sample space observes dynamic phenomena in liquid or gas. Ultramicroscopy 111:1650–58 [Google Scholar]
  43. Huang T-W, Liu S-Y, Chuang Y-J, Hsieh H-Y, Tsai C-Y. 43.  et al. 2012. Self-aligned wet-cell for hydrated microbiology observation in TEM. Lab Chip 12:340–47 [Google Scholar]
  44. Mirsaidov UM, Zheng H, Bhattacharya D, Casana Y, Matsudaira P. 44.  2012. Direct observation of stick-slip movements of water nanodroplets induced by an electron beam. PNAS 109:7187–90 [Google Scholar]
  45. Liu Y, Chen X, Noh KW, Dillon SJ. 45.  2012. Electron beam induced deposition of silicon nanostructures from a liquid phase precursor. Nanotechnology 23:385302 [Google Scholar]
  46. Woehl TJ, Evans JE, Arslan I, Ristenpart WD, Browning ND. 46.  2012. Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano 6:8599–610 [Google Scholar]
  47. Park J, Kodambaka S, Ross FM, Grogan JM, Bau HH. 47.  2012. In situ liquid cell transmission electron microscopic observation of electron beam induced Au crystal growth in a solution. Microsc. Microanal. 18:1098–99 [Google Scholar]
  48. Park J, Zheng HM, Lee WC, Geissler PL, Rabani E, Alivisatos AP. 48.  2012. Direct observation of nanoparticle superlattice formation by using liquid cell transmission electron microscopy. ACS Nano 6:2078–85 [Google Scholar]
  49. Xin HL, Zheng H. 49.  2012. In situ observation of oscillatory growth of bismuth nanoparticles. Nano Lett. 12:1470–74 [Google Scholar]
  50. Chen X, Wen J. 50.  2012. In situ wet-cell TEM observation of gold nanoparticle motion in an aqueous solution. Nanoscale Res. Lett. 7:598 [Google Scholar]
  51. Zheng H, Mirsaidov UM, Wang L-W, Matsudaira P. 51.  2012. Electron beam manipulation of nanoparticles. Nano Lett. 12:5644–48 [Google Scholar]
  52. Ring EA, de Jonge N. 52.  2012. Video-frequency scanning transmission electron microscopy of moving gold nanoparticles in liquid. Micron 43:1078–84 [Google Scholar]
  53. White ER, Mecklenburg M, Shevitski B, Singer SB, Regan BC. 53.  2012. Charged nanoparticle dynamics in water induced by scanning transmission electron microscopy. Langmuir 28:3695–98 [Google Scholar]
  54. Jungjohann KL, Evans JE, Aguiar JA, Arslan I, Browning ND. 54.  2012. Atomic-scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy. Microsc. Microanal. 18:621–27 [Google Scholar]
  55. Stoll JD, Kolmakov A. 55.  2012. Electron transparent graphene windows for environmental scanning electron microscopy in liquids and dense gases. Nanotechnology 23:505704 [Google Scholar]
  56. Chen X, Zhou LH, Wang P, Zhao CJ, Miao XL. 56.  2012. A study of nano materials and their reactions in liquid using in situ wet cell TEM technology. Chin. J. Chem. 30:2839–43 [Google Scholar]
  57. Welch DA, Faller R, Evans JE, Browning ND. 57.  2013. Simulating realistic imaging conditions for in situ liquid microscopy. Ultramicroscopy 135:36–42 [Google Scholar]
  58. Kraus T, de Jonge N. 58.  2013. Dendritic gold nanowire growth observed in liquid with transmission electron microscopy. Langmuir 29:8427–32 [Google Scholar]
  59. Liu YZ, Lin XM, Sun YG, Rajh T. 59.  2013. In situ visualization of self-assembly of charged gold nanoparticles. J. Am. Chem. Soc. 135:3764–67 [Google Scholar]
  60. Liao H-G, Zheng HM. 60.  2013. Liquid cell transmission electron microscopy study of platinum iron nanocrystal growth and shape evolution. J. Am. Chem. Soc. 135:5038–43 [Google Scholar]
  61. Liu Y, Tai K, Dillon SJ. 61.  2013. Growth kinetics and morphological evolution of ZnO precipitated from solution. Chem. Mater. 25:2927–33 [Google Scholar]
  62. Niu K-Y, Park J, Zheng H, Alivisatos AP. 62.  2013. Revealing bismuth oxide hollow nanoparticle formation by the Kirkendall effect. Nano Lett. 13:5715–19 [Google Scholar]
  63. Chen Q, Smith JM, Park J, Kim K, Ho D. 63.  et al. 2013. 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy. Nano Lett. 13:4556–61 [Google Scholar]
  64. Holtz ME, Yu Y, Gao J, Abruna HD, Muller DA. 64.  2013. In situ electron energy-loss spectroscopy in liquids. Microsc. Microanal. 19:1027–35 [Google Scholar]
  65. Jungjohann KL, Bliznakov S, Sutter PW, Stach EA, Sutter EA. 65.  2013. In situ liquid cell electron microscopy of the solution growth of Au-Pd core-shell nanostructures. Nano Lett. 13:2964–70 [Google Scholar]
  66. Woehl TJ, Jungjohann KL, Evans JE, Arslan I, Ristenpart WD, Browning ND. 66.  2013. Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials. Ultramicroscopy 127:53–63 [Google Scholar]
  67. Mueller C, Harb M, Dwyer JR, Miller RD. 67.  2013. Nanofluidic cells with controlled pathlength and liquid flow for rapid, high-resolution in situ imaging with electrons. J. Phys. Chem. Lett. 4:2339–47 [Google Scholar]
  68. Liao H-G, Shao Y, Wang C, Lin Y, Jiang Y-X, Sun S-G. 68.  2014. TEM study of fivefold twined gold nanocrystal formation mechanism. Mater. Lett. 116:299–303 [Google Scholar]
  69. Chen Y-T, Wang C-Y, Hong Y-J, Kang Y-T, Lai S-E. 69.  et al. 2014. Electron beam manipulation of gold nanoparticles external to the beam. RSC Adv. 4:31652–56 [Google Scholar]
  70. Liao HG, Cui LK, Whitelam S, Zherebetskyy D, Xin HL. 70.  et al. 2014. Facet development during platinum nanocube growth. Science 345:916–19 [Google Scholar]
  71. Nielsen MH, Aloni S, De Yoreo JJ. 71.  2014. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 345:1158–62 [Google Scholar]
  72. De Clercq A, Dachraoui W, Margeat O, Pelzer K, Henry CR, Giorgio S. 72.  2014. Growth of Pt-Pd nanoparticles studied in situ by HRTEM in a liquid cell. J. Phys. Chem. Lett. 5:2126–30 [Google Scholar]
  73. Sutter E, Jungjohann K, Bliznakov S, Courty A, Maisonhaute E. 73.  et al. 2014. In situ liquid-cell electron microscopy of silver-palladium galvanic replacement reactions on silver nanoparticles. Nat. Commun. 5:4946 [Google Scholar]
  74. Nielsen MH, Li D, Zhang H, Aloni S, Han TY. 74.  et al. 2014. Investigating processes of nanocrystal formation and transformation via liquid cell TEM. Microsc. Microanal. 20:425–36 [Google Scholar]
  75. Lewis EA, Haigh SJ, Slater TJA, He Z, Kulzick MA. 75.  et al. 2014. Real-time imaging and local elemental analysis of nanostructures in liquids. Chem. Commun. 50:10019–22 [Google Scholar]
  76. Niu K-Y, Liao H-G, Zheng H. 76.  2014. Visualization of the coalescence of bismuth nanoparticles. Microsc. Microanal. 20:416–24 [Google Scholar]
  77. Bhattacharya D, Bosman M, Mokkapati VR, Leong FY, Mirsaidov U. 77.  2014. Nucleation dynamics of water nanodroplets. Microsc. Microanal. 20:407–15 [Google Scholar]
  78. Grogan JM, Schneider NM, Ross FM, Bau HH. 78.  2014. Bubble and pattern formation in liquid induced by an electron beam. Nano Lett. 14:359–64 [Google Scholar]
  79. Chen Q, Smith JM, Rasool HI, Zettl A, Alivisatos AP. 79.  2014. Studies of the dynamics of biological macromolecules using Au nanoparticle-DNA artificial molecules. Faraday Discuss. 175:203–14 [Google Scholar]
  80. Wang C, Qiao Q, Shokuhfar T, Klie RF. 80.  2014. High-resolution electron microscopy and spectroscopy of ferritin in biocompatible graphene liquid cells and graphene sandwiches. Adv. Mater. 26:3410–14 [Google Scholar]
  81. Sutter EA, Sutter PW. 81.  2014. Determination of redox reaction rates and orders by in situ liquid cell electron microscopy of Pd and Au solution growth. J. Am. Chem. Soc. 136:16865–70 [Google Scholar]
  82. Zhu G, Jiang Y, Lin F, Zhang H, Jin C. 82.  et al. 2014. In situ study of the growth of two-dimensional palladium dendritic nanostructures using liquid-cell electron microscopy. Chem. Commun. 50:9447–50 [Google Scholar]
  83. Buchkremer A, Linn MJ, Timper JU, Eckert T, Mayer J. 83.  et al. 2014. Synthesis and internal structure of finite-size DNA–gold nanoparticle assemblies. J. Phys. Chem. C 118:7174–84 [Google Scholar]
  84. Zeng Z, Liang W-I, Chu Y-H, Zheng H. 84.  2015. In situ TEM study of the Li-Au reaction in an electrochemical liquid cell. Faraday Discuss. 176:95–107 [Google Scholar]
  85. den Heijer M, Shao I, Radisic A, Reuter MC, Ross FM. 85.  2014. Patterned electrochemical deposition of copper using an electron beam. APL Mater. 2:022101 [Google Scholar]
  86. Holtz ME, Yu Y, Gunceler D, Gao J, Sundararaman R. 86.  et al. 2014. Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett. 14:1453–59 [Google Scholar]
  87. Sacci RL, Dudney NJ, More KL, Parent LR, Arslan I. 87.  et al. 2014. Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chem. Commun. 50:2104–7 [Google Scholar]
  88. Niu K, Frolov T, Xin HL, Wang J, Asta M, Zheng H. 88.  2015. Bubble nucleation and migration in a lead-iron hydr(oxide) core-shell nanoparticle. PNAS 112:12928–32 [Google Scholar]
  89. Park J, Park H, Ercius P, Pegoraro AF, Xu C. 89.  et al. 2015. Direct observation of wet biological samples by graphene liquid cell transmission electron microscopy. Nano Lett. 15:4737–44 [Google Scholar]
  90. Patterson JP, Abellan P, Denny MS Jr., Park C, Browning ND. 90.  et al. 2015. Observing the growth of metal-organic frameworks by in situ liquid cell transmission electron microscopy. J. Am. Chem. Soc. 137:7322–28 [Google Scholar]
  91. Shin D, Park JB, Kim Y-J, Kim SJ, Kang JH. 91.  et al. 2015. Growth dynamics and gas transport mechanism of nanobubbles in graphene liquid cells. Nat. Commun. 6:6068 [Google Scholar]
  92. Park J, Elmlund H, Ercius P, Yuk JM, Limmer DT. 92.  et al. 2015. Nanoparticle imaging. 3D structure of individual nanocrystals in solution by electron microscopy. Science 349:290–95 [Google Scholar]
  93. Zeng Z, Zhang X, Bustillo K, Niu K, Gammer C. 93.  et al. 2015. In situ study of lithiation and delithiation of MoS2 nanosheets using electrochemical liquid cell transmission electron microscopy. Nano Lett. 15:5214–20 [Google Scholar]
  94. Mehdi BL, Qian J, Nasybulin E, Park C, Welch DA. 94.  et al. 2015. Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett. 15:2168–73 [Google Scholar]
  95. de Jonge N, Ross FM. 95.  2011. Electron microscopy of specimens in liquid. Nat. Nano 6:695–704 [Google Scholar]
  96. Yuk JM, Park J, Ercius P, Kim K, Hellebusch DJ. 96.  et al. 2012. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336:61–64 [Google Scholar]
  97. Tai K, Liu Y, Dillon SJ. 97.  2014. In situ cryogenic transmission electron microscopy for characterizing the evolution of solidifying water ice in colloidal systems. Microsc. Microanal. 20:330–37 [Google Scholar]
  98. Creemer JF, Helveg S, Hoveling GH, Ullmann S, Molenbroek AM. 98.  et al. 2008. Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 108:993–98 [Google Scholar]
  99. Wang CM, Xu W, Liu J, Choi DW, Arey B. 99.  et al. 2010. In situ transmission electron microscopy and spectroscopy studies of interfaces in Li ion batteries: challenges and opportunities. J. Mater. Res. 25:1541–47 [Google Scholar]
  100. Huang JY, Zhong L, Wang CM, Sullivan JP, Xu W. 100.  et al. 2010. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330:1515–20 [Google Scholar]
  101. Becker J, Schubert O, Sonnichsen C. 101.  2007. Gold nanoparticle growth monitored in situ using a novel fast optical single-particle spectroscopy method. Nano Lett. 7:1664–69 [Google Scholar]
  102. Sun Y, Ren Y. 102.  2013. In situ synchrotron X-ray techniques for real-time probing of colloidal nanoparticle synthesis. Part. Part. Syst. Charact. 30:399–419 [Google Scholar]
  103. Steinfeldt N. 103.  2012. In situ monitoring of Pt nanoparticle formation in ethylene glycol solution by SAXS-influence of the NaOH to Pt ratio. Langmuir 28:13072–79 [Google Scholar]
  104. Polte J, Erler R, Thünemann AF, Sokolov S, Ahner TT. 104.  et al. 2010. Nucleation and growth of gold nanoparticles studied via in situ small angle X-ray scattering at millisecond time resolution. ACS Nano 4:1076–82 [Google Scholar]
  105. Abecassis B, Testard F, Spalla O, Barboux P. 105.  2007. Probing in situ the nucleation and growth of gold nanoparticles by small-angle X-ray scattering. Nano Lett. 7:1723–27 [Google Scholar]
  106. Miao J, Chen C-C, Song C, Nishino Y, Kohmura Y. 106.  et al. 2006. Three-dimensional GaN-Ga2O3 core shell structure revealed by X-ray diffraction microscopy. Phys. Rev. Lett. 97:215503 [Google Scholar]
  107. Ramesh GV, Sreedhar B, Radhakrishnan TP. 107.  2009. Real time monitoring of the in situ growth of silver nanoparticles in a polymer film under ambient conditions. Phys. Chem. Chem. Phys. 11:10059–63 [Google Scholar]
  108. Simm AO, Ji XB, Banks CE, Hyde ME, Compton RG. 108.  2006. AFM studies of metal deposition: instantaneous nucleation and the growth of cobalt nanoparticles on boron-doped diamond electrodes. ChemPhysChem 7:704–9 [Google Scholar]
  109. Kolmakov A, Goodman DW. 109.  2002. In situ scanning tunneling microscopy of oxide-supported metal clusters: nucleation, growth, and thermal evolution of individual particles. Chem. Rec. 2:446–57 [Google Scholar]
  110. Oezaslan M, Hasche F, Strasser P. 110.  2011. In situ observation of bimetallic alloy nanoparticle formation and growth using high-temperature XRD. Chem. Mater. 23:2159–65 [Google Scholar]
  111. Aabdin Z, Lu J, Zhu X, Anand U, Loh ND. 111.  et al. 2014. Bonding pathways of gold nanocrystals in solution. Nano Lett. 14:6639–43 [Google Scholar]
  112. Woehl TJ, Park C, Evans JE, Arslan I, Ristenpart WD, Browning ND. 112.  2013. Direct observation of aggregative nanoparticle growth: kinetic modeling of the size distribution and growth rate. Nano Lett. 14:373–78 [Google Scholar]
  113. Murphy CJ, San TK, Gole AM, Orendorff CJ, Gao JX. 113.  et al. 2005. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B 109:13857–70 [Google Scholar]
  114. Daniel MC, Astruc D. 114.  2004. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104:293–346 [Google Scholar]
  115. Gibbs JW, Bumstead HA, Van Name RG, Longley WR. 115.  1902. The Collected Works of J. Willard Gibbs Madison, WI: Longmans, Green & Co. [Google Scholar]
  116. Wulff G. 116.  1901. On the question of speed of growth and dissolution of crystal surfaces. Z. Krystallogr. Mineral. 34:449–530 [Google Scholar]
  117. Xia Y, Xiong Y, Lim B, Skrabalak SE. 117.  2009. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics?. Angew. Chem. Int. Ed. 48:60–103 [Google Scholar]
  118. Tian N, Zhou Z-Y, Sun S-G, Ding Y, Wang ZL. 118.  2007. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316:732–35 [Google Scholar]
  119. Bealing CR, Baumgardner WJ, Choi JJ, Hanrath T, Hennig RG. 119.  2012. Predicting nanocrystal shape through consideration of surface-ligand interactions. ACS Nano 6:2118–27 [Google Scholar]
  120. Ringe E, Van Duyne RP, Marks LD. 120.  2011. Wulff construction for alloy nanoparticles. Nano Lett. 11:3399–403 [Google Scholar]
  121. Liao H-G, Niu K, Zheng H. 121.  2013. Observation of growth of metal nanoparticles. Chem. Commun. 49:11720–27 [Google Scholar]
  122. Kimura Y, Niinomi H, Tsukamoto K, García-Ruiz JM. 122.  2014. In situ live observation of nucleation and dissolution of sodium chlorate nanoparticles by transmission electron microscopy. J. Am. Chem. Soc. 136:1762–65 [Google Scholar]
  123. Wu J, Gao W, Wen J, Miller DJ, Lu P. 123.  et al. 2015. Growth of Au on Pt icosahedral nanoparticles revealed by low-dose in situ TEM. Nano Lett. 15:2711–15 [Google Scholar]
  124. Parent LR, Robinson DB, Woehl TJ, Ristenpart WD, Evans JE. 124.  et al. 2012. Direct in situ observation of nanoparticle synthesis in a liquid crystal surfactant template. ACS Nano 6:3589–96 [Google Scholar]
  125. Parent LR, Robinson DB, Cappillino PJ, Hartnett RJ, Abellan P. 125.  et al. 2014. In situ observation of directed nanoparticle aggregation during the synthesis of ordered nanoporous metal in soft templates. Chem. Mater. 26:1426–33 [Google Scholar]
  126. Jiang Y, Zhu G, Lin F, Zhang H, Jin C. 126.  et al. 2014. In situ study of oxidative etching of palladium nanocrystals by liquid cell electron microscopy. Nano Lett. 14:3761–65 [Google Scholar]
  127. Chee SW, Pratt SH, Hattar K, Duquette D, Ross FM, Hull R. 127.  2014. Studying localized corrosion using liquid cell transmission electron microscopy. Chem. Commun. 51:168–71 [Google Scholar]
  128. Li F, Josephson DP, Stein A. 128.  2011. Colloidal assembly: the road from particles to colloidal molecules and crystals. Angew. Chem. Int. Ed. 50:360–88 [Google Scholar]
  129. Baker JL, Widmer-Cooper A, Toney MF, Geissler PL, Alivisatos AP. 129.  2009. Device-scale perpendicular alignment of colloidal nanorods. Nano Lett. 10:195–201 [Google Scholar]
  130. Oleshko VP, Howe JM. 130.  2011. Are electron tweezers possible?. Ultramicroscopy 111:1599–606 [Google Scholar]
  131. Batson PE, Reyes-Coronado A, Barrera RG, Rivacoba A, Echenique PM, Aizpurua J. 131.  2012. Nanoparticle movement: plasmonic forces and physical constraints. Ultramicroscopy 123:50–58 [Google Scholar]
  132. Batson PE, Reyes-Coronado A, Barrera RG, Rivacoba A, Echenique PM, Aizpurua J. 132.  2011. Plasmonic nanobilliards: controlling nanoparticle movement using forces induced by swift electrons. Nano Lett. 11:3388–93 [Google Scholar]
  133. Zheng H. 133.  2013. Using molecular tweezers to move and image nanoparticles. Nanoscale 5:4070–78 [Google Scholar]
  134. Sun M, Liao H-G, Niu K, Zheng H. 134.  2013. Structural and morphological evolution of lead dendrites during electrochemical migration. Sci. Rep. 3:3227 [Google Scholar]
  135. Grogan JM, Schneider NM, Ross FM, Bau HH. 135.  2012. The nanoaquarium: a new paradigm in electron microscopy. J. Indian Inst. Sci. 92:295–308 [Google Scholar]
  136. Liu XH, Zheng H, Zhong L, Huang S, Karki K. 136.  et al. 2011. Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11:3312–18 [Google Scholar]
  137. Liu XH, Huang S, Picraux ST, Li J, Zhu T, Huang JY. 137.  2011. Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: an in situ transmission electron microscopy study. Nano Lett. 11:3991–97 [Google Scholar]
  138. Liu Y, Hudak NS, Huber DL, Limmer SJ, Sullivan JP, Huang JY. 138.  2011. In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation-delithiation cycles. Nano Lett. 11:4188–94 [Google Scholar]
  139. Kushima A, Liu XH, Zhu G, Wang ZL, Huang JY, Li J. 139.  2011. Leapfrog cracking and nanoamorphization of ZnO nanowires during in situ electrochemical lithiation. Nano Lett. 11:4535–41 [Google Scholar]
  140. Liu XH, Wang JW, Liu Y, Zheng H, Kushima A. 140.  et al. 2012. In situ transmission electron microscopy of electrochemical lithiation, delithiation and deformation of individual graphene nanoribbons. Carbon 50:3836–44 [Google Scholar]
  141. Liu Y, Zheng H, Liu XH, Huang S, Zhu T. 141.  et al. 2011. Lithiation-induced embrittlement of multiwalled carbon nanotubes. ACS Nano 5:7245–53 [Google Scholar]
  142. Zheng Z, Liang W-I, Liao H-G, Xin HL, Chu Y-H, Zheng H. 142.  2014. Visualization of electrode−electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett. 14:1745–50 [Google Scholar]
  143. Unocic RR, Sacci RL, Brown GM, Veith GM, Dudney NJ. 143.  et al. 2014. Quantitative electrochemical measurements using in situ ec-S/TEM devices. Microsc. Microanal. 20:452–61 [Google Scholar]
  144. Xu K, von Cresce A, Lee U. 144.  2010. Differentiating contributions to “ion transfer” barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface. Langmuir 26:11538–43 [Google Scholar]
  145. Leenheer AJ, Jungjohann KL, Zavadil KR, Sullivan JP, Harris CT. 145.  2015. Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy. ACS Nano 9:4379–89 [Google Scholar]
  146. Morgan D, Van der Ven A, Ceder G. 146.  2004. Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochem. Solid State Lett. 7:A30–32 [Google Scholar]
  147. Gibot P, Casas-Cabanas M, Laffont L, Levasseur S, Carlach P. 147.  et al. 2008. Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4. Nat. Mater. 7:741–47 [Google Scholar]
  148. Malik R, Zhou F, Ceder G. 148.  2011. Kinetics of non-equilibrium lithium incorporation in LiFePO4. Nat. Mater. 10:587–90 [Google Scholar]
  149. Belloni J. 149.  2006. Nucleation, growth and properties of nanoclusters studied by radiation chemistry: application to catalysis. Catal. Today 113:141–56 [Google Scholar]
  150. Belloni J, Mostafavi M, Remita H, Marignier JL, Delcourt MO. 150.  1998. Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids. N. J. Chem. 22:1239–55 [Google Scholar]
  151. Chen X, Zhou L, Wang P, Cao H, Miao X, Wei F. 151.  2014. A study of electron beam induced deposition and nano device fabrication using liquid cell TEM technology. Chin. J. Chem. 32:399–404 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error