Single-molecule fluorescence microscopy techniques can be used in combination with micrometer length-scale temperature control and Förster resonance energy transfer (FRET) in order to gain detailed information about fundamental biophysical phenomena. In particular, this combination of techniques has helped foster the development of remarkable quantitative tools for studying both time- and temperature-dependent structural kinetics of biopolymers. Over the past decade, multiple research efforts have successfully incorporated precise spatial and temporal control of temperature into single-molecule FRET (smFRET)-based experiments, which have uncovered critical thermodynamic information on a wide range of biological systems such as conformational dynamics of nucleic acids. This review provides an overview of various temperature-dependent smFRET approaches from our laboratory and others, highlighting efforts in which such methods have been successfully applied to studies of single-molecule nucleic acid folding.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Orrit M, Bernard J. 1.  1990. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett. 65:2716–19 [Google Scholar]
  2. Moerner WE, Kador L. 2.  1989. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62:2535–38 [Google Scholar]
  3. Orrit M. 3.  2015. Single-molecule chemistry is more than superresolved fluorescence microscopy. Angew. Chem. Int. Ed. 54:8004–5 [Google Scholar]
  4. Moerner WE, Orrit M. 4.  1999. Illuminating single molecules in condensed matter. Science 283:1670–76 [Google Scholar]
  5. Forster T. 5.  1948. Zwischenmolekulare energiewanderung und fluoreszenz. Ann. Phys. 2:55–75 [Google Scholar]
  6. Ha T, Enderle T, Ogletree DF, Chemla DS, Selvin PR, Weiss S. 6.  1996. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. PNAS 93:6264–68 [Google Scholar]
  7. Stryer L. 7.  1978. Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47:819–46 [Google Scholar]
  8. Stryer L, Haugland RP. 8.  1967. Energy transfer: a spectroscopic ruler. PNAS 58:719–26 [Google Scholar]
  9. Deniz AA, Laurence TA, Dahan M, Chemla DS, Schultz PG, Weiss S. 9.  2001. Ratiometric single-molecule studies of freely diffusing biomolecules. Annu. Rev. Phys. Chem. 52:233–53 [Google Scholar]
  10. Ha T. 10.  2001. Single-molecule fluorescence resonance energy transfer. Methods 25:78–86 [Google Scholar]
  11. Weiss S. 11.  1999. Fluorescence spectroscopy of single biomolecules. Science 283:1676–83 [Google Scholar]
  12. Roy R, Hohng S, Ha T. 12.  2008. A practical guide to single-molecule FRET. Nat. Methods 5:507–16 [Google Scholar]
  13. Joo C, Balci H, Ishitsuka Y, Buranachai C, Ha T. 13.  2008. Advances in single-molecule fluorescence methods for molecular biology. Annu. Rev. Biochem. 77:51–76 [Google Scholar]
  14. Okamoto K. 14.  2013. Introduction of FRET application to biological single-molecule experiments. Int. J. Biophys. 3:9–17 [Google Scholar]
  15. Borgia A, Williams PM, Clarke J. 15.  2008. Single-molecule studies of protein folding. Annu. Rev. Biochem. 77:101–25 [Google Scholar]
  16. Schuler B. 16.  2013. Single-molecule FRET of protein structure and dynamics—a primer. J. Nanobiotechnol. 11:Suppl. 1S2 [Google Scholar]
  17. Schuler B, Hofmann H. 17.  2013. Single-molecule spectroscopy of protein folding dynamics—expanding scope and timescales. Curr. Opin. Struct. Biol. 23:36–47 [Google Scholar]
  18. Chung HS, Gopich IV. 18.  2014. Fast single-molecule FRET spectroscopy: theory and experiment. Phys. Chem. Chem. Phys. 16:18644–57 [Google Scholar]
  19. Banerjee PR, Deniz AA. 19.  2014. Shedding light on protein folding landscapes by single-molecule fluorescence. Chem. Soc. Rev. 43:1172–88 [Google Scholar]
  20. Benedikt K, Koberling F, Fiore JL. 20.  2008. Technical Note: Sample Temperature Control for Single Molecule Experiments with the MicroTime 200 Berlin: PicoQuant
  21. Fiore JL, Kraemer B, Koberling F, Edmann R, Nesbitt DJ. 21.  2009. Enthalpy-driven RNA folding: single-molecule thermodynamics of tetraloop-receptor tertiary interaction. Biochemistry 48:2550–58 [Google Scholar]
  22. Nettels D, Muller-Spath S, Kuster F, Hofmann H, Haenni D. 22.  et al. 2009. Single-molecule spectroscopy of the temperature-induced collapse of unfolded proteins. PNAS 106:20740–45 [Google Scholar]
  23. Le TT, Kim HD. 23.  2014. Studying DNA looping by single-molecule FRET. J. Vis. Exp. 88:e51667 [Google Scholar]
  24. Zhao R, Rueda D. 24.  2009. RNA folding dynamics by single-molecule fluorescence resonance energy transfer. Methods 49:112–17 [Google Scholar]
  25. Shaw E, St-Pierre P, McCluskey K, Lafontaine DA, Penedo JC. 25.  2014. Using sm-FRET and denaturants to reveal folding landscapes. Methods Enzymol. 549:313–41 [Google Scholar]
  26. Hodak JH, Fiore JL, Nesbitt DJ, Downey CD, Pardi A. 26.  2005. Docking kinetics and equilibrium of a GAAA tetraloop-receptor motif probed by single-molecule FRET. PNAS 102:10505–10 [Google Scholar]
  27. Blanco M, Walter NG. 27.  2010. Analysis of complex single-molecule FRET time trajectories. Methods Enzymol. 472:153–78 [Google Scholar]
  28. McKinney SA, Joo C, Ha T. 28.  2006. Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys. J. 91:1941–51 [Google Scholar]
  29. Nicolai C, Sachs F. 29.  2013. Solving ion channel kinetics with the QuB software. Biophys. Rev. Lett. 8:191–211 [Google Scholar]
  30. Bronson JE, Fei J, Hofman JM, Gonzalez RL Jr., Wiggins CH. 30.  2009. Learning rates and states from biophysical time series: a Bayesian approach to model selection and single-molecule FRET data. Biophys. J. 97:3196–205 [Google Scholar]
  31. Holmstrom ED, Fiore JL, Nesbitt DJ. 31.  2012. Thermodynamic origins of monovalent facilitated RNA folding. Biochemistry 51:3732–43 [Google Scholar]
  32. Rice SA, Doty P. 32.  1957. The thermal denaturation of desoxyribose nucleic acid. J. Am. Chem. Soc. 79:3937–47 [Google Scholar]
  33. Puglisi JD, Tinoco I Jr. 33.  1989. Absorbance melting curves of RNA. Methods Enzymol. 180:304–25 [Google Scholar]
  34. Marky LA, Breslauer KJ. 34.  1987. Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves. Biopolymers 26:1601–20 [Google Scholar]
  35. SantaLucia J Jr., Hicks D. 35.  2004. The thermodynamics of DNA structural motifs. Annu. Rev. Biophys. Biomol. Struct. 33:415–40 [Google Scholar]
  36. Varani G. 36.  1995. Exceptionally stable nucleic acid hairpins. Annu. Rev. Biophys. Biomol. Struct. 24:379–404 [Google Scholar]
  37. Mergny JL, Lacroix L. 37.  2003. Analysis of thermal melting curves. Oligonucleotides 13:515–37 [Google Scholar]
  38. Turner DH, Mathews DH. 38.  2010. NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. Nucleic Acids Res. 38:D280–82 [Google Scholar]
  39. Mathews DH, Moss WN, Turner DH. 39.  2010. Folding and finding RNA secondary structure. Cold Spring Harb. Perspect. Biol. 2:a003665 [Google Scholar]
  40. Zuker M. 40.  2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31:3406–15 [Google Scholar]
  41. Grunwell JR, Glass JL, Lacoste TD, Deniz AA, Chemla DS, Schultz PG. 41.  2001. Monitoring the conformational fluctuations of DNA hairpins using single-pair fluorescence resonance energy transfer. J. Am. Chem. Soc. 123:4295–303 [Google Scholar]
  42. Dupuis NF, Holmstrom ED, Nesbitt DJ. 42.  2013. Single-molecule kinetics reveal cation-promoted DNA duplex formation through ordering of single-stranded helices. Biophys. J. 105:756–66 [Google Scholar]
  43. Ying L, Green JJ, Li H, Klenerman D, Balasubramanian S. 43.  2003. Studies on the structure and dynamics of the human telomeric G quadruplex by single-molecule fluorescence resonance energy transfer. PNAS 100:14629–34 [Google Scholar]
  44. Bartley LE, Zhuang XW, Das R, Chu S, Herschlag D. 44.  2003. Exploration of the transition state for tertiary structure formation between an RNA helix and a large structured RNA. J. Mol. Biol. 328:1011–26 [Google Scholar]
  45. Hohng S, Wilson TJ, Tan E, Clegg RM, Lilley DMJ, Ha TJ. 45.  2004. Conformational flexibility of four-way junctions in RNA. J. Mol. Biol. 336:69–79 [Google Scholar]
  46. Wang B, Ho J, Fei J, Gonzalez RL Jr., Lin Q. 46.  2011. A microfluidic approach for investigating the temperature dependence of biomolecular activity with single-molecule resolution. Lab. Chip 11:274–81 [Google Scholar]
  47. Vesnaver G, Breslauer KJ. 47.  1991. The contribution of DNA single-stranded order to the thermodynamics of duplex formation. PNAS 88:3569–73 [Google Scholar]
  48. Fiore JL, Nesbitt DJ. 48.  2013. An RNA folding motif: GNRA tetraloop-receptor interactions. Q. Rev. Biophys. 46:223–64 [Google Scholar]
  49. Fiore JL, Holmstrom ED, Nesbitt DJ. 49.  2012. Entropic origin of Mg2+-facilitated RNA folding. PNAS 109:2902–7 [Google Scholar]
  50. Silverman SK, Cech TR. 50.  2001. An early transition state for folding of the P4–P6 RNA domain. RNA 7:161–66 [Google Scholar]
  51. Bokinsky G, Rueda D, Misra VK, Rhodes MM, Gordus A. 51.  et al. 2003. Single-molecule transition-state analysis of RNA folding. PNAS 100:9302–7 [Google Scholar]
  52. Dupuis NF, Holmstrom ED, Nesbitt DJ. 52.  2014. Molecular-crowding effects on single-molecule RNA folding/unfolding thermodynamics and kinetics. PNAS 111:8464–69 [Google Scholar]
  53. Holmstrom ED, Dupuis NF, Nesbitt DJ. 53.  2015. Kinetic and thermodynamic origins of osmolyte-influenced nucleic acid folding. J. Phys. Chem. B 119:3687–96 [Google Scholar]
  54. Fulton AB. 54.  1982. How crowded is the cytoplasm?. Cell 30:345–47 [Google Scholar]
  55. Reiss H, Frisch HL, Lebowitz JL. 55.  1959. Statistical mechanics of rigid spheres. J. Chem. Phys. 31:369–80 [Google Scholar]
  56. Lebowitz JL, Helfand E, Praestga E. 56.  1965. Scaled particle theory of fluid mixtures. J. Chem. Phys. 43:774–79 [Google Scholar]
  57. Lambert D, Leipply D, Draper DE. 57.  2010. The osmolyte TMAO stabilizes native RNA tertiary structures in the absence of Mg2+: evidence for a large barrier to folding from phosphate dehydration. J. Mol. Biol. 404:138–57 [Google Scholar]
  58. Shelton VM, Sosnick TR, Pan T. 58.  1999. Applicability of urea in the thermodynamic analysis of secondary and tertiary RNA folding. Biochemistry 38:16831–39 [Google Scholar]
  59. Lambert D, Draper DE. 59.  2012. Denaturation of RNA secondary and tertiary structure by urea: Simple unfolded state models and free energy parameters account for measured m-values. Biochemistry 51:9014–26 [Google Scholar]
  60. Holmstrom ED, Nesbitt DJ. 60.  2010. Real-time infrared overtone laser control of temperature in picoliter H2O samples: “nanobathtubs” for single molecule microscopy. J. Phys. Chem. Lett. 1:2264–68 [Google Scholar]
  61. Holmstrom ED, Dupuis NF, Nesbitt DJ. 61.  2014. Pulsed IR heating studies of single-molecule DNA duplex dissociation kinetics and thermodynamics. Biophys. J. 106:220–31 [Google Scholar]
  62. Kubelka J. 62.  2009. Time-resolved methods in biophysics. 9. Laser temperature-jump methods for investigating biomolecular dynamics. Photochem. Photobiol. Sci. 8:499–512 [Google Scholar]
  63. Nelson JW, Tinoco I Jr. 63.  1982. Comparison of the kinetics of ribooligonucleotide, deoxyribooligonucleotide, and hybrid oligonucleotide double-strand formation by temperature-jump kinetics. Biochemistry 21:5289–95 [Google Scholar]
  64. Gruebele M, Sabelko J, Ballew R, Ervin J. 64.  1998. Laser temperature jump induced protein refolding. Acc. Chem. Res. 31:699–707 [Google Scholar]
  65. Thompson PA, Eaton WA, Hofrichter J. 65.  1997. Laser temperature jump study of the helix coil kinetics of an alanine peptide interpreted with a ‘kinetic zipper’ model. Biochemistry 36:9200–10 [Google Scholar]
  66. Zhao R, Marshall M, Aleman EA, Lamichhane R, Feig A, Rueda D. 66.  2010. Laser-assisted single-molecule refolding (LASR). Biophys. J. 99:1925–31 [Google Scholar]
  67. Paudel B, Rueda D. 67.  2014. RNA folding dynamics using laser-assisted single-molecule refolding. Methods Mol. Biol. 1086289–307
  68. Hung MS, Kurosawa O, Washizu M. 68.  2012. Single DNA molecule denaturation using laser-induced heating. Mol. Cell Probe 26:107–12 [Google Scholar]
  69. Curcio JA, Petty CC. 69.  1951. The near infrared absorption spectrum of liquid water. J. Opt. Soc. Am. 41:302–4 [Google Scholar]
  70. Phillips CM, Mizutani Y, Hochstrasser RM. 70.  1995. Ultrafast thermally induced unfolding of RNase A. PNAS 92:7292–96 [Google Scholar]
  71. Karstens T, Kobs K. 71.  1980. Rhodamine B and rhodamine 101 as reference substances for fluorescence quantum yield measurements. J. Phys. Chem. 84:1871–72 [Google Scholar]
  72. Li S, Zhang K, Yang JM, Lin LW, Yang H. 72.  2007. Single quantum dots as local temperature markers. Nano Lett. 7:3102–5 [Google Scholar]
  73. Park J, Myong S, Niedziela-Majka A, Lee KS, Yu J. 73.  et al. 2010. PcrA helicase dismantles RecA filaments by reeling in DNA in uniform steps. Cell 142:544–55 [Google Scholar]
  74. Ragunathan K, Joo C, Ha T. 74.  2011. Real-time observation of strand exchange reaction with high spatiotemporal resolution. Structure 19:1064–73 [Google Scholar]
  75. Wunderlich B, Nettels D, Benke S, Clark J, Weidner S. 75.  et al. 2013. Microfluidic mixer designed for performing single-molecule kinetics with confocal detection on timescales from milliseconds to minutes. Nat. Protoc. 8:1459–74 [Google Scholar]
  76. Sanborn ME, Connolly BK, Gurunathan K, Levitus M. 76.  2007. Fluorescence properties and photophysics of the sulfoindocyanine Cy3 linked covalently to DNA. J. Phys. Chem. B 111:11064–74 [Google Scholar]
  77. You Y, Tataurov AV, Owczarzy R. 77.  2011. Measuring thermodynamic details of DNA hybridization using fluorescence. Biopolymers 95:472–86 [Google Scholar]
  78. Ha T, Tinnefeld P. 78.  2012. Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. Annu. Rev. Phys. Chem. 63:595–617 [Google Scholar]
  79. Aitken CE, Marshall RA, Puglisi JD. 79.  2008. An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys. J. 94:1826–35 [Google Scholar]
  80. Zheng Q, Juette MF, Jockusch S, Wasserman MR, Zhou Z. 80.  et al. 2014. Ultra-stable organic fluorophores for single-molecule research. Chem. Soc. Rev. 43:1044–56 [Google Scholar]
  81. Swoboda M, Henig J, Cheng HM, Brugger D, Haltrich D. 81.  et al. 2012. Enzymatic oxygen scavenging for photostability without pH drop in single-molecule experiments. ACS Nano 6:6364–69 [Google Scholar]
  82. Dave R, Terry DS, Munro JB, Blanchard SC. 82.  2009. Mitigating unwanted photophysical processes for improved single-molecule fluorescence imaging. Biophys. J. 96:2371–81 [Google Scholar]
  83. Blanchard SC. 83.  2012. ‘Self-healing’ dyes: intramolecular stabilization of organic fluorophores reply. Nat. Methods 9:427–28 [Google Scholar]
  84. Tinnefeld P, Cordes T. 84.  2012. ‘Self-healing’ dyes: intramolecular stabilization of organic fluorophores. Nat. Methods 9:426–27 [Google Scholar]
  85. Altman RB, Zheng Q, Zhou Z, Terry DS, Warren JD, Blanchard SC. 85.  2012. Enhanced photostability of cyanine fluorophores across the visible spectrum. Nat. Methods 9:428–29 [Google Scholar]
  86. van der Velde JHM, Oelerich J, Huang J, Smit JH, Aminian Jazi A. 86.  et al. 2016. A simple and versatile design concept for fluorophore derivatives with intramolecular photostabilization. Nat. Commun. 7:10144 [Google Scholar]
  87. Cooper M, Ebner A, Briggs M, Burrows M, Gardner N. 87.  et al. 2004. Cy3BTM: improving the performance of cyanine dyes. J. Fluoresc. 14:145–50 [Google Scholar]
  88. Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW. 88.  2003. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299:682–86 [Google Scholar]
  89. Zhu P, Craighead HG. 89.  2012. Zero-mode waveguides for single-molecule analysis. Annu. Rev. Biophys. 41:269–93 [Google Scholar]
  90. Langguth L, Punj D, Wenger J, Koenderink AF. 90.  2013. Plasmonic band structure controls single-molecule fluorescence. ACS Nano 7:8840–48 [Google Scholar]
  91. Punj D, de Torres J, Rigneault H, Wenger J. 91.  2013. Gold nanoparticles for enhanced single molecule fluorescence analysis at micromolar concentration. Opt. Express 21:27338–43 [Google Scholar]
  92. Punj D, Mivelle M, Moparthi SB, van Zanten TS, Rigneault H. 92.  et al. 2013. A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations. Nat. Nanotechnol. 8:512–16 [Google Scholar]
  93. Schwartz JJ, Stavrakis S, Quake SR. 93.  2010. Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability. Nat. Nanotechnol. 5:127–32 [Google Scholar]
  94. Duhr S, Braun D. 94.  2006. Why molecules move along a temperature gradient. PNAS 103:19678–82 [Google Scholar]
  95. Jerabek-Willemsen M, Wienken CJ, Braun D, Baaske P, Duhr S. 95.  2011. Molecular interaction studies using microscale thermophoresis. Assay Drug Dev. Technol. 9:342–53 [Google Scholar]
  96. Ebbinghaus S, Dhar A, McDonald JD, Gruebele M. 96.  2010. Protein folding stability and dynamics imaged in a living cell. Nat. Methods 7:319–23 [Google Scholar]
  97. Polinkovsky ME, Gambin Y, Banerjee PR, Erickstad MJ, Groisman A, Deniz AA. 97.  2014. Ultrafast cooling reveals microsecond-scale biomolecular dynamics. Nat. Commun. 5:5737 [Google Scholar]
  98. Holmberg A, Blomstergren A, Nord O, Lukacs M, Lundeberg J, Uhlen M. 98.  2005. The biotin-streptavidin interaction can be reversibly broken using water at elevated temperatures. Electrophoresis 26:501–10 [Google Scholar]
  99. Hyre DE, Le Trong I, Merritt EA, Eccleston JF, Green NM. 99.  et al. 2006. Cooperative hydrogen bond interactions in the streptavidin-biotin system. Protein Sci 15:459–67 [Google Scholar]
  100. Janissen R, Oberbarnscheidt L, Oesterhelt F. 100.  2009. Optimized straight forward procedure for covalent surface immobilization of different biomolecules for single molecule applications. Colloid Surf. B 71:200–7 [Google Scholar]
  101. Aleman EA, Pedini HS, Rueda D. 101.  2009. Covalent-bond-based immobilization approaches for single-molecule fluorescence. ChemBioChem 10:2862–66 [Google Scholar]
  102. Wang B, Fei JY, Gonzalez RL, Lin Q. 102.  2007. Single-molecule detection in temperature-controlled microchannels Presented at 2nd IEEE Int. Conf. Nano/Micro Eng. Mol. Syst., Jan. 16–19, Bangkok
  103. Chen J, Dalal RV, Petrov AN, Tsai A, O’Leary SE. 103.  et al. 2014. High-throughput platform for real-time monitoring of biological processes by multicolor single-molecule fluorescence. PNAS 111:664–69 [Google Scholar]
  104. Wuttke R, Hofmann H, Nettels D, Borgia MB, Mittal J. 104.  et al. 2014. Temperature-dependent solvation modulates the dimensions of disordered proteins. PNAS 111:5213–18 [Google Scholar]
  105. Aznauryan M, Nettels D, Holla A, Hofmann H, Schuler B. 105.  2013. Single-molecule spectroscopy of cold denaturation and the temperature-induced collapse of unfolded proteins. J. Am. Chem. Soc. 135:14040–43 [Google Scholar]
  106. Konig I, Zarrine-Afsar A, Aznauryan M, Soranno A, Wunderlich B. 106.  et al. 2015. Single-molecule spectroscopy of protein conformational dynamics in live eukaryotic cells. Nat. Meth. 12:773–79 [Google Scholar]
  107. Yuan H, Xia T, Schuler B, Orrit M. 107.  2011. Temperature-cycle single-molecule FRET microscopy on polyprolines. Phys. Chem. Chem. Phys. 13:1762–69 [Google Scholar]
  108. Zondervan R, Kulzer F, van der Meer H, Disselhorst JA, Orrit M. 108.  2006. Laser-driven microsecond temperature cycles analyzed by fluorescence polarization microscopy. Biophys. J. 90:2958–69 [Google Scholar]
  109. Yuan H, Gaiduk A, Siekierzycka JR, Fujiyoshi S, Matsushita M. 109.  et al. 2015. Temperature-cycle microscopy reveals single-molecule conformational heterogeneity. Phys. Chem. Chem. Phys. 17:6532–44 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error