1932

Abstract

Nanoparticles are widely studied for their potential medical uses in diagnostics and therapeutics. The interface between a nanoparticle and its target has been a focus of research, both to guide the nanoparticle and to prevent it from deactivating. Given nature's frequent use of phospholipid vesicles as carriers, much attention has been paid to phospholipids as a vehicle for drug delivery.

The physical chemistry of bilayer formation and nanoparticle encapsulation is complex, touching on fundamental properties of hydrophobicity. Understanding the design rules for particle synthesis and encapsulation is an active area of research.

The aim of this review is to provide a perspective on what preparative guideposts have been empirically discovered and how these are related to theoretical understanding. In addition, we aim to summarize how modern theory is beginning to help guide the design of functional particles that can effectively cross biological membranes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040215-112634
2017-05-05
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/physchem/68/1/annurev-physchem-040215-112634.html?itemId=/content/journals/10.1146/annurev-physchem-040215-112634&mimeType=html&fmt=ahah

Literature Cited

  1. Gorter E, Grendel F. 1.  1925. Biomolecular layers of lipoids on the chromocytes of the blood. J. Exp. Med. 41:439–43 [Google Scholar]
  2. Bloom M, Evans E, Mouritsen OG. 2.  1991. Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q. Rev. Biophys. 24:293–397 [Google Scholar]
  3. Edidin M. 3.  2003. Lipids on the frontier: a century of cell-membrane bilayers. Nat. Rev. Mol. Cell Biol. 4:414–18 [Google Scholar]
  4. Sackmann E. 4.  1995. Physical basis of self-organization and function of membranes: physics of vesicles. Handb. Biol. Phys. 1:213–304 [Google Scholar]
  5. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. 5.  1995. Molecular Biology of the Cell New York: Garland Sci., 3rd ed.. [Google Scholar]
  6. Helfrich W. 6.  1973. Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C 28:693–703 [Google Scholar]
  7. Nandi N, Vollhardt D. 7.  2014. Helfrich's concept of intrinsic force and its molecular origin in bilayers and monolayers. Adv. Colloid Interface Sci. 208:110–20 [Google Scholar]
  8. Campelo F, Arnarez C, Marrink SJ, Kozlov MM. 8.  2014. Helfrich model of membrane bending: from Gibbs theory of liquid interfaces to membranes as thick anisotropic elastic layers. Adv. Colloid Interface Sci. 208:25–33 [Google Scholar]
  9. Adamson AW, Gast AP. 9.  1997. Physical Chemistry of Surfaces New York: Wiley, 6th ed.. [Google Scholar]
  10. Bar-Ziv R, Tlusty T, Moses E. 10.  1997. Critical dynamics in the pearling instability of membranes. Phys. Rev. Lett. 79:1158–61 [Google Scholar]
  11. Bar-Ziv R, Tlusty T, Moses E, Safran SA, Bershadsky A. 11.  1999. Pearling in cells: a clue to understanding cell shape. PNAS 96:10140–45 [Google Scholar]
  12. Nelson P, Powers T, Seifert U. 12.  1995. Dynamical theory of the pearling instability in cylindrical vesicles. Phys. Rev. Lett. 74:3384–87 [Google Scholar]
  13. HW GL, Wortis M, Mukhopadhyay R. 13.  2002. Stomatocyte–discocyte–echinocyte sequence of the human red blood cell: evidence for the bilayer–couple hypothesis from membrane mechanics. PNAS 99:16766–69 [Google Scholar]
  14. Pan J, Mills TT, Tristram-Nagle S, Nagle JF. 14.  2008. Cholesterol perturbs lipid bilayers nonuniversally. Phys. Rev. Lett. 100:198103 [Google Scholar]
  15. Gracià RS, Bezlyepkina N, Knorr RL, Lipowsky R, Dimova R. 15.  2010. Effect of cholesterol on the rigidity of saturated and unsaturated membranes: fluctuation and electrodeformation analysis of giant vesicles. Soft Matter 6:1472–82 [Google Scholar]
  16. Zhang L, Becton M, Wang X. 16.  2015. Designing nanoparticle translocation through cell membranes by varying amphiphilic polymer coatings. J. Phys. Chem. B 119:3786–94 [Google Scholar]
  17. Chandler D. 17.  1987. Introduction to Modern Statistical Mechanics. Oxford, UK: Oxford Univ. Press [Google Scholar]
  18. Tanford C. 18.  1980. The Hydrophobic Effect: Formation of Micelles and Biological Membranes New York: Wiley, 2nd ed.. [Google Scholar]
  19. Chandler D. 19.  2005. Interfaces and the driving force of hydrophobic assembly. Nature 437:640–47 [Google Scholar]
  20. Davis JG, Gierszal KP, Wang P, Ben-Amotz D. 20.  2012. Water structural transformation at molecular hydrophobic interfaces. Nature 491:582–85 [Google Scholar]
  21. Hillyer MB, Gibb BC. 21.  2016. Molecular shape and the hydrophobic effect. Annu. Rev. Phys. Chem. 67:307–29 [Google Scholar]
  22. Li ITS, Walker GC. 22.  2012. Single polymer studies of hydrophobic hydration. Acc. Chem. Res. 45:2011–21 [Google Scholar]
  23. Berne BJ, Weeks JD, Zhou R. 23.  2009. Dewetting and hydrophobic interaction in physical and biological systems. Annu. Rev. Phys. Chem. 60:85–103 [Google Scholar]
  24. Wallqvist A, Berne B. 24.  1995. Computer simulation of hydrophobic hydration forces on stacked plates at short range. J. Phys. Chem. 99:2893–99 [Google Scholar]
  25. Huang DM, Chandler D. 25.  2000. Temperature and length scale dependence of hydrophobic effects and their possible implications for protein folding. PNAS 97:8324–27 [Google Scholar]
  26. Sharp KA, Nicholls A, Fine RF, Honig B. 26.  1991. Reconciling the magnitude of the microscopic and macroscopic hydrophobic effects. Science 252:106–9 [Google Scholar]
  27. Ashbaugh HS, Kaler EW, Paulaitis ME. 27.  1999. A universal surface area correlation for molecular hydrophobic phenomena. J. Am. Chem. Soc. 121:9243–44 [Google Scholar]
  28. Tanford C. 28.  1979. Interfacial free energy and the hydrophobic effect. PNAS 76:4175–76 [Google Scholar]
  29. Wagoner JA, Baker NA. 29.  2006. Assessing implicit models for nonpolar mean solvation forces: the importance of dispersion and volume terms. PNAS 103:8331–36 [Google Scholar]
  30. Stillinger FH. 30.  1973. Structure in aqueous solutions of nonpolar solutes from the standpoint of scaled-particle theory. J. Solut. Chem. 2:141–58 [Google Scholar]
  31. Pratt LR, Chandler D. 31.  1977. Theory of the hydrophobic effect. J. Chem. Phys. 67:3683–704 [Google Scholar]
  32. Berne B. 32.  1996. Inferring the hydrophobic interaction from the properties of neat water. PNAS 93:8800–803 [Google Scholar]
  33. Hummer G, Garde S, Garcia AE, Pohorille A, Pratt LR. 33.  1996. An information theory model of hydrophobic interactions. PNAS 93:8951–55 [Google Scholar]
  34. Garde S, Hummer G, García AE, Paulaitis ME, Pratt LR. 34.  1996. Origin of entropy convergence in hydrophobic hydration and protein folding. Phys. Rev. Lett. 77:4966–68 [Google Scholar]
  35. Patel AJ, Varilly P, Chandler D, Garde S. 35.  2011. Quantifying density fluctuations in volumes of all shapes and sizes using indirect umbrella sampling. J. Stat. Phys. 145:265–75 [Google Scholar]
  36. Lum K, Chandler D, Weeks JD. 36.  1999. Hydrophobicity at small and large length scales. J. Phys. Chem. B 103:4570–77 [Google Scholar]
  37. Vaikuntanathan S, Rotskoff G, Hudson A, Geissler PL. 37.  2016. Necessity of capillary modes in a minimal model of nanoscale hydrophobic solvation. PNAS 113:E2224–30 [Google Scholar]
  38. Ashbaugh HS, Paulaitis ME. 38.  2001. Effect of solute size and solute-water attractive interactions on hydration water structure around hydrophobic solutes. J. Am. Chem. Soc. 123:10721–28 [Google Scholar]
  39. Chandler D, Weeks JD, Andersen HC. 39.  et al. 1983. Van der Waals picture of liquids, solids, and phase transformations. Science 220:787–94 [Google Scholar]
  40. Maibaum L, Dinner AR, Chandler D. 40.  2004. Micelle formation and the hydrophobic effect. J. Phys. Chem. B 108:6778–81 [Google Scholar]
  41. Varilly P, Patel AJ, Chandler D. 41.  2011. An improved coarse-grained model of solvation and the hydrophobic effect. J. Chem. Phys. 134:074109 [Google Scholar]
  42. Olesen NE, Westh P, Holm R. 42.  2015. Determination of thermodynamic potentials and the aggregation number for micelles with the mass-action model by isothermal titration calorimetry: a case study on bile salts. J. Colloid Interface Sci. 453:79–89 [Google Scholar]
  43. Nagarajan R. 43.  2002. Molecular packing parameter and surfactant self-assembly: the neglected role of the surfactant tail. Langmuir 18:31–38 [Google Scholar]
  44. Israelachvili JN, Mitchell DJ, Ninham BW. 44.  1976. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans. 2 72:1525–68 [Google Scholar]
  45. Al-Soufi W, Piñeiro L, Novo M. 45.  2012. A model for monomer and micellar concentrations in surfactant solutions: application to conductivity, NMR, diffusion, and surface tension data. J. Colloid Interface Sci. 370:102–10 [Google Scholar]
  46. Phillips J. 46.  1955. The energetics of micelle formation. Trans. Faraday Soc. 51:561–69 [Google Scholar]
  47. Reiss-Husson F, Luzzati V. 47.  1964. The structure of the micellar solutions of some amphiphilic compounds in pure water as determined by absolute small-angle X-ray scattering techniques. J. Phys. Chem. 68:3504–11 [Google Scholar]
  48. Swarbrick J, Daruwala J. 48.  1970. Micellar aggregation properties of some zwitterionic N-alkyl betaines. J. Phys. Chem. 74:1293–96 [Google Scholar]
  49. Petrache HI, Tristram-Nagle S, Gawrisch K, Harries D, Parsegian VA, Nagle JF. 49.  2004. Structure and fluctuations of charged phosphatidylserine bilayers in the absence of salt. Biophys. J. 86:1574–86 [Google Scholar]
  50. Dewitt BN, Dunn RC. 50.  2015. Interaction of cholesterol in ternary lipid mixtures investigated using single-molecule fluorescence. Langmuir 31:995–1004 [Google Scholar]
  51. Lifshitz E. 51.  1956. The theory of molecular attractive forces between solids. Sov. Phys. 2:73–83 [Google Scholar]
  52. Lazzari S, Moscatelli D, Codari F, Salmona M, Morbidelli M, Diomede L. 52.  2012. Colloidal stability of polymeric nanoparticles in biological fluids. J. Nanopart. Res. 14:920–30 [Google Scholar]
  53. Pettibone JM, Cwiertny DM, Scherer M, Grassian VH. 53.  2008. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation. Langmuir 24:6659–67 [Google Scholar]
  54. Albanese A, Chan WC. 54.  2011. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 5:5478–89 [Google Scholar]
  55. Daniel MC, Astruc D. 55.  2004. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104:293–346 [Google Scholar]
  56. Horn R, Clarke D, Clarkson M. 56.  1988. Direct measurement of surface forces between sapphire crystals in aqueous solutions. J. Mater. Res. 3:413–16 [Google Scholar]
  57. Zhou J, Ralston J, Sedev R, Beattie DA. 57.  2009. Functionalized gold nanoparticles: synthesis, structure and colloid stability. J. Colloid Interface Sci. 331:251–62 [Google Scholar]
  58. Cowley AC, Fuller NL, Rand RP, Parsegian VA. 58.  1978. Measurement of repulsive forces between charged phospholipid bilayers. Biochemistry 17:3163–68 [Google Scholar]
  59. Silvera Batista CA, Larson RG, Kotov NA. 59.  2015. Nonadditivity of nanoparticle interactions. Science 350:6257 [Google Scholar]
  60. Barros K, Luijten E. 60.  2014. Dielectric effects in the self-assembly of binary colloidal aggregates. Phys. Rev. Lett. 113:017801 [Google Scholar]
  61. Eun C, Berkowitz ML. 61.  2010. Thermodynamic and hydrogen-bonding analyses of the interaction between model lipid bilayers. J. Phys. Chem. B 114:3013–19 [Google Scholar]
  62. Chaikin PM, Lubensky TC. 62.  2000. Principles of Condensed Matter Physics 1 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  63. Svetina S, Žekš B. 63.  2014. Nonlocal membrane bending: a reflection, the facts and its relevance. Adv. Colloid Interface Sci. 208:189–96 [Google Scholar]
  64. Nagle JF, Jablin MS, Tristram-Nagle S, Akabori K. 64.  2015. What are the true values of the bending modulus of simple lipid bilayers?. Chem. Phys. Lipids 185:3–10 [Google Scholar]
  65. Rawicz W, Olbrich K, McIntosh T, Needham D, Evans E. 65.  2000. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79:328–39 [Google Scholar]
  66. Hu M, Briguglio JJ, Deserno M. 66.  2012. Determining the Gaussian curvature modulus of lipid membranes in simulations. Biophys. J. 102:1403–10 [Google Scholar]
  67. Evans E, Heinrich V, Ludwig F, Rawicz W. 67.  2003. Dynamic tension spectroscopy and strength of biomembranes. Biophys. J. 85:2342–50 [Google Scholar]
  68. Reddy AS, Warshaviak DT, Chachisvilis M. 68.  2012. Effect of membrane tension on the physical properties of DOPC lipid bilayer membrane. Biochim. Biophys. Acta 1818:2271–81 [Google Scholar]
  69. Yuan H, Zhang S. 69.  2010. Effects of particle size and ligand density on the kinetics of receptor-mediated endocytosis of nanoparticles. Appl. Phys. Lett. 96:033704 [Google Scholar]
  70. Pohjolainen E, Chen X, Malola S, Groenhof G, Hakkinen H. 70.  2016. A unified AMBER-compatible molecular mechanics force field for thiolate-protected gold nanoclusters. J. Chem. Theory Comput. 12:1342–50 [Google Scholar]
  71. Dickson CJ, Madej BD, Skjevik ÅA, Betz RM, Teigen K. 71.  et al. 2014. Lipid14: the AMBER lipid force field. J. Chem. Theory Comput. 10:865–79 [Google Scholar]
  72. Vattulainen I, Karttunen M. 72.  2005. Modeling of biologically motivated soft matter systems. Handbook of Theoretical and Computational Nanotechnology 10 M Rieth, W Schommers 1–57 Stevenson Ranch, CA: Am. Sci. Pub. [Google Scholar]
  73. Heikkilä E, Martinez-Seara H, Gurtovenko AA, Vattulainen I, Akola J. 73.  2014. Atomistic simulations of anionic Au144 (SR)60 nanoparticles interacting with asymmetric model lipid membranes. Biochim. Biophys. Acta 1838:2852–60 [Google Scholar]
  74. Marrink SJ, De Vries AH, Mark AE. 74.  2004. Coarse grained model for semiquantitative lipid simulations. J. Phys. Chem. B 108:750–60 [Google Scholar]
  75. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, De Vries AH. 75.  2007. The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111:7812–24 [Google Scholar]
  76. Bennett WFD, Tieleman DP. 76.  2013. Computer simulations of lipid membrane domains. Biochim. Biophys. Acta 1828:1765–76 [Google Scholar]
  77. Arnarez C, Uusitalo JJ, Masman MF, Ingólfsson HI, de Jong DH. 77.  et al. 2014. Dry MARTINI, a coarse-grained force field for lipid membrane simulations with implicit solvent. J. Chem. Theory Comput. 11:260–75 [Google Scholar]
  78. Cooke IR, Kremer K, Deserno M. 78.  2005. Tunable generic model for fluid bilayer membranes. Phys. Rev. E 72:011506 [Google Scholar]
  79. Hoogerbrugge P, Koelman J. 79.  1992. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 19:155 [Google Scholar]
  80. Moeendarbary E, Ng T, Zangeneh M. 80.  2009. Dissipative particle dynamics: introduction, methodology and complex fluid applications—a review. Int. J. Appl. Mech. 1:737–63 [Google Scholar]
  81. Goga N, Rzepiela A, De Vries A, Marrink S, Berendsen H. 81.  2012. Efficient algorithms for Langevin and DPD dynamics. J. Chem. Theory Comput. 8:3637–49 [Google Scholar]
  82. Shillcock JC, Lipowsky R. 82.  2002. Equilibrium structure and lateral stress distribution of amphiphilic bilayers from dissipative particle dynamics simulations. J. Chem. Phys. 117:5048–61 [Google Scholar]
  83. Laradji M, Kumar PS. 83.  2004. Dynamics of domain growth in self-assembled fluid vesicles. Phys. Rev. Lett. 93:198105 [Google Scholar]
  84. Bakshi MS, Kaur G, Thakur P, Banipal TS, Possmayer F, Petersen NO. 84.  2007. Surfactant selective synthesis of gold nanowires by using a DPPC–surfactant mixture as a capping agent at ambient conditions. J. Phys. Chem. C 111:5932–40 [Google Scholar]
  85. Dubertret B. 85.  2002. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–62 [Google Scholar]
  86. Ip SY, MacLaughlin CM, Mullaithilaga N, Joseph M, Wala S. 86.  et al. 2012. Lipid-encapsulation of surface enhanced Raman scattering (SERS) nanoparticles and targeting to chronic lymphocytic leukemia (CLL) cells. Proc. SPIE 8212: Frontiers in Biological Detection: From Nanosensors to Systems IV BL Miller, PM Fauchet. doi: 10.1117/12.909179 [Google Scholar]
  87. Israelachvili JN. 87.  2011. Soft and biological structures. Intermolecular and Surface Forces JN Israelachvili 535–76 San Diego, CA: Academic Press, 3rd ed.. [Google Scholar]
  88. Van Meer G, Voelker DR, Feigenson GW. 88.  2008. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9:112–24 [Google Scholar]
  89. Heberle FA, Wu J, Goh SL, Petruzielo RS, Feigenson GW. 89.  2010. Comparison of three ternary lipid bilayer mixtures: FRET and ESR reveal nanodomains. Biophys. J. 99:3309–18 [Google Scholar]
  90. de Almeida RFM, Fedorov A, Prieto M. 90.  2003. Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys. J. 85:2406–16 [Google Scholar]
  91. Sullan RMA, Li JK, Zou S. 91.  2009. Direct correlation of structures and nanomechanical properties of multicomponent lipid bilayers. Langmuir 25:7471–77 [Google Scholar]
  92. Wang T-Y, Silvius JR. 92.  2003. Sphingolipid partitioning into ordered domains in cholesterol-free and cholesterol-containing lipid bilayers. Biophys. J. 84:367–78 [Google Scholar]
  93. Armstrong CL, Marquardt D, Dies H, Kučerka N, Yamani Z. 93.  et al. 2013. The observation of highly ordered domains in membranes with cholesterol. PLOS ONE 8:e66162 [Google Scholar]
  94. Marrink SJ, de Vries AH, Tieleman DP. 94.  2009. Lipids on the move: simulations of membrane pores, domains, stalks and curves. Biochim. Biophys. Acta 1788:149–68 [Google Scholar]
  95. Meinhardt S, Vink RL, Schmid F. 95.  2013. Monolayer curvature stabilizes nanoscale raft domains in mixed lipid bilayers. PNAS 110:4476–81 [Google Scholar]
  96. Baumgart T, Capraro BR, Zhu C, Das SL. 96.  2011. Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids. Annu. Rev. Phys. Chem. 62:483–506 [Google Scholar]
  97. Rosetti C, Pastorino C. 97.  2012. Comparison of ternary bilayer mixtures with asymmetric or symmetric unsaturated phosphatidylcholine lipids by coarse grained molecular dynamics simulations. J. Phys. Chem. B 116:3525–37 [Google Scholar]
  98. Bennett WD, MacCallum JL, Hinner MJ, Marrink SJ, Tieleman DP. 98.  2009. Molecular view of cholesterol flip-flop and chemical potential in different membrane environments. J. Am. Chem. Soc. 131:12714–20 [Google Scholar]
  99. Fang RH, Aryal S, Hu CMJ, Zhang L. 99.  2010. Quick synthesis of lipid-polymer hybrid nanoparticles with low polydispersity using a single-step sonication method. Langmuir 26:16958–62 [Google Scholar]
  100. Li P, Li D, Zhang L, Li G, Wang E. 100.  2008. Cationic lipid bilayer coated gold nanoparticles—mediated transfection of mammalian cells. Biomaterials 29:3617–24 [Google Scholar]
  101. Ip SY, MacLaughlin CM, Gunari N, Walker GC. 101.  2011. Phospholipid membrane encapsulation of nanoparticles for surface-enhanced Raman scattering. Langmuir 27:7024–33 [Google Scholar]
  102. Lasic DD, Joannic R, Keller BC, Frederik PM, Auvray L. 102.  2001. Spontaneous vesiculation. Adv. Colloid Interface Sci. 89–90:337–49 [Google Scholar]
  103. Maulucci G, De Spirito M, Arcovito G, Boffi F, Castellano AC, Briganti G. 103.  2005. Particle size distribution in DMPC vesicles solutions undergoing different sonication times. Biophys. J. 88:3545–50 [Google Scholar]
  104. Lapinski MM, Castro-Forero A, Greiner AJ, Ofoli RY, Blanchard GJ. 104.  2007. Comparison of liposomes formed by sonication and extrusion: rotational and translational diffusion of an embedded chromophore. Langmuir 23:11677–83 [Google Scholar]
  105. Richardson ES, Pitt WG, Woodbury DJ. 105.  2007. The role of cavitation in liposome formation. Biophys. J. 93:4100–7 [Google Scholar]
  106. Boal D. 106.  2012. Mechanics of the Cell Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  107. Marmottant P, Biben T, Hilgenfeldt S. 107.  2008. Deformation and rupture of lipid vesicles in the strong shear flow generated by ultrasound-driven microbubbles. Proc. R. Soc. A 464:1781–800 [Google Scholar]
  108. Tenchov BG, Yanev TK, Tihova MG, Koynova RD. 108.  1985. A probability concept about size distributions of sonicated lipid vesicles. Biochim. Biophys. Acta. 816:122–30 [Google Scholar]
  109. Belliveau NM, Huft J, Lin PJC, Chen S, Leung AKK. 109.  et al. 2012. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol. Ther. Nucleic Acids 1:e37 [Google Scholar]
  110. Kastner E, Kaur R, Lowry D, Moghaddam B, Wilkinson A, Perrie Y. 110.  2014. High-throughput manufacturing of size-tuned liposomes by a new microfluidics method using enhanced statistical tools for characterization. Int. J. Pharm. 477:361–68 [Google Scholar]
  111. Leung AKK, Hafez IM, Baoukina S, Belliveau NM, Zhigaltsev IV. 111.  et al. 2012. Lipid nanoparticles containing siRNA synthesized by microfluidic mixing exhibit an electron-dense nanostructured core. J. Phys. Chem. C 116:18440–50 [Google Scholar]
  112. Sun J, Zhang L, Wang J, Feng Q, Liu D. 112.  et al. 2015. Tunable rigidity of (polymeric core)–(lipid shell) nanoparticles for regulated cellular uptake. Adv. Mater. 27:1402–407 [Google Scholar]
  113. Zhang L, Feng Q, Wang J, Zhang S, Ding B. 113.  et al. 2015. Microfluidic synthesis of hybrid nanoparticles with controlled lipid layers: understanding flexibility-regulated cell–nanoparticle interaction. ACS Nano 9:9912–21 [Google Scholar]
  114. Bakshi MS, Possmayer F, Petersen NO. 114.  2007. Role of different phospholipids in the synthesis of pearl-necklace-type gold-silver bimetallic nanoparticles as bioconjugate materials. J. Phys. Chem. C 111:14113–24 [Google Scholar]
  115. Howes P, Green M, Levitt J, Suhling K, Hughes M. 115.  2010. Phospholipid encapsulated semiconducting polymer nanoparticles: their use in cell imaging and protein attachment. J. Am. Chem. Soc. 132:3989–96 [Google Scholar]
  116. Liu B, Hoopes MI, Karttunen M. 116.  2014. Molecular dynamics simulations of DPPC/CTAB monolayers at the air/water interface. J. Phys. Chem. B 118:11723–37 [Google Scholar]
  117. Stolzoff M, Ekladious I, Colby AH, Colson YL, Porter TM, Grinstaff MW. 117.  2015. Synthesis and characterization of hybrid polymer/lipid expansile nanoparticles: imparting surface functionality for targeting and stability. Biomacromolecules 16:1958–66 [Google Scholar]
  118. Cheow WS, Hadinoto K. 118.  2011. Factors affecting drug encapsulation and stability of lipid-polymer hybrid nanoparticles. Colloids Surf. B 85:214–20 [Google Scholar]
  119. Lazarovits J, Chen YY, Sykes EA, Chan WC. 119.  2015. Nanoparticle–blood interactions: the implications on solid tumour targeting. Chem. Commun. 51:2756–67 [Google Scholar]
  120. Lin CM, Li CS, Sheng YJ, Wu DT, Tsao HK. 120.  2012. Size-dependent properties of small unilamellar vesicles formed by model lipids. Langmuir 28:689–700 [Google Scholar]
  121. Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP. 121.  2003. Physico-chemical stability of colloidal lipid particles. Biomaterials 24:4283–300 [Google Scholar]
  122. Ginzburg VV, Balijepalli S. 122.  2007. Modeling the thermodynamics of the interaction of nanoparticles with cell membranes. Nano Lett. 7:3716–22 [Google Scholar]
  123. Van Lehn RC, Ricci M, Silva PHJ, Andreozzi P, Reguera J. 123.  et al. 2014. Lipid tail protrusions mediate the insertion of nanoparticles into model cell membranes. Nat. Commun. 5:4482 [Google Scholar]
  124. Van Lehn RC, Alexander-Katz A. 124.  2014. Free energy change for insertion of charged, monolayer-protected nanoparticles into lipid bilayers. Soft Matter 10:648–58 [Google Scholar]
  125. Van Lehn RC, Atukorale PU, Carney RP, Yang YS, Stellacci F. 125.  et al. 2013. Effect of particle diameter and surface composition on the spontaneous fusion of monolayer-protected gold nanoparticles with lipid bilayers. Nano Lett. 13:4060–67 [Google Scholar]
  126. Prates Ramalho JP, Gkeka P, Sarkisov L. 126.  2011. Structure and phase transformations of DPPC lipid bilayers in the presence of nanoparticles: insights from coarse-grained molecular dynamics simulations. Langmuir 27:3723–30 [Google Scholar]
  127. Chernomordik LV, Kozlov MM. 127.  2008. Mechanics of membrane fusion. Nat. Struct. Mol. Biol. 15:675–83 [Google Scholar]
  128. Cheung DL. 128.  2014. Aggregation of nanoparticles on one and two-component bilayer membranes. J. Chem. Phys. 141:194908 [Google Scholar]
  129. Müller LK, Landfester K. 129.  2015. Natural liposomes and synthetic polymeric structures for biomedical applications. Biochem. Biophys. Res. Commun. 468:411–18 [Google Scholar]
  130. Torchilin VP. 130.  2005. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4:145–60 [Google Scholar]
  131. Zhang L, Chan JM, Gu FX, Rhee JW, Wang AZ. 131.  et al. 2008. Self-assembled lipid-polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano 2:1696–702 [Google Scholar]
  132. Cheow WS, Hadinoto K. 132.  2011. Factors affecting drug encapsulation and stability of lipid–polymer hybrid nanoparticles. Colloids Surf. B 85:214–20 [Google Scholar]
  133. Devrim B, Kara A. Bozkr A. 133. , Vural İ, 2016. Lysozyme-loaded lipid-polymer hybrid nanoparticles: preparation, characterization and colloidal stability evaluation. Drug Dev. Ind. Pharm. 42:1865–76 [Google Scholar]
  134. Butler KS, Durfee PN, Theron C, Ashley CE, Carnes EC, Brinker CJ. 134.  2016. Protocells: modular mesoporous silica nanoparticle-supported lipid bilayers for drug delivery. Small 12:2173–85 [Google Scholar]
  135. Meng H, Wang M, Liu H, Liu X, Situ A. 135.  et al. 2015. Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS Nano 9:3540–57 [Google Scholar]
  136. Dengler EC, Liu J, Kerwin A, Torres S, Olcott CM. 136.  et al. 2013. Mesoporous silica-supported lipid bilayers (protocells) for DNA cargo delivery to the spinal cord. J. Control Release 168:209–24 [Google Scholar]
  137. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. 137.  2002. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–62 [Google Scholar]
  138. Huang HC, Chang PY, Chang K, Chen CY, Lin CW. 138.  et al. 2009. Formulation of novel lipid-coated magnetic nanoparticles as the probe for in vivo imaging. J. Biomed. Sci. 16:86 [Google Scholar]
  139. Xie W, Wang L, Zhang Y, Su L, Shen A. 139.  et al. 2009. Nuclear targeted nanoprobe for single living cell detection by surface-enhanced Raman scattering. Bioconjug. Chem. 20:768–73 [Google Scholar]
  140. Stewart AF, Lee A, Ahmed A, Ip S, Kumacheva E, Walker GC. 140.  2014. Rational design for the controlled aggregation of gold nanorods via phospholipid encapsulation for enhanced Raman scattering. ACS Nano 8:5462–67 [Google Scholar]
  141. Koole R, van Schooneveld MM, Hilhorst J, Castermans K, Cormode DP. 141.  et al. 2008. Paramagnetic lipid-coated silica nanoparticles with a fluorescent quantum dot core: a new contrast agent platform for multimodality imaging. Bioconjug. Chem. 19:2471–79 [Google Scholar]
  142. Bhowmik D, Mote KR, MacLaughlin CM, Biswas N, Chandra B. 142.  et al. 2015. Cell-membrane-mimicking lipid-coated nanoparticles confer Raman enhancement to membrane proteins and reveal membrane-attached amyloid-conformation. ACS Nano 9:9070–77 [Google Scholar]
  143. Schadauer F, Geiss AF, Srajer J, Siebenhofer B, Frank P. 143.  et al. 2015. Silica nanoparticles for the oriented encapsulation of membrane proteins into artificial bilayer lipid membranes. Langmuir 31:2511–16 [Google Scholar]
  144. Lindsey H, Petersen N, Chan SI. 144.  1979. Physicochemical characterization of 1,2-diphytanoyl-sn-glycero-3-phosphocholine in model membrane systems. Biochim. Biophys. Acta 555:147–67 [Google Scholar]
  145. Veatch SL, Gawrisch K, Keller SL. 145.  2006. Closed-loop miscibility gap and quantitative tie-lines in ternary membranes containing diphytanoyl PC. Biophys. J. 90:4428–36 [Google Scholar]
  146. Castellana ET, Gamez RC, Russell DH. 146.  2011. Label-free biosensing with lipid-functionalized gold nanorods. J. Am. Chem. Soc. 133:4182–85 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040215-112634
Loading
/content/journals/10.1146/annurev-physchem-040215-112634
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error