The recent development in measurement techniques and theoretical understanding has enabled us to study atmospheric vapor, cluster and nanoparticle concentrations, dynamics, and their connection to atmospheric nucleation. Here we present a summary of the chemistry of atmospheric clustering, growing nanoparticles, and their precursors. In this work, we focus particularly on atmospheric gas-to-particle conversion and recent progress in its understanding.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Kulmala M, Vehkamäki H, Petäjä T, Dal Maso M, Lauri A. 1.  et al. 2004. Formation and growth rates of ultrafine atmospheric particles: a review of observations. J. Aerosol Sci. 35:143–76 [Google Scholar]
  2. Kulmala M, Kerminen VM. 2.  2008. On the growth of atmospheric nanoparticles. Atmos. Res. 90:132–50 [Google Scholar]
  3. Zhang R, Khalizov A, Wang L, Hu M, Xu W. 3.  2012. Nucleation and growth of nanoparticles in the atmosphere. Chem. Rev. 112:1957–2011 [Google Scholar]
  4. Spracklen DV, Carslaw KS, Kulmala M, Kerminen VM, Mann GW, Sihto SL. 4.  2006. The contribution of boundary layer nucleation events to total particle concentrations on regional and global scales. Atmos. Chem. Phys. 6:5631–48 [Google Scholar]
  5. Merikanto J, Spracklen DV, Mann GW, Pickering SJ, Carslaw KS. 5.  2009. Impact of nucleation on global CCN. Atmos. Chem. Phys. 9:8601–16 [Google Scholar]
  6. Pierce JR, Adams PJ. 6.  2009. Uncertainty in global CCN concentrations from uncertain aerosol nucleation and primary emission rates. Atmos. Chem. Phys. 9:1339–56 [Google Scholar]
  7. Yu F, Luo G, Bates TS, Anderson B, Clarke A. 7.  et al. 2010. Spatial distributions of particle number concentrations in the global troposphere: simulations, observations, and implications for nucleation mechanisms. J. Geophys. Res. 115:D17205 [Google Scholar]
  8. Kerminen VM, Paramonov M, Anttila T, Riipinen I, Fountoukis C. 8.  et al. 2012. Cloud condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing literature and new results. Atmos. Chem. Phys. 12:12037–59 [Google Scholar]
  9. Wang M, Penner JE. 9.  2009. Aerosol indirect forcing in a global model with particle nucleation. Atmos. Chem. Phys. 9:239–60 [Google Scholar]
  10. Kazil J, Stier P, Zhang K, Quaas J, Kinne S. 10.  et al. 2010. Aerosol nucleation and its role for clouds and Earth's radiative forcing in the aerosol-climate model ECHAM5-HAM. Atmos. Chem. Phys. 10:10733–52 [Google Scholar]
  11. Fatima H, Upadhyaya HC, Tripathi SN, Sharma OP, Yu F. 11.  2011. On radiative forcing of sulphate aerosol produced from ion-promoted nucleation mechanisms in an atmospheric global model. Meteorol. Atmos. Phys. 112:101–15 [Google Scholar]
  12. Makkonen R, Asmi A, Kerminen VM, Boy M, Arneth A. 12.  et al. 2012. Air pollution control and decreasing new particle formation lead to strong climate warming. Atmos. Chem. Phys. 12:1515–24 [Google Scholar]
  13. Makkonen R, Asmi A, Kerminen VM, Boy M, Arneth A. 13.  et al. 2012. BVOC-aerosol-climate interactions in the global aerosol-climate model ECHAM5.5-HAM2. Atmos. Chem. Phys. 12:10077–96 [Google Scholar]
  14. Kulmala M, Pirjola L, Mäkelä JM. 14.  2000. Stable sulphate clusters as a source of new atmospheric particles. Nature 404:66–69 [Google Scholar]
  15. Kulmala M, Riipinen I, Sipilä M, Manninen HE, Petäjä T. 15.  et al. 2007. Towards direct measurements of atmospheric nucleation. Science 318:89–92 [Google Scholar]
  16. Winkler PM, Steiner G, Vrtala A, Vehkamäki H, Noppel M. 16.  et al. 2008. Heterogeneous nucleation experiments bridging scale from molecular ion clusters to nanoparticles. Science 319:1374–77 [Google Scholar]
  17. Manninen HE, Petäjä T, Asmi E, Riipinen I, Nieminen T. 17.  et al. 2009. Long-term field measurements of charged and neutral clusters using Neutral cluster and Air Ion Spectrometer (NAIS). Boreal Environ. Res. 14:591–605 [Google Scholar]
  18. Manninen HE, Nieminen T, Riipinen I, Yli-Juuti T, Gagne S. 18.  et al. 2009. Charged and total particle formation and growth rates during EUCAARI 2007 campaign in Hyytiälä. Atmos. Chem. Phys. 9:4077–89 [Google Scholar]
  19. Lehtipalo K, Sipilä M, Riipinen I, Nieminen T, Kulmala M. 19.  2009. Analysis of atmospheric neutral and charged molecular clusters in boreal forest using pulse-height CPC. Atmos. Chem. Phys. 9:4177–84 [Google Scholar]
  20. Lehtipalo K, Kulmala M, Sipilä M, Petäjä T, Vana M. 20.  et al. 2010. Nanoparticles in boreal forest and coastal environment: a comparison of observations and implications of the nucleation mechanism. Atmos. Chem. Phys. 10:7009–16 [Google Scholar]
  21. Zhao J, Eisele FL, Titcombe M, Kuang C, McMurry PH. 21.  2010. Chemical ionization mass spectrometric measurements of atmospheric neutral clusters using the cluster CIMS. J. Geophys. Res. 115:D08205 [Google Scholar]
  22. Jiang J, Zhao J, Chen M, Eisele F, Scheckman J. 22.  et al. 2011. First measurements of neutral atmospheric cluster and 1–2 nm particle number size distributions during nucleation events. Aerosol Sci. Technol. 45:ii–v [Google Scholar]
  23. Lehtipalo K, Sipilä M, Junninen H, Ehn M, Berndt T. 23.  et al. 2011. Observations of nano-CN in the nocturnal boreal forest. Aerosol Sci. Technol. 45:499–509 [Google Scholar]
  24. Zhao J, Smith JN, Eisele FL, Chen M, Kuang C, McMurry PH. 24.  2011. Observation of neutral sulfuric acid-amine containing clusters in laboratory and ambient measurements. Atmos. Chem. Phys. 11:10823–36 [Google Scholar]
  25. Kulmala M, Kontkanen J, Junninen H, Lehtipalo K, Manninen HE. 25.  et al. 2013. Direct observations of atmospheric nucleation. Science 339:943–46 [Google Scholar]
  26. Weber RJ, Marti P, McMurry PH, Eisele FL, Tanner D, Jefferson A. 26.  1996. Measured atmospheric new particle formation rates: implications for nucleation mechanisms. Chem. Eng. Commun. 151:53–64 [Google Scholar]
  27. Kulmala M, Lehtinen KEJ, Laaksonen A. 27.  2006. Cluster activation theory as an explanation of the linear dependence between formation rate of 3 nm particles and sulphuric acid concentration. Atmos. Chem. Phys. 6:787–93 [Google Scholar]
  28. Sihto SL, Kulmal M, Kerminen VM, Dal Maso M, Petäjä T. 28.  et al. 2006. Atmospheric sulphuric acid and aerosol formation: implications from atmospheric measurements for nucleation and growth mechanisms. Atmos. Chem. Phys. 6:4079–91 [Google Scholar]
  29. Riipinen I, Sihto SL, Kulmala M, Arnold F, Dal Maso M. 29.  et al. 2007. Connections between atmospheric sulphuric acid and new particle formation during QUEST III–IV campaigns in Heidelberg and Hyytiälä. Atmos. Chem. Phys. 7:1899–914 [Google Scholar]
  30. Kuang C, McMurry PH, McCormick AV, Eisele FL. 30.  2008. Dependence of nucleation rates on sulfuric acid vapor concentration in diverse atmospheric locations. J. Geophys. Res. 113:D10209 [Google Scholar]
  31. Kerminen VM, Petäjä T, Manninen HE, Paasonen P, Nieminen T. 31.  et al. 2010. Atmospheric nucleation: highlights of the EUCAARI project and future directions. Atmos. Chem. Phys. 10:10829–48 [Google Scholar]
  32. Wang ZB, Hu M, Yue DL, Zheng J, Zhang RY. 32.  et al. 2011. Evaluation on the role of sulfuric acid in the mechanism of new particle formation for Beijing case. Atmos. Chem. Phys. 11:12663–71 [Google Scholar]
  33. Smith JN, Dunn MJ, VanReken TM, Iida K, Stolzenburg MR. 33.  et al. 2008. Chemical composition of atmospheric nanoparticles formed from nucleation in Tecamac, Mexico: evidence for an important role for organic species in nanoparticle growth. Geophys. Res. Lett. 35:L04808 [Google Scholar]
  34. Paasonen P, Nieminen T, Asmi E, Manninen HE, Petäjä T. 34.  et al. 2010. On the roles of sulphuric acid and low-volatility organic vapours in the initial steps of atmospheric new particle formation. Atmos. Chem. Phys. 10:11223–42 [Google Scholar]
  35. Ehn M, Kleist E, Junninen H, Petäjä T, Lonn G. 35.  et al. 2012. Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air. Atmos. Chem. Phys. 12:5113–27 [Google Scholar]
  36. O'Dowd CD, Jimenez JL, Bahreini R, Flagan RC, Seinfeld JH. 36.  et al. 2002. Marine aerosol formation from biogenic iodine emissions. Nature 417:632–36 [Google Scholar]
  37. McFiggans G, Bale CSE, Ball SM, Beames JM, Bloss WJ. 37.  et al. 2010. Iodine-mediated coastal particle formation: an overview of the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) Roscoff coastal study. Atmos. Chem. Phys. 10:2975–99 [Google Scholar]
  38. McMurry PH, Friedlander SK. 38.  1979. New particle formation in the presence of aerosol. Atmos. Environ. 13:1635–51 [Google Scholar]
  39. Kerminen VM, Kulmala M. 39.  2002. Analytical formulae connecting the “real” and the “apparent” nucleation rate and the nuclei number concentration for atmospheric nucleation events. J. Aerosol Sci. 33:609–22 [Google Scholar]
  40. Kuang C, Riipinen I, Sihto SL, Kulmala M, McCormick AV, McMurry PH. 40.  2010. An improved criterion for new particle formation in diverse atmospheric environments. Atmos. Chem. Phys. 10:8469–84 [Google Scholar]
  41. Nilsson ED, Rannik U, Kulmala M, Buzorius G, O'Dowd CD. 41.  2001. Effects of the continental boundary layer evolution, convection, turbulence and entrainment, on aerosol formation. Tellus B 53:441–61 [Google Scholar]
  42. Wehner B, Siebert H, Ansmann A, Detas F, Seifert P. 42.  et al. 2010. Observations of turbulence-induced new particle formation in the residual layer. Atmos. Chem. Phys. 10:4319–30 [Google Scholar]
  43. Hamed A, Korhonen H, Sihto SL, Joutsensaari J, Järvinen H. 43.  et al. 2011. The role of relative humidity in continental new particle formation. J. Geophys. Res. 116:D03202 [Google Scholar]
  44. Zhang R. 44.  2010. Getting to the critical nucleus of aerosol formation. Science 328:1366–67 [Google Scholar]
  45. Vehkamäki H, Riipinen I. 45.  2012. Thermodynamics and kinetics of atmospheric aerosol particle formation and growth. Chem. Soc. Rev. 41:5160–73 [Google Scholar]
  46. Vehkamäki H, McGrath MJ, Kurtén T, Julin J, Lehtinen KEJ, Kulmala M. 46.  2012. Rethinking the application of the first nucleation theorem to particle formation. J. Chem. Phys. 136:094107 [Google Scholar]
  47. Kilpatrick DW. 47.  1971. An experimental mass-mobility relation for ions in air at atmospheric pressure. Proc. Annu. Conf. Mass. Spectrosc. 19:320–25 [Google Scholar]
  48. Ku B, de la Mora J. 48.  2009. Relation between electrical mobility, mass, and size for nanodrops 1–6.5 nm in diameter in air. Aerosol Sci. Technol. 43:241–49 [Google Scholar]
  49. Ehn M, Junninen H, Schobesberger S, Manninen HE, Franchin A. 49.  et al. 2011. An instrumental comparison of mobility and mass measurements of small ions. Aerosol Sci. Technol. 45:522–32 [Google Scholar]
  50. Kulmala M, Petäjä T, Nieminen T, Sipilä M, Manninen HE. 50.  et al. 2012. Measurement of the nucleation of atmospheric aerosol particles. Nat. Protoc. 7:1651–67 [Google Scholar]
  51. Ehn M, Junninen H, Petäjä T, Kurtén T, Kerminen VM. 51.  et al. 2010. Composition and temporal behavior of ambient ions in the boreal forest. Atmos. Chem. Phys. 10:8513–30 [Google Scholar]
  52. Kirkby J, Curtius J, Almeida J, Dunne E, Duplissy J. 52.  et al. 2011. The role of sulfuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476:429–33 [Google Scholar]
  53. Schobesberger S, Junninen H, Bianchi F, Lönn G, Ehn M. 53.  et al. 2013. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules. Proc. Natl. Acad. Sci. USA. Submitted manuscript [Google Scholar]
  54. Almeida J, Schobesberger S, Kürten A, Ortega IK, Kupiainen O. 54.  et al. 2013. Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere. Nature. Submitted manuscript [Google Scholar]
  55. Petäjä T, Sipilä M, Paasonen P, Nieminen T, Kurtén T. 55.  et al. 2011. Experimental observation of strongly bound dimers of sulfuric acid: application to nucleation in the atmosphere. Phys. Rev. Lett. 106:228302 [Google Scholar]
  56. Berndt T, Stratmann F, Sipilä M, Vanhanen J, Petäjä T. 56.  et al. 2010. Laboratory study on new particle formation from the reaction OH + SO2: influence of experimental conditions, H2O vapour, NH3 and the amine tert-butylamine on the overall process. Atmos. Chem. Phys. 10:7101–16 [Google Scholar]
  57. Berndt T, Jokinen T, Mauldin RL III, Petäjä T, Herrmann H. 57.  et al. 2012. Gas-phase ozonolysis of selected olefins: the yield of stabilized Criegee intermediate and the reactivity toward SO2. J. Phys. Chem. Lett. 3:2892–96 [Google Scholar]
  58. Paasonen P, Olenius T, Kupiainen O, Kurtén T, Petäjä T. 58.  et al. 2012. On the formation of sulphuric acid–amine clusters in varying atmospheric conditions and its influence on atmospheric new particle formation. Atmos. Chem. Phys. 12:9113–33 [Google Scholar]
  59. McGrath MJ, Olenius T, Ortega IK, Loukonen V, Paasonen P. 59.  et al. 2012. Atmospheric Cluster Dynamics Code: a flexible method for solution of the birth-death equations. Atmos. Chem. Phys. 12:2345–55 [Google Scholar]
  60. Petäjä T, Mauldin RL III, Kosciuch E, McGrath J, Nieminen T. 60.  et al. 2009. Sulfuric acid and OH concentrations in a boreal forest site. Atmos. Chem. Phys. 9:7435–48 [Google Scholar]
  61. Hirsikko A, Nieminen T, Gagne S, Lehtipalo K, Manninen HE. 61.  et al. 2011. Atmospheric ions and nucleation: a review of observations. Atmos. Chem. Phys. 11:767–98 [Google Scholar]
  62. Eisele FL, Tanner DJ. 62.  1993. Measurement of gas phase concentration of H2SO4 and methanesulfonic acid and estimates of H2SO4 production and loss in the atmosphere. J. Geophys. Res. 98:9001–10 [Google Scholar]
  63. Stolzenburg M, McMurry P. 63.  1991. An ultrafine aerosol condensation nucleus counter. Aerosol Sci. Technol. 14:48–65 [Google Scholar]
  64. Weber RJ, McMurry PH, Eisele FL, Tanner J. 64.  1995. Measurement of expected nucleation precursor species and 3–500 nm diameter particles at Mauna Loa Observatory, Hawaii. J. Atmos. Sci. 52:2242–57 [Google Scholar]
  65. Sipilä M, Berndt T, Petäjä T, Brus D, Vanhanen J. 65.  et al. 2010. The role of sulfuric acid in atmospheric nucleation. Science 327:1243–46 [Google Scholar]
  66. Sipilä M, Lehtipalo K, Kulmala M, Petäjä T, Junninen H. 66.  et al. 2008. Applicability of condensation particle counters to measure atmospheric clusters. Atmos. Chem. Phys. 8:4049–60 [Google Scholar]
  67. Sipilä M, Lehtipalo K, Attoui M, Neitola K, Petäjä T. 67.  et al. 2009. Laboratory verification of PH-CPC's ability to monitor atmospheric sub-3 nm clusters. Aerosol Sci. Technol. 43:126–35 [Google Scholar]
  68. Vanhanen J, Mikkila J, Lehtipalo K, Sipilä M, Manninen HE. 68.  et al. 2011. Particle size magnifier for nano-CN detection. Aerosol Sci. Technol. 45:533–42 [Google Scholar]
  69. Smith JN, Barsanti K, Friedli H, Ehn M, Kulmala M. 69.  et al. 2010. Observations of aminium salts in atmospheric nanoparticles and possible implications. Proc. Natl. Acad. Sci. USA 107:6634–39 [Google Scholar]
  70. Wang L, Khalizov AF, Zhen J, Xu W, Mah Y. 70.  et al. 2010. Atmospheric nanoparticles formed from heterogeneous reactions of organics. Nat. Geosci. 3:238–42 [Google Scholar]
  71. Kurtén T, Loukonen V, Vehkamäki H, Kulmala M. 71.  2008. Amines are likely to enhance neutral and ion-induced sulfuric acid-water nucleation in the atmosphere more effectively than ammonia. Atmos. Chem. Phys. 8:4095–103 [Google Scholar]
  72. Bzdek BR, Ridge DP, Johnston MV. 72.  2010. Amine exchange into ammonium bisulfate and ammonium nitrate nuclei. Atmos. Chem. Phys. 10:3495–503 [Google Scholar]
  73. Loukonen V, Kurtén T, Ortega IK, Vehkamäki H, Padue AAH. 73.  et al. 2010. Enhancing effect of dimethyl-amine in sulfuric acid nucleation in the presence of water: a computational study. Atmos. Chem. Phys. 10:4961–74 [Google Scholar]
  74. Ortega IK, Kupiainen O, Kurtén T, Olenius T, Wilkman O. 74.  et al. 2012. From quantum chemical formation free energies to evaporation rates. Atmos. Chem. Phys. 12:225–35 [Google Scholar]
  75. Kupiainen O, Ortega K, Kurtén T, Vehkamäki H. 75.  2012. Amine substitution into sulfuric acid–ammonia clusters. Atmos. Chem. Phys. 12:3591–99 [Google Scholar]
  76. Kulmala M. 76.  2010. Dynamical atmospheric cluster model. Atmos. Res. 98:201–6 [Google Scholar]
  77. Erupe ME, Viggiano AA, Lee SH. 77.  2011. The effect of trimethylamine on atmospheric nucleation involving H2SO4. Atmos. Chem. Phys. 11:4767–75 [Google Scholar]
  78. Berndt T, Sipilä M, Stratmann F, Petäjä T, Vanhanen J. 78.  et al. 2013. Enhancement of atmospheric H2SO4/H2O nucleation: organic oxidation products versus amines. Atmos. Chem. Phys. Discuss. 13:16301–35 [Google Scholar]
  79. Ge X, Wexler AS, Cless SL. 79.  2011. Atmospheric amines—part I. A review. Atmos. Environ. 45:524–46 [Google Scholar]
  80. Kulmala M, Toivonen A, Mäkelä JM, Laaksonen A. 80.  1998. Analysis of the growth of nucleation mode particles observed in boreal forest. Tellus B 50:449–62 [Google Scholar]
  81. Curtius J, Lovejoy ER, Froyd KD. 81.  2006. Atmospheric ion-induced aerosol nucleation. Space Sci. Rev. 125:159–67 [Google Scholar]
  82. Yu F. 82.  2010. Ion-mediated nucleation in the atmosphere: key controlling parameters, implications, and look-up table. J. Geophys. Res. 115:D03206 [Google Scholar]
  83. Arnold F. 83.  1982. Ion nucleation: a potential source for stratospheric aerosols. Nature 299:134–35 [Google Scholar]
  84. Lee SH, Reeves JM, Wilson JC, Hunton DE, Viggiano AA. 84.  et al. 2003. Particle formation by ion nucleation in the upper troposphere and lower stratosphere. Science 301:1886–89 [Google Scholar]
  85. Kazil J, Harrison RG, Lovejoy ER. 85.  2008. Tropospheric new particle formation and the role of ions. Space Sci. Rev. 137:241–55 [Google Scholar]
  86. Iida K, Stolzenburg M, McMurry PH, Dunn P, Smith JN. 86.  2006. Contribution of ion-induced nucleation to new particle formation: methodology and its application to atmospheric observations in Boulder, Colorado. J. Geophys. Res. 111:D23201 [Google Scholar]
  87. Gagne S, Laakso L, Petäjä T, Kerminen VM, Kulmala M. 87.  2008. Analysis of one year of ion-DMPS data from the SMEAR II station, Finland. Tellus B 60:318–29 [Google Scholar]
  88. Kulmala M, Riipinen I, Nieminen T, Hulkkonen M, Sogacheva L. 88.  et al. 2010. Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation. Atmos. Chem. Phys. 10:1885–98 [Google Scholar]
  89. Manninen HE, Nieminen T, Asmi E, Gagne S, Häkkinen S. 89.  et al. 2010. EUCAARI ion spectrometer measurements at 12 European sites: analysis of new-particle formation events. Atmos. Chem. Phys. 10:7907–27 [Google Scholar]
  90. Asmi E, Frey A, Virkkula A, Ehn M, Manninen HE. 90.  et al. 2010. Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation. Atmos. Chem. Phys. 10:4253–71 [Google Scholar]
  91. Lihavainen H, Komppula M, Kerminen VM, Järvinen H, Viisanen Y. 91.  et al. 2007. Size distributions of atmospheric ions inside clouds and in cloud-free air at a remote continental site. Boreal Environ. Res. 12:337–44 [Google Scholar]
  92. Junninen H, Ehn M, Petäjä T, Luosujärvi L, Kotiaho T. 92.  et al. 2010. A high-resolution mass spectrometer to measure atmospheric ion composition. Atmos. Meas. Tech. 3:1039–53 [Google Scholar]
  93. Vaida V. 93.  2011. Perspective: water cluster mediated atmospheric chemistry. J. Chem. Phys. 135:020901 [Google Scholar]
  94. Kerminen VM, Virkkula A, Hillamo R, Wexler AS, Kulmala M. 94.  2000. Secondary organics and atmospheric cloud condensation nuclei production. J. Geophys. Res. 105:9255–64 [Google Scholar]
  95. Donahue NM, Trump ER, Pierce JR, Kulmala M. 95.  2011. Theoretical constraints on pure vapor-pressure driven condensation of organics to ultrafine particles. Geophys. Res. Lett. 38:L16801 [Google Scholar]
  96. Riipinen I, Pierce JR, Yli-Juuti T, Nieminen T, Häkkinen S. 96.  et al. 2011. Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations. Atmos. Chem. Phys. 11:3865–78 [Google Scholar]
  97. Yu F. 97.  2011. A secondary organic aerosol formation model considering successive oxidation aging and kinetic condensation of organic compounds: global scale implications. Atmos. Chem. Phys. 11:1083–99 [Google Scholar]
  98. Donahue NM, Kroll JH, Pandis SN, Robinson AL. 98.  2012. A two-dimensional volatility basis set—part 2: diagnostics of organic-aerosol evolution. Atmos. Chem. Phys. 12:615–34 [Google Scholar]
  99. Metzger A, Verheggen B, Dommen J, Duplissy J, Prevot AS. 99.  et al. 2010. Evidence for the role of organics in aerosol particle formation under atmospheric conditions. Proc. Natl. Acad. Sci. USA 107:6646–51 [Google Scholar]
  100. Riccobono F, Rondo L, Sipilä M, Barmet P, Curtius J. 100.  et al. 2012. Contribution of sulphuric acid and oxidized organic compounds to particle formation and growth. Atmos. Chem. Phys. 12:9427–39 [Google Scholar]
  101. Zhao J, Ortega J, Chen M, McMurry PH, Smith JN. 101.  2013. Dependence of particle nucleation and growth on high molecular weight gas phase products during ozonolysis of α-pinene. Atmos. Chem. Phys. Discuss. 13:9319–54 [Google Scholar]
  102. Mauldin RL III, Berndt T, Sipilä M, Paasonen P, Petäjä T. 102.  et al. 2012. A new atmospherically relevant oxidant. Nature 488:193–97 [Google Scholar]
  103. Welz O, Savee JD, Osborn DL, Vasu SS, Percival CJ. 103.  et al. 2012. Direct kinetic measurements of Criegee intermediate (CH2OO) formed by reaction of CH2I with O2. Science 335:204–7 [Google Scholar]
  104. Calvert JG, Atkinson R, Kerr JA, Madronich S, Moortgat GK. 104.  et al. 2000. The Mechanism of Atmospheric Oxidation of the Alkenes New York: Oxford Univ. Press552 [Google Scholar]
  105. Su YT, Huang YH, Witek HA, Lee YP. 105.  2013. Infrared absorption spectrum of the simplest Criegee intermediate CH2OO. Science 340:174–76 [Google Scholar]
  106. Kroll JH, Sahay SR, Anderson JG, Demerjian KL, Donahue NM. 106.  2001. Mechanism of HOx formation in the gas-phase ozone-alkene reaction. 2. Prompt versus thermal dissociation of carbonyl oxides to form OH. J. Phys. Chem. A 105:4446–57 [Google Scholar]
  107. Taatjes CA, Welz O, Eskola AJ, Savee JD, Osborn DL. 107.  et al. 2012. Direct measurement of Criegee intermediate (CH2OO) reactions with acetone, acetaldehyde, and hexafluoroacetone. Phys. Chem. Chem. Phys. 14:10391–400 [Google Scholar]
  108. Taatjes CA, Welz O, Eskola A, Savee JD, Scheer AM. 108.  et al. 2013. Direct measurements of conformer-dependent reactivity of Criegee intermediate CH3CHOO. Science 340:177–80 [Google Scholar]
  109. Boy M, Mogensen D, Smolander S, Zhou L, Nieminen T. 109.  et al. 2013. Oxidation of SO2 by stabilized Criegee intermediate (sCI) radicals as a crucial source for atmospheric sulfuric acid molecules. Atmos. Chem. Phys. 13:3865–79 [Google Scholar]
  110. Pierce JR, Evans MJ, Scott CE, D'Andrea SD, Farmer DK. 110.  et al. 2013. Weak global sensitivity of cloud condensation nuclei and the aerosol indirect effect to Criegee + SO2 chemistry. Atmos. Chem. Phys. 13:3163–76 [Google Scholar]
  111. Tammet H. 111.  2006. Continuous scanning of the mobility and size distribution of charged clusters and nanometer particles in atmospheric air and the Balanced Scanning Mobility Analyzer BSMA. Atmos. Res. 82:523–35 [Google Scholar]
  112. Mirme A, Tamm E, Mordas G, Vana M, Uin J. 112.  et al. 2007. A wide-range multi-channel air ion spectrometer. Boreal Environ. Res. 12:247–64 [Google Scholar]
  113. Mauldin RL III, Cantrell CA, Zondlo MA, Kosciuch E, Ridley BA. 113.  et al. 2003. Measurements of OH, H2SO4 and MSA during Tropospheric Ozone Production About the Spring Equinox (TOPSE). J. Geophys. Res. 108:8366 [Google Scholar]
  114. Kurtén T, Petäjä T, Smith J, Ortega IK, Sipilä M. 114.  et al. 2011. The effect of H2SO4-amine clustering on chemical ionization mass spectrometry (CIMS) measurements of gas-phase sulfuric acid. Atmos. Chem. Phys. 11:3007–19 [Google Scholar]
  115. Jokinen T, Sipilä M, Junninen H, Ehn M, Lönn G. 115.  et al. 2012. Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF. Atmos. Chem. Phys. 12:4117–25 [Google Scholar]
  116. Jordan A, Haidacher G, Hane G, Hartungen E, Märk L. 116.  et al. 2009. A high resolution and high sensitivity proton-transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS). Int. J. Mass Spectrom. 286:122–28 [Google Scholar]
  117. Bertram TH, Kimmel JR, Crisp TA, Ryder OS, Yatavelli RLN. 117.  et al. 2011. A field-deployable, chemical ionization time-of-flight mass spectrometer. Atmos. Meas. Tech. 4:1471–79 [Google Scholar]
  118. Yatavelli RLN, Lopez-Hilfiker FD, Wargo J, Kimmel JR, Cubison MJ. 118.  et al. 2012. A chemical ionization high-resolution time-of-flight mass spectrometer coupled to a micro orifice volatilization impactor (MOVI-HRToF-CIMS) for analysis of gas and particle-phase organic species. Aerosol Sci. Technol. 46:1313–27 [Google Scholar]
  119. de la Mora JF, de Juan L, Eichler T, Rosell J. 119.  1998. Differential mobility analysis of molecular ions and nanometer particles. Trends Anal. Chem. 17:328–39 [Google Scholar]
  120. Larriba C, Hogan CJ, Attoui M, Borrajo R, Garcia JF, de la Mora JF. 120.  2011. The mobility-volume relationship below 3.0 nm examined by tandem mobility–mass measurement. Aerosol Sci. Technol. 45:453–67 [Google Scholar]
  121. Kangasluoma J, Junninen H, Lehtipalo K, Mikkilä J, Vanhanen J. 121.  et al. 2012. Remarks on ion generation for CPC detection efficiency studies in sub-3-nm size range. Aerosol Sci. Technol. 47:556–63 [Google Scholar]
  122. Friedlander SK. 122.  1977. Smoke, Dust, and Haze: Fundamentals of Aerosol Behavior New York: Wiley [Google Scholar]
  123. Kulmala M, Kerminen VM, Anttila T, Laaksonen A, O'Dowd CD. 123.  2004. Organic aerosol formation via sulphate cluster activation. J. Geophys. Res. 109:4205 [Google Scholar]
  124. Hari P, Kulmala M. 124.  2005. Station for Measuring Ecocystem–Atmosphere Relations (SMEAR II). Boreal Environ. Res. 10:315–22 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error