1932

Abstract

Computational modeling at the atomistic and mesoscopic levels has undergone dramatic development in the past 10 years to meet the challenge of adequately accounting for the many-body nature of intermolecular interactions. At the heart of this challenge is the ability to identify the strengths and specific limitations of pairwise-additive interactions, to improve classical models to explicitly account for many-body effects, and consequently to enhance their ability to describe a wider range of reference data and build confidence in their predictive capacity. However, the corresponding computational cost of these advanced classical models increases significantly enough that statistical convergence of condensed phase observables becomes more difficult to achieve. Here we review a hierarchy of potential energy surface models used in molecular simulations for systems with many degrees of freedom that best meet the trade-off between accuracy and computational speed in order to define a sweet spot for a given scientific problem of interest.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040412-110040
2014-04-01
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/physchem/65/1/annurev-physchem-040412-110040.html?itemId=/content/journals/10.1146/annurev-physchem-040412-110040&mimeType=html&fmt=ahah

Literature Cited

  1. Ren PY, Ponder JW. 1.  2003. Polarizable atomic multipole water model for molecular mechanics simulation. J. Phys. Chem. B 107:5933–47 [Google Scholar]
  2. Allinger NL, Yuh YH, Lii JH. 2.  1989. Molecular mechanics: the MM3 force field for hydrocarbons. 1. J. Am. Chem. Soc. 111:8551–66 [Google Scholar]
  3. Wilson EB, Decius JC, Cross PC. 3.  1955. Molecular Vibrations New York: McGraw-Hill
  4. Stone AJ. 4.  1996. The Theory of Intermolecular Forces New York: Clarendon
  5. Halgren TA. 5.  1992. Representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters. J. Am. Chem. Soc. 114:7827–43 [Google Scholar]
  6. Ren P, Ponder J. 6.  2002. Consistent treatment of inter- and intramolecular polarization in molecular mechanics calculations. J. Comput. Chem. 23:1497–506 [Google Scholar]
  7. Stone AJ. 7.  1981. Distributed multipole analysis, or how to describe a molecular charge distribution. Chem. Phys. Lett. 83:233–39 [Google Scholar]
  8. Wen S, Beran G. 8.  2011. Accurate molecular crystal lattice energies from a fragment QM/MM approach with on-the-fly ab initio force-field parameterization. J. Chem. Theory Comput. 7:3733–42 [Google Scholar]
  9. Cieplak P, Lybrand T, Kollman P. 9.  1987. Calculation of free energy changes in ion-water clusters using nonadditive potentials and Monte Carlo methods. J. Chem. Phys. 86:6393–404 [Google Scholar]
  10. Lifson S, Warshel A. 10.  1969. Consistent force field for calculations of conformations, vibrational spectra, and enthalpies of cycloalkane and n-alkane molecules. J. Chem. Phys. 49:5116–29The consistent force field was the first empirical force field; most later force fields adopt the basic functional forms introduced here. [Google Scholar]
  11. Hagler A, Huler E, Lifson S. 11.  1974. Energy functions for peptides and proteins. I. Derivation of a consistent force field including the hydrogen bond from amide crystals. J. Am. Chem. Soc. 96:5319–27 [Google Scholar]
  12. Hagler A, Lifson S. 12.  1974. Energy functions for peptides and proteins. II. The amide hydrogen bond and calculation of amide crystal properties. J. Am. Chem. Soc. 96:5327–35 [Google Scholar]
  13. Shirts M, Pande V. 13.  2005. Solvation free energies of amino acid side chain analogs for common molecular mechanics water models. J. Chem. Phys. 122:134508 [Google Scholar]
  14. Mobley D, Bayly C, Cooper M, Shirts M, Dill K. 14.  2009. Small molecule hydration free energies in explicit solvent: an extensive test of fixed-charge atomistic simulations. J. Chem. Theory Comput. 5:350–58 [Google Scholar]
  15. Johnson M, Malardier-Jugroot C, Murarka R, Head-Gordon T. 15.  2009. Hydration water dynamics near biological interfaces. J. Phys. Chem. B 113:4082–92 [Google Scholar]
  16. Jiang F, Han W, Wu Y. 16.  2010. Influence of side chain conformations on local conformational features of amino acids and implication for force field development. J. Phys. Chem. B 114:5840–50 [Google Scholar]
  17. Best R, Buchete N, Hummer G. 17.  2008. Are current molecular dynamics force fields too helical?. Biophys. J. 95:L7–9 [Google Scholar]
  18. Best R, Hummer G. 18.  2009. Optimized molecular dynamics force fields applied to the helix-coil transition of polypeptides. J. Phys. Chem. B 113:9004–15 [Google Scholar]
  19. Jorgensen WL. 19.  1981. Quantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for water, alcohols, and ethers: application to liquid water. J. Am. Chem. Soc. 103:335–40 [Google Scholar]
  20. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. 20.  1983. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79:926–35 [Google Scholar]
  21. Berendsen HJC, Grigera JR, Straatsma TP. 21.  1987. The missing term in effective pair potentials. J. Phys. Chem. 91:6269–71 [Google Scholar]
  22. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J. 22.  1981. Interaction models for water in relation to protein hydration. Intermolecular Forces B Pullmann 331–42 Dordrecht, Neth.: D. Reidel [Google Scholar]
  23. Horn H, Swope W, Pitera J, Madura J, Dick T. 23.  et al. 2004. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J. Chem. Phys. 120:9665–78 [Google Scholar]
  24. Vega C. 24.  Abascal JLF, 2005. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123:234505 [Google Scholar]
  25. Mahoney MW, Jorgensen WL. 25.  2000. A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J. Chem. Phys. 112:8910–22 [Google Scholar]
  26. Price DJ, Brooks CL. 26.  2004. A modified TIP3P water potential for simulation with Ewald summation. J. Chem. Phys. 121:10096–103 [Google Scholar]
  27. Fawzi NL, Phillips AH, Ruscio JZ, Doucleff M, Wemmer DE, Head-Gordon T. 27.  2008. Structure and dynamics of the Aβ21-30 peptide from the interplay of NMR experiments and molecular simulations. J. Am. Chem. Soc. 130:6145–58 [Google Scholar]
  28. Sgourakis NG, Merced-Serrano M, Boutsidis C, Drineas P, Du ZM. 28.  et al. 2011. Atomic-level characterization of the ensemble of the Aβ1-42 monomer in water using unbiased molecular dynamics simulations and spectral algorithms. J. Mol. Biol. 405:570–83 [Google Scholar]
  29. Ball KA, Phillips AH, Nerenberg PS, Fawzi NL, Wemmer DE, Head-Gordon T. 29.  2011. Homogeneous and heterogeneous tertiary structure ensembles of amyloid-β peptides. Biochemistry 50:7612–28 [Google Scholar]
  30. Ball KA, Phillips AH, Wemmer DE, Head-Gordon T. 30.  2013. Differences in β-strand populations of monomeric amyloid-β 40 and amyloid-β 42. Biophys. J. 104:2714–24 [Google Scholar]
  31. Wickstrom L, Okur A, Simmerling C. 31.  2009. Evaluating the performance of the ff99SB force field based on NMR scalar coupling data. Biophys. J. 97:853–56 [Google Scholar]
  32. Krouskop PE, Madura JD, Paschek D, Krukau A. 32.  2006. Solubility of simple, nonpolar compounds in TIP4P-Ew. J. Chem. Phys. 124:016102 [Google Scholar]
  33. Best RB, Mittal J. 33.  2010. Protein simulations with an optimized water model: cooperative helix formation and temperature-induced unfolded state collapse. J. Phys. Chem. B 114:14916–23 [Google Scholar]
  34. Nerenberg PS, Head-Gordon T. 34.  2011. Optimizing protein-solvent force fields to reproduce intrinsic conformational preferences of model peptides. J. Chem. Theory Comput. 7:1220–30 [Google Scholar]
  35. Nerenberg P, Jo B, So C, Tripathy A, Head-Gordon T. 35.  2012. Optimizing solute-water van der Waals interactions to reproduce solvation free energies. J. Phys. Chem. B 116:4524–34 [Google Scholar]
  36. Horta BAC, Fuchs PFJ, van Gunsteren WF, Huenenberger PH. 36.  2011. New interaction parameters for oxygen compounds in the GROMOS force field: improved pure-liquid and solvation properties for alcohols, ethers, aldehydes, ketones, carboxylic acids, and esters. J. Chem. Theory Comput. 7:1016–31 [Google Scholar]
  37. Bayly C, Cieplak P, Cornell W, Kollman P. 37.  1993. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 97:10269–80 [Google Scholar]
  38. Breneman C, Wiberg K. 38.  1990. Determining atom-centered monopoles from molecular electrostatic potentials: the need for high sampling density in formamide conformational analysis. J. Comput. Chem. 11:361–73 [Google Scholar]
  39. Ren P, Chun J, Thomas DG, Schnieders MJ, Marucho M. 39.  et al. 2012. Biomolecular electrostatics and solvation: a computational perspective. Q. Rev. Biophys. 45:427–91 [Google Scholar]
  40. Yu H, van Gunsteren W. 40.  2005. Accounting for polarization in molecular simulation. Comput. Phys. Commun. 172:69–85 [Google Scholar]
  41. Williams D. 41.  1988. Representation of the molecular electrostatic potential by atomic multipole and bond dipole models. J. Comput. Chem. 9:745–63 [Google Scholar]
  42. Dykstra CE. 42.  1993. Electrostatic interaction potentials in molecular force fields. Chem. Rev. 93:2339–53Provides a scholarly introduction to polarizable force fields. [Google Scholar]
  43. Fowler P, Buckingham A. 43.  1983. The long range model of intermolecular forces. Mol. Phys. 50:1349–61 [Google Scholar]
  44. Fowler P, Buckingham A. 44.  1991. Central or distributed multipole moments? Electrostatic models of aromatic dimers. Chem. Phys. Lett. 176:11–18 [Google Scholar]
  45. Schnieders MJ, Fenn TD, Pande VS, Brunger AT. 45.  2009. Polarizable atomic multipole X-ray refinement: application to peptide crystals. Acta Crystallogr. D 65:952–65 [Google Scholar]
  46. Afonine PV, Grosse-Kunstleve RW, Adams PD, Lunin VY, Urzhumtsev A. 46.  2007. On macromolecular refinement at subatomic resolution with interatomic scatterers. Acta Crystallogr. D 63:1194–97 [Google Scholar]
  47. Ponder JW, Wu CJ, Ren PY, Pande VS, Chodera JD. 47.  et al. 2010. Current status of the AMOEBA polarizable force field. J. Phys. Chem. B 114:2549–64 [Google Scholar]
  48. Piquemal JP, Williams-Hubbard B, Fey N, Deeth RJ, Gresh N, Giessner-Prettre C. 48.  2003. Inclusion of the ligand field contribution in a polarizable molecular mechanics: SIBFA-LF. J. Comput. Chem. 24:1963–70 [Google Scholar]
  49. Engkvist O, Åstrand P-O, Karlström G. 49.  2000. Accurate intermolecular potentials obtained from molecular wave functions: bridging the gap between quantum chemistry and molecular simulations. Chem. Rev. 100:4087–108 [Google Scholar]
  50. Gordon M, Fedorov D, Pruitt S, Slipchenko L. 50.  2011. Fragmentation methods: a route to accurate calculations on large systems. Chem. Rev. 112:632–72 [Google Scholar]
  51. Sneskov K, Schwabe T, Kongsted J, Christiansen O. 51.  2011. The polarizable embedding coupled cluster method. J. Chem. Phys. 134:104108 [Google Scholar]
  52. Cieplak P, Caldwell J, Kollman P. 52.  2001. Molecular mechanical models for organic and biological systems going beyond the atom centered two body additive approximation: aqueous solution free energies of methanol and N-methyl acetamide, nucleic acid base, and amide hydrogen bonding and chloroform/water partition coefficients of the nucleic acid bases. J. Comput. Chem. 22:1048–57 [Google Scholar]
  53. Donchev AG, Ozrin VD, Subbotin MV, Tarasov OV, Tarasov VI. 53.  2005. A quantum mechanical polarizable force field for biomolecular interactions. Proc. Natl. Acad. Sci. USA 102:7829–34 [Google Scholar]
  54. Grishaev A, Bax A. 54.  2004. An empirical backbone-backbone hydrogen-bonding potential in proteins and its applications to NMR structure refinement and validation. J. Am. Chem. Soc. 126:7281–92 [Google Scholar]
  55. Kortemme T, Morozov AV, Baker D. 55.  2003. An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes. J. Mol. Biol. 326:1239–59 [Google Scholar]
  56. Axilrod B, Teller E. 56.  1943. Interaction of the van der Waals type between three atoms. J. Chem. Phys. 11:299–300Presents an early model of three-body dispersion. [Google Scholar]
  57. Muto Y. 57.  1943. The force between nonpolar molecules. J. Phys. Math. Soc. Jpn. 17:629–31 [Google Scholar]
  58. Leverentz H, Maerzke K, Keasler S, Siepmann J, Truhlar D. 58.  2012. Electrostatically embedded many-body method for dipole moments, partial atomic charges, and charge transfer. Phys. Chem. Chem. Phys. 14:7669–78 [Google Scholar]
  59. Richard R, Herbert J. 59.  2012. A generalized many-body expansion and a unified view of fragment-based methods in electronic structure theory. J. Chem. Phys. 137:064113 [Google Scholar]
  60. Warshel A, Levitt M. 60.  1976. Theoretical studies of enzymatic reaction: dielectric, electrostatic, and steric stabilization of the carbonium ion in the reaction of lysozyme. J. Mol. Biol. 103:227–49Presents the first QM/MM study of an enzyme. [Google Scholar]
  61. Sprik M, Klein M. 61.  1988. A polarizable model for water using distributed charge sites. J. Chem. Phys. 89:7556–60 [Google Scholar]
  62. Rick S, Stuart S, Berne B. 62.  1994. Dynamical fluctuating charge force fields: application to liquid water. J. Chem. Phys. 101:6141–56Introduces the FLUCQ model. [Google Scholar]
  63. Patel S, Brooks CL. 63.  2006. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials. J. Chem. Phys. 124:204706 [Google Scholar]
  64. Bauer BA, Patel S. 64.  2009. Properties of water along the liquid-vapor coexistence curve via molecular dynamics simulations using the polarizable TIP4P-QDP-LJ water model. J. Chem. Phys. 131:084709 [Google Scholar]
  65. Grossfield A, Ren PY, Ponder JW. 65.  2003. Ion solvation thermodynamics from simulation with a polarizable force field. J. Am. Chem. Soc. 125:15671–82 [Google Scholar]
  66. Jiao D, King C, Grossfield A, Darden TA, Ren P. 66.  2006. Simulation of Ca2+ and Mg2+ solvation using polarizable atomic multipole potential. J. Phys. Chem. B 110:18553–59 [Google Scholar]
  67. Yu HB, Whitfield TW, Harder E, Lamoureux G, Vorobyov I. 67.  et al. 2010. Simulating monovalent and divalent ions in aqueous solution using a Drude polarizable force field. J. Chem. Theory Comput. 6:774–86 [Google Scholar]
  68. Shi Y, Wu CJ, Ponder JW, Ren PY. 68.  2011. Multipole electrostatics in hydration free energy calculations. J. Comput. Chem. 32:967–77 [Google Scholar]
  69. Johnson ME, Malardier-Jugroot C, Head-Gordon T. 69.  2010. Effects of co-solvents on peptide hydration water structure and dynamics. Phys. Chem. Chem. Phys. 12:393–405 [Google Scholar]
  70. Jiao D, Golubkov PA, Darden TA, Ren P. 70.  2008. Calculation of protein-ligand binding free energy by using a polarizable potential. Proc. Natl. Acad. Sci. USA 105:6290–95 [Google Scholar]
  71. Khoruzhii O, Donchev AG, Galkin N, Illarionov A, Olevanov M. 71.  et al. 2008. Application of a polarizable force field to calculations of relative protein-ligand binding affinities. Proc. Natl. Acad. Sci. USA 105:10378–83 [Google Scholar]
  72. Patel S, Davis JE, Bauer BA. 72.  2009. Exploring ion permeation energetics in gramicidin A using polarizable charge equilibration force fields. J. Am. Chem. Soc. 131:13890–91 [Google Scholar]
  73. Wang JM, Cieplak P, Li J, Wang J, Cai Q. 73.  et al. 2011. Development of polarizable models for molecular mechanical calculations II: Induced dipole models significantly improve accuracy of intermolecular interaction energies. J. Phys. Chem. B 115:3100–11 [Google Scholar]
  74. Babin V, Baucom J, Darden TA, Sagui C. 74.  2006. Molecular dynamics simulations of DNA with polarizable force fields: convergence of an ideal B-DNA structure to the crystallographic structure. J. Phys. Chem. B 110:11571–81 [Google Scholar]
  75. Rasmussen TD, Ren PY, Ponder JW, Jensen F. 75.  2007. Force field modeling of conformational energies: importance of multipole moments and intramolecular polarization. Int. J. Quantum Chem. 107:1390–95 [Google Scholar]
  76. Giese TJ, York DM. 76.  2004. Many-body force field models based solely on pairwise Coulomb screening do not simultaneously reproduce gas-phase and condensed-phase polarizability limits. J. Chem. Phys. 120:9903–6 [Google Scholar]
  77. Rick SW, Stuart SJ, Bader JS, Berne BJ. 77.  1995. Fluctuating charge force fields for aqueous solutions. J. Mol. Liq. 65–6631–40
  78. Patel S, Mackerell AD, Brooks CL. 78.  2004. CHARMM fluctuating charge force field for proteins: II protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model. J. Comput. Chem. 25:1504–14 [Google Scholar]
  79. Patel S, Brooks CL. 79.  2004. CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations. J. Comput. Chem. 25:1–15 [Google Scholar]
  80. Kaminski GA, Stern HA, Berne BJ, Friesner RA, Cao YX. 80.  et al. 2002. Development of a polarizable force field for proteins via ab initio quantum chemistry: first generation model and gas phase tests. J. Comput. Chem. 23:1515–31 [Google Scholar]
  81. Stern HA, Kaminski GA, Banks JL, Zhou RH, Berne BJ, Friesner RA. 81.  1999. Fluctuating charge, polarizable dipole, and combined models: parameterization from ab initio quantum chemistry. J. Phys. Chem. B 103:4730–37 [Google Scholar]
  82. Jacucci G, McDonald IR, Singer K. 82.  1974. Introduction of shell model of ionic polarizability into molecular dynamics calculations. Phys. Lett. A 50:141–43 [Google Scholar]
  83. Mitchell PJ, Fincham D. 83.  1993. Shell model simulations by adiabatic dynamics. J. Phys. Condens. Matter 5:1031–38 [Google Scholar]
  84. Lamoureux G, MacKerell AD, Roux B. 84.  2003. A simple polarizable model of water based on classical Drude oscillators. J. Chem. Phys. 119:5185–97 [Google Scholar]
  85. Lamoureux G, Roux B. 85.  2003. Modeling induced polarization with classical Drude oscillators: theory and molecular dynamics simulation algorithm. J. Chem. Phys. 119:3025–39 [Google Scholar]
  86. Geerke DP, van Gunsteren WF. 86.  2007. On the calculation of atomic forces in classical simulation using the charge-on-spring method to explicitly treat electronic polarization. J. Chem. Theory Comput. 3:2128–37 [Google Scholar]
  87. Yu HB, Hansson T, van Gunsteren WF. 87.  2003. Development of a simple, self-consistent polarizable model for liquid water. J. Chem. Phys. 118:221–34 [Google Scholar]
  88. Applequist J, Carl JR, Fung KK. 88.  1972. Atom dipole interaction model for molecular polarizability: application to polyatomic molecules and determination of atom polarizabilities. J. Am. Chem. Soc. 94:2952–60 [Google Scholar]
  89. Thole BT. 89.  1981. Molecular polarizabilities calculated with a modified dipole interaction. Chem. Phys. 59:341–50 [Google Scholar]
  90. Palmo K, Mannfors B, Mirkin NG, Krimm S. 90.  2006. Inclusion of charge and polarizability fluxes provides needed physical accuracy in molecular mechanics force fields. Chem. Phys. Lett. 429:628–32 [Google Scholar]
  91. Wang ZX, Zhang W, Wu C, Lei HX, Cieplak P, Duan Y. 91.  2006. Strike a balance: optimization of backbone torsion parameters of AMBER polarizable force field for simulations of proteins and peptides. J. Comput. Chem. 27:781–90 [Google Scholar]
  92. Xie WS, Pu JZ, MacKerell AD, Gao JL. 92.  2007. Development of a polarizable intermolecular potential function (PIPF) for liquid amides and alkanes. J. Chem. Theory Comput. 3:1878–89 [Google Scholar]
  93. Jorgensen WL, Jensen KP, Alexandrova AN. 93.  2007. Polarization effects for hydrogen-bonded complexes of substituted phenols with water and chloride ion. J. Chem. Theory Comput. 3:1987–92 [Google Scholar]
  94. Cieplak P, Dupradeau FY, Duan Y, Wang JM. 94.  2009. Polarization effects in molecular mechanical force fields. J. Phys. Condens. Matter 21:333102 [Google Scholar]
  95. Wang W, Skeel RD. 95.  2005. Fast evaluation of polarizable forces. J. Chem. Phys. 123:164107 [Google Scholar]
  96. Shirts MR, Pitera JW, Swope WC, Pande VS. 96.  2003. Extremely precise free energy calculations of amino acid side chain analogs: comparison of common molecular mechanics force fields for proteins. J. Chem. Phys. 119:5740–61 [Google Scholar]
  97. McGuffee SR, Elcock AH. 97.  2010. Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm. PLoS Comput. Biol. 6:e1000694 [Google Scholar]
  98. Hermann RB. 98.  1972. Theory of hydrophobic bonding. II. Correlation of hydrocarbon solubility in water with solvent cavity surface area. J. Phys. Chem. 76:2754–59 [Google Scholar]
  99. Barone V, Cossi M, Tomasi J. 99.  1997. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J. Chem. Phys. 107:3210–21 [Google Scholar]
  100. Verwey EJW. 100.  1945. Theory of the stability of lyophobic colloids. Phillips Res. Rep. 1:33–49 [Google Scholar]
  101. Derjaguin B, Landau L. 101.  1993. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Prog. Surf. Sci. 43:30–59 [Google Scholar]
  102. Gabdoulline RR, Wade RC. 102.  2002. Biomolecular diffusional association. Curr. Opin. Struct. Biol. 12:204–13 [Google Scholar]
  103. Northrup S, Allison S, McCammon A. 103.  1984. Brownian dynamics simulation of diffusion-influenced bimolecular reactions. J. Chem. Phys. 80:1517–24 [Google Scholar]
  104. Madura JD, Briggs JM, Wade RC, Davis ME, Luty BA. 104.  et al. 1995. Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian Dynamics program. Comput. Phys. Commun. 91:57–95 [Google Scholar]
  105. Lu BZ, Wang CX, Chen WZ, Wan SZ, Shi YY. 105.  2000. A stochastic dynamics simulation study associated with hydration force and friction memory effect. J. Phys. Chem. B 104:6877–83 [Google Scholar]
  106. Lu BZ, Chen WZ, Wang CX, Xu XJ. 106.  2002. Protein molecular dynamics with electrostatic force entirely determined by a single Poisson-Boltzmann calculation. Proteins 48:497–504 [Google Scholar]
  107. Luo R, David L, Gilson MK. 107.  2002. Accelerated Poisson-Boltzmann calculations for static and dynamic systems. J. Comput. Chem. 23:1244–53 [Google Scholar]
  108. Lu Q, Luo R. 108.  2003. A Poisson-Boltzmann dynamics method with nonperiodic boundary condition. J. Chem. Phys. 119:11035–47 [Google Scholar]
  109. Prabhu NV, Zhu PJ, Sharp KA. 109.  2004. Implementation and testing of a stable fast implicit solvation in molecular dynamics using the smooth-permittivity finite difference Poisson-Boltzmann method. J. Comput. Chem. 25:2049–64 [Google Scholar]
  110. Xin WD, Juffer AH. 110.  2007. A boundary element formulation of protein electrostatics with explicit ions. J. Comput. Phys. 223:416–35 [Google Scholar]
  111. Lu B, Cheng X, Huang J, McCammon JA. 111.  2006. Order N algorithm for computation of electrostatic interactions in biomolecular systems. Proc. Natl. Acad. Sci. USA 103:19314–19 [Google Scholar]
  112. Lotan I, Head-Gordon T. 112.  2006. An analytical electrostatic model for salt screened interactions between multiple proteins. J. Chem. Theory Comput. 2:541–55Provides the analytical generalization of the Kirkwood PB solution for one molecule to multiple molecules and their mutual polarization. [Google Scholar]
  113. Kirkwood JG. 113.  1934. Theory of solutions of molecules containing widely separated charges with special application to zwitterions. J. Chem. Phys. 2:351–61 [Google Scholar]
  114. Phillies GD. 114.  1974. Effects of intermacromolecular interactions on diffusion 1. Two-component solutions. J. Chem. Phys. 60:976–82 [Google Scholar]
  115. McClurg RB, Zukoski CF. 115.  1998. The electrostatic interaction of rigid, globular proteins with arbitrary charge distributions. J. Colloid Interface Sci. 208:529–42 [Google Scholar]
  116. Sader JE, Lenhoff AM. 116.  1998. Electrical double-layer interaction between heterogeneously charged colloidal particles: a superposition formulation. J. Colloid Interface Sci. 201:233–43 [Google Scholar]
  117. Fenley AT, Gordon JC, Onufriev A. 117.  2008. An analytical approach to computing biomolecular electrostatic potential. I. Derivation and analysis. J. Chem. Phys. 129:075101 [Google Scholar]
  118. Greengard LF, Huang JF. 118.  2002. A new version of the fast multipole method for screened Coulomb interactions in three dimensions. J. Comput. Phys. 180:642–58 [Google Scholar]
  119. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. 119.  2001. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98:10037–41 [Google Scholar]
  120. Nicholls A, Honig B. 120.  1991. A rapid finite-difference algorithm, utilizing successive over-relaxation to solve the Poisson-Boltzmann equation. J. Comput. Chem. 12:435–45 [Google Scholar]
  121. Yu S, Zhou Y, Wei G. 121.  2007. Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces. J. Comput. Phys. 224:729–56 [Google Scholar]
  122. Chen L, Holst MJ, Xu JC. 122.  2007. The finite element approximation of the nonlinear Poisson-Boltzmann equation. SIAM J. Numer. Anal. 45:2298–320 [Google Scholar]
  123. Zauhar RJ, Morgan RS. 123.  1985. A new method for computing the macromolecular electric potential. J. Mol. Biol. 186:815–20 [Google Scholar]
  124. Boschitsch AH, Fenley MO, Zhou HX. 124.  2002. Fast boundary element method for the linear Poisson-Boltzmann equation. J. Phys. Chem. B 106:2741–54 [Google Scholar]
  125. Bordner AJ, Huber GA. 125.  2003. Boundary element solution of the linear Poisson-Boltzmann equation and a multipole method for the rapid calculation of forces on macromolecules in solution. J. Comput. Chem. 24:353–67 [Google Scholar]
  126. Altman MD, Bardhan JP, White JK, Tidor B. 126.  2009. Accurate solution of multi-region continuum biomolecule electrostatic problems using the linearized Poisson-Boltzmann equation with curved boundary elements. J. Comput. Chem. 30:132–53 [Google Scholar]
  127. Bajaj C, Chen SC, Rand A. 127.  2011. An efficient higher-order fast multipole boundary element solution for Poisson-Boltzmann based molecular electrostatics. SIAM J. Sci. Comput. 33:826–48 [Google Scholar]
  128. Yap E-H, Head-Gordon T. 128.  2010. New and efficient Poisson-Boltzmann solver for interaction of multiple proteins. J. Chem. Theory Comput. 6:2214–24 [Google Scholar]
  129. Mackoy T, Harris RC, Johnson J, Mascagni M, Fenley MO. 129.  2013. Numerical optimization of a walk-on-spheres solver for the linear Poisson-Boltzmann equation. Commun. Comput. Phys. 13:195–206 [Google Scholar]
  130. Holst M, Baker N, Wang F. 130.  2001. Adaptive multilevel finite element solution of the Poisson-Boltzmann equation I. Algorithms and examples. J. Comput. Chem. 22:475 [Google Scholar]
  131. Im W, Beglov D, Roux B. 131.  1998. Continuum solvation model: computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation. Comput. Phys. Commun. 111:59–75 [Google Scholar]
  132. Konecny R, Baker NA, McCammon JA. 132.  2012. iAPBS: a programming interface to Adaptive Poisson-Boltzmann Solver (APBS). Comp. Sci. Discov. 5:015005 [Google Scholar]
  133. Holst M. 133.  2001. Adaptive numerical treatment of elliptic systems on manifolds. Adv. Comput. Math. 15:139–91 [Google Scholar]
  134. Boschitsch AH, Fenley MO. 134.  2011. A fast and robust Poisson-Boltzmann solver based on adaptive Cartesian grids. J. Chem. Theory Comput. 7:1524–40 [Google Scholar]
  135. Yap E-H, Head-Gordon T. 135.  2010. New and efficient Poisson-Boltzmann solver for interaction of multiple proteins. J. Chem. Theory Comput. 6:2214–24 [Google Scholar]
  136. Yap E-H, Head-Gordon TL. 136.  2012. Calculating the bimolecular rate of protein-protein association with interacting crowders. J. Chem. Theory Comput. 9:2481–89 [Google Scholar]
  137. Lu BZ, Zhou YC, Holst MJ, McCammon JA. 137.  2008. Recent progress in numerical methods for the Poisson-Boltzmann equation in biophysical applications. Commun. Comput. Phys. 3:973–1009 [Google Scholar]
  138. Hankins D, Moskowitz J. 138.  1970. Water molecule interactions. J. Chem. Phys. 53:4544–54Presents a classic study showing the convergence of the many-body expansion at low order. [Google Scholar]
  139. Stoll H, Preuss H. 139.  1977. On the direct calculation of localized HF orbitals in molecule clusters, layers and solids. Theoret. Chim. Acta 46:11–21 [Google Scholar]
  140. Fedorov DG, Kitaura K. 140.  2009. Theoretical background of the fragment molecular orbital (FMO) method and its implementation in GAMESS. The Fragment Molecular Orbital Method: Practical Applications to Large Molecular Systems DG Fedorov, K Kitaura 5–36 Boca Raton, FL: CRC [Google Scholar]
  141. Wang LP, Chen JH, Van Voorhis T. 141.  2013. Systematic parametrization of polarizable force fields from quantum chemistry data. J. Chem. Theory Comput. 9:452–60 [Google Scholar]
  142. Wang LP. 142.  2013. ForceBalance: systematic force field optimization https://simtk.org/home/forcebalance Provides a nice example of new automated methods for force field development.
  143. Vega C, Abascal JLF. 143.  2011. Simulating water with rigid non-polarizable models: a general perspective. Phys. Chem. Chem. Phys. 13:19663–88 [Google Scholar]
  144. Wang L-P, Head-Gordon T, Ponder JW, Ren P, Chodera JD. 144.  et al. 2013. Systematic improvement of a classical molecular model of water. J. Phys. Chem. B 117:9956–72 [Google Scholar]
  145. Cui J, Liu HB, Jordan KD. 145.  2006. Theoretical characterization of the (H2O)21 cluster: application of an n-body decomposition procedure. J. Phys. Chem. B 110:18872–78 [Google Scholar]
  146. Cobar EA, Horn PR, Bergman RG, Head-Gordon M. 146.  2012. Examination of the hydrogen-bonding networks in small water clusters (n = 2–5, 13, 17) using absolutely localized molecular orbital energy decomposition analysis. Phys. Chem. Chem. Phys. 14:15328–39 [Google Scholar]
  147. Zhang Y, Lin H, Truhlar DG. 147.  2007. Self-consistent polarization of the boundary in the redistributed charge and dipole scheme for combined quantum-mechanical and molecular-mechanical calculations. J. Chem. Theory Comput. 3:1378–98 [Google Scholar]
  148. Boulanger E, Thiel W. 148.  2012. Solvent boundary potentials for hybrid QM/MM computations using classical Drude oscillators: a fully polarizable model. J. Chem. Theory Comput. 8:4527–38 [Google Scholar]
  149. Thompson MA, Schenter GK. 149.  1995. Excited states of the bacteriochlorophyll b dimer of Rhodopseudomonas viridis: a QM/MM study of the photosynthetic reaction center that includes MM polarization. J. Phys. Chem. 99:6374–86 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040412-110040
Loading
/content/journals/10.1146/annurev-physchem-040412-110040
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error