1932

Abstract

I seem to have started off on the wrong foot in life, but I am extremely fortunate that I soon found my footing in the company of physical chemists. I consider myself to be very lucky to be doing something that constantly brings me in contact with bright minds, stimulating conversations, and exciting experiments. My work has allowed me to learn astounding facts about the molecules and atoms that make up our surroundings and ourselves. For this article, I focus on one aspect of my research, understanding the fundamental principles of the simple reaction between a hydrogen atom and a hydrogen molecule. Although my group and others have been studying this seemingly simple reaction for well over 30 years, it continues to provoke questions about the properties of matter.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040412-110115
2013-04-01
2024-04-13
Loading full text...

Full text loading...

/deliver/fulltext/physchem/64/1/annurev-physchem-040412-110115.html?itemId=/content/journals/10.1146/annurev-physchem-040412-110115&mimeType=html&fmt=ahah

Literature Cited

  1. Zare RN. 1.  2008. Richard N. Zare: Molecole e vita. Rome: Di Renzo Ed.
  2. Zare RN. 2.  2012. My life with LIF: a personal account of developing laser-induced fluorescence. Annu. Rev. Anal. Chem. 5:1–14 [Google Scholar]
  3. Fernández-Alonso F, Zare RN. 3.  2002. Scattering resonances in the simplest chemical reaction. Annu. Rev. Phys. Chem. 53:67–99 [Google Scholar]
  4. Aoiz FJ, Bañares L, Herrero VJ. 4.  2005. The H + H2 reactive system: progress in the study of the dynamics of the simplest reaction. Int. Rev. Phys. Chem. 24:119–90 [Google Scholar]
  5. Feldman DL, Lengel RK, Zare RN. 5.  1977. Multiphoton ionization: a method for characterizing molecular beams and beam reaction products. Chem. Phys. Lett. 52:413–17 [Google Scholar]
  6. Marinero EE, Rettner CT, Zare RN. 6.  1982. Quantum-state-specific detection of molecular hydrogen by three-photon ionization. Phys. Rev. Lett. 48:1323–26 [Google Scholar]
  7. Marinero EE, Rettner CT, Zare RN. 7.  1982. Laser-induced photoionization of molecular hydrogen: a technique to measure rovibrational ground state populations. Laser Techniques for Extreme Ultraviolet Spectroscopy TJ McIlrath, RR Freeman 400–1 New York: Am. Inst. Phys. [Google Scholar]
  8. Rettner CT, Marinero EE, Zare RN. 8.  1983. State-to-state reaction dynamics: H + D2 → HD + D. Electronic and Atomic Collisions: Invited Papers of the XIII International Conference on the Physics of Electronic and Atomic Collisions J Eichler, IV Hertel, N Stolterfoht 51–61 Amsterdam: North-Holland
  9. Marinero EE, Rettner CT, Zare RN. 9.  1984. H + D2 reaction dynamics: determination of the product state distributions at a collision energy of 1.3 eV. J. Chem. Phys. 80:4142–56 [Google Scholar]
  10. Blake RS, Rinnen KD, Kliner DAV, Zare RN. 10.  1988. The H + D2 reaction: HD(v = 1, J) and HD(v = 2, J) distributions at a collision energy of 1.3 eV. Chem. Phys. Lett. 153:365–70 [Google Scholar]
  11. Rinnen KD, Kliner DAV, Blake RS, Zare RN. 11.  1988. The H + D2 reaction: ‘prompt’ HD distributions at high collision energies. Chem. Phys. Lett. 153:371–75 [Google Scholar]
  12. Rinnen KD, Kliner DAV, Zare RN. 12.  1989. The H + D2 reaction: quantum-state distributions at collision energies of 1.3 and 0.55 eV. J. Chem. Phys. 91:7514–29 [Google Scholar]
  13. Rinnen KD, Kliner DAV, Zare RN, Huo WM. 13.  1989. Quantitative determination of HD internal state distributions via (2+1) REMPI. Israel J. Chem. 29:369–82 [Google Scholar]
  14. Huo WM, Rinnen KD, Zare RN. 14.  1991. Rotational and vibrational effects in the E1Σ-X1Σ two-photon transitions of H2, HD, and D2. J. Chem. Phys. 95:205–13 [Google Scholar]
  15. Rinnen KD, Buntine MA, Kliner DAV, Zare RN, Huo WM. 15.  1991. Quantitative determination of H2, HD, and D2 internal-state distributions by (2+1) REMPI. J. Chem. Phys. 95:214–25 [Google Scholar]
  16. Pomerantz AE, Ausfelder F, Zare RN, Huo WM. 16.  2004. Line strength factors for the E,F1Σg+(v′ = 0, J′ = J″) − X1Σg+(v″, J″) (2+1) REMPI transitions in molecular hydrogen. Can. J. Chem. 82:723–29 [Google Scholar]
  17. Kliner DAV, Rinnen KD, Zare RN. 17.  1990. The D + H2 reaction: comparison of experiment with quantum-mechanical and quasiclassical calculations. Chem. Phys. Lett. 166:107–11 [Google Scholar]
  18. Kliner DAV, Adelman DE, Zare RN. 18.  1991. The H + para-H2 reaction: influence of dynamical resonances on H2(v′ = 1, j′ = 1 and 3) integral cross sections. J. Chem. Phys. 94:1069–80 [Google Scholar]
  19. Neuhauser D, Judson RS, Kouri DJ, Adelman DE, Shafer NE. 19.  et al. 1992. State-to-state rates for the D + H2 → HD + H reaction: predictions and measurements. Science 257:519–22 [Google Scholar]
  20. Adelman DE, Xu H, Zare RN. 20.  1993. Integral rate constant measurements of the reaction H + D2 → HD(v′ = 1, j′) + D at high collision energies. Chem. Phys. Lett. 203:573–77 [Google Scholar]
  21. Bean BD, Fernández-Alonso F, Zare RN. 21.  2001. Distribution of rovibrational product states for the ‘prompt’ reaction H + D2(v = 0, j = 0–4) → HD(v′ = 1,2, j′) + D near 1.6 eV collision energy. J. Phys. Chem. 105:2228–33 [Google Scholar]
  22. Kliner DAV, Zare RN. 22.  1990. D + H2(v = 1, J = 1): rovibronic state to rovibronic state reaction dynamics. J. Chem. Phys. 92:2107–9 [Google Scholar]
  23. Kliner DAV, Adelman DE, Zare RN. 23.  1991. Comparison of experimental and theoretical integral cross sections for D + H2(v = 1, j = 1) → HD(v′ = 1, j′) + H. J. Chem. Phys. 95:1648–62 [Google Scholar]
  24. Shafer NE, Orr-Ewing AJ, Simpson WR, Xu H, Zare RN. 24.  1993. State-to-state differential cross sections from photoinitiated bulb reactions. Chem. Phys. Lett. 212:155–62 [Google Scholar]
  25. Simpson WR, Orr-Ewing AJ, Zare RN. 25.  1993. State-to-state differential cross sections for the reaction Cl(2P3/2) + CH4(v3 = 1, J = 1) → HCl(v′ = 1, J′) + CH3. Chem. Phys. Lett. 212:163–71 [Google Scholar]
  26. Xu H, Shafer-Ray NE, Merkt F, Hughes DJ, Springer M. 26.  et al. 1995. Measurement of the state-specific differential cross section for the H+D2 → HD(v′ = 4, J′ = 3) + D reaction at a collision energy of 2.2 eV. J. Chem. Phys. 103:5157–60 [Google Scholar]
  27. Fernández-Alonso F, Bean BD, Zare RN. 27.  1999. Measurement of the HD(v′ = 2, J′ = 3) product differential cross section for the H + D2 exchange reaction at 1.55 ± 0.05 eV using the photoloc technique. J. Chem. Phys. 111:1022–34 [Google Scholar]
  28. Fernández-Alonso F, Bean BD, Zare RN. 28.  1999. Differential cross sections for H +D2 → HD(v′ = 1, J′ = 1,5,8) + D at 1.7 eV. J. Chem. Phys. 111:1035–42 [Google Scholar]
  29. Fernández-Alonso F, Bean BD, Zare RN. 29.  1999. Differential cross sections for H +D2 → HD(v′ = 2, J′ = 0,3,5) + D at 1.55 eV. J. Chem. Phys. 111:2490–98 [Google Scholar]
  30. Fernández-Alonso F, Bean BD, Ayers JD, Pomerantz AE, Zare RN. 30.  et al. 2000. Evidence for scattering resonances in the H + D2 reaction. Angew. Chem. 39:2748–52 [Google Scholar]
  31. Fernández-Alonso F, Bean BD, Zare RN. 31.  2001. Forward scattering in the H + D2 → HD + D reaction: comparison between photoloc experiments and theoretical predictions. J. Chem. Phys. 115:4534–45 [Google Scholar]
  32. Bean BD, Ayers JD, Fernández-Alonso F, Zare RN. 32.  2002. State-resolved differential and integral cross sections for the reaction H + D2 → HD(v′ = 3, j′ = 0–7) + D at 1.64 eV collision energy. J. Chem. Phys. 116:6634–39 [Google Scholar]
  33. Althorpe SC, Fernández-Alonso F, Bean BD, Ayers JD, Pomerantz AE. 33.  et al. 2002. Observation and interpretation of a time-delayed mechanism in the hydrogen exchange reaction. Nature 416:67–70 [Google Scholar]
  34. Pomerantz AE, Ausfelder F, Zare RN, Althorpe SC, Aoiz FJ. 34.  et al. 2004. Disagreement between theory and experiment in the simplest chemical reaction: collision energy dependent rotational distributions for H + D2 → HD(v′ = 3, j′) + D. J. Chem. Phys. 120:3244–54 [Google Scholar]
  35. Koszinowski K, Goldberg NT, Pomerantz AE, Zare RN, Juanes-Marcos JC, Althorpe SC. 35.  2005. Collision-energy dependence of the HD(v′ = 1, j′) product rotational distributions for the H + D2 reaction. J. Chem. Phys. 123:054306 [Google Scholar]
  36. Koszinowski K, Goldberg NT, Pomerantz AE, Zare RN. 36.  2006. Construction and calibration of an instrument for three-dimensional ion imaging. J. Chem. Phys. 125:133503 [Google Scholar]
  37. Goldberg NT, Koszinowski K, Pomerantz AE, Zare RN. 37.  2007. Doppler-free ion imaging of hydrogen molecules produced in bimolecular reactions. Chem. Phys. Lett. 433:439–43 [Google Scholar]
  38. Koszinowski K, Goldberg NT, Zhang J, Zare RN, Bouakline F, Althorpe SC. 38.  2007. Differential cross section for the H + D2 → HD(v′ = 1, j′ = 2, 6, 10) + D reaction as a function of collision energy. J. Chem. Phys. 127:124315 [Google Scholar]
  39. Goldberg NT, Zhang J, Miller DJ, Zare RN. 39.  2008. Corroboration of theory for H +D2 → D + HD(v′ = 3, j′ = 0) reactive scattering dynamics. J. Phys. Chem. A 112:9266–68 [Google Scholar]
  40. Bartlett NCM, Jankunas J, Goswami T, Zare RN, Bouakline F, Althorpe SC. 40.  2011. Differential cross sections for H + D2 → HD(v′ = 2, j′ = 0,3,6,9) + D at center-of-mass collision energies of 1.25, 1.61, and 1.97 eV. Phys. Chem. Chem. Phys. 13:8175–79 [Google Scholar]
  41. Koszinowski K, Goldberg NT, Pomerantz AE, Zare RN. 41.  2006. Construction and calibration of an instrument for three-dimensional ion imaging. J. Chem. Phys. 125:133503 [Google Scholar]
  42. Chandler DW, Houston PL. 42.  1987. Two-dimensional imaging of state-selected photodissociation products detected by multiphoton ionization. J. Chem. Phys. 87:1445–47 [Google Scholar]
  43. Kitsopoulos TN, Buntine MA, Baldwin DP, Zare RN, Chandler DW. 43.  1993. Reaction product imaging: the H + D2 reaction. Science 260:1605–10 [Google Scholar]
  44. Harich SA, Dai D, Wang CC, Yang X, Chao SD, Skodje R. 44.  2002. Forward scattering due to slow-down of the intermediate in the H + HD → D + H2 reaction. Nature 419:281–84 [Google Scholar]
  45. Shan X, Connor JNL. 45.  2012. Semiclassical glory analyses in the time domain for the H + D2(vi = 0, ji = 0) → HD(vf = 3, jf = 0) + D reaction. J. Chem. Phys. 136:044315 [Google Scholar]
  46. Goldberg NT, Zhang J, Koszinowski K, Bouakline F, Althorpe SC, Zare RN. 46.  2008. Vibrationally inelastic H + D2 collisions are forward scattered. Proc. Natl. Acad. Sci. USA 105:18194–99 [Google Scholar]
  47. Greaves SJ, Wrede E, Goldberg NT, Zhang J, Miller DJ, Zare RN. 47.  2008. Vibrational excitation through tug-of-war inelastic collisions. Nature 454:88–91 [Google Scholar]
  48. Kliner DAV, Rinnen KD, Zare RN. 48.  1989. Effect of indistinguishable nuclei on product rotational distributions: the H + HI → H2 + I reaction. J. Chem. Phys. 90:4625–27 [Google Scholar]
  49. Rinnen KD, Kliner DAV, Buntine MA, Zare RN. 49.  1990. Effect of indistinguishable nuclei on product rotational distributions: D + DI → D2 + I. Chem. Phys. Lett. 169:365–71 [Google Scholar]
  50. Buntine MA, Baldwin DP, Zare RN, Chandler DW. 50.  1991. Application of ion imaging to the atom-molecule exchange reaction: H + HI → H2 + I. J. Chem. Phys. 94:4672–75 [Google Scholar]
  51. Kliner DAV, Rinnen KD, Buntine MA, Adelman DE, Zare RN. 51.  1991. Product internal-state distribution for the reaction H + HI → H2 + I. J. Chem. Phys. 95:1663–70 [Google Scholar]
  52. Kitsopoulos TN, Baldwin DP, Chandler DW, Heck AJR, McKay RI. 52.  et al. 1996. Reaction product imaging: the H + HI reaction. Proceedings of Gas Phase Chemical Reaction Systems: Experiments and Models 100 Years After Max Bodenstein J Wolfrum, HR Volpp, T Rannacher, J Warnatz 42–66 Chem. Phys. Ser. 61 Berlin: Springer-Verlag
  53. Pomerantz AE, Camden JP, Chiou AS, Ausfelder F, Chawla N. 53.  et al. 2005. Reaction products with internal energy beyond the kinematic limit result from trajectories far from the minimum energy path: an example from H + HBr → H2 + Br. J. Am. Chem. Soc. 127:16368–69 [Google Scholar]
  54. Zhang J, Jankunas J, Bartlett NCM, Goldberg NT, Zare RN. 54.  2010. Search for Br* production in the D + DBr reaction. J. Chem. Phys. 132:084301 [Google Scholar]
  55. Jankunas J, Zare RN, Bouakline F, Althorpe SC, Herráez-Aguilar D, Aoiz FJ. 55.  2012. Seemingly anomalous angular distributions in H + D2 reactive scattering. Science 336:1687–90 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040412-110115
Loading
/content/journals/10.1146/annurev-physchem-040412-110115
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error