1932

Abstract

Field confinement at the junction between a biased scanning probe microscope's tip and solid surface enables local probing of various bias-induced transformations, such as polarization switching, ionic motion, and electrochemical reactions. The nanoscale size of the biased region, smaller or comparable to that of features such as grain boundaries and dislocations, potentially allows for the study of kinetics and thermodynamics at the level of a single defect. In contrast to classical statistically averaged approaches, this approach allows one to link structure to functionality and deterministically decipher associated mesoscopic and atomistic mechanisms. Furthermore, responses measured as a function of frequency and bias can serve as a fingerprint of local material functionality, allowing for local recognition imaging of inorganic and biological systems. This article reviews current progress in multidimensional scanning probe microscopy techniques based on band excitation time and voltage spectroscopies, including discussions on data acquisition, dimensionality reduction, and visualization, along with future challenges and opportunities for the field.

Keyword(s): D-PFMESMSPM
Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040513-103609
2014-04-01
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/physchem/65/1/annurev-physchem-040513-103609.html?itemId=/content/journals/10.1146/annurev-physchem-040513-103609&mimeType=html&fmt=ahah

Literature Cited

  1. Waser R. 1.  2012. Nanoelectronics and Information Technology Weinheim, Ger.: Wiley-VCH [Google Scholar]
  2. Bagotsky VS. 2.  2009. Fuel Cells: Problems and Solutions New York: Wiley [Google Scholar]
  3. Tarascon JM, Armand M. 3.  2001. Issues and challenges facing rechargeable lithium batteries. Nature 414:359–67 [Google Scholar]
  4. Kraytsberg A, Ein-Eli Y. 4.  2011. Review on Li-air batteries: opportunities, limitations and perspective. J. Power Sources 196:886–93 [Google Scholar]
  5. Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W. 5.  2010. Lithium-air battery: promise and challenges. J. Phys. Chem. Lett. 1:2193–203 [Google Scholar]
  6. Ormerod RM. 6.  2003. Solid oxide fuel cells. Chem. Soc. Rev. 32:17–28 [Google Scholar]
  7. Tagantsev AK, Cross LE, Fousek J. 7.  2010. Domains in Ferroic Crystals and Thin Films New York: Springer [Google Scholar]
  8. Binder K, Young AP. 8.  1986. Spin glasses: experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58:801–976 [Google Scholar]
  9. Binder K, Reger JD. 9.  1992. Theory of orientational glasses: models, concepts, simulations. Adv. Phys. 41:547–627 [Google Scholar]
  10. Pennycook SJ, Varela M, Lupini AR, Oxley MP, Chisholm MF. 10.  2009. Atomic-resolution spectroscopic imaging: past, present and future. J. Electron Microsc. 58:87–97 [Google Scholar]
  11. Rief M, Pascual J, Saraste M, Gaub HE. 11.  1999. Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J. Mol. Biol. 286:553–61 [Google Scholar]
  12. Morozovska AN, Svechnikov SV, Eliseev EA, Rodriguez BJ, Jesse S, Kalinin SV. 12.  2008. Local polarization switching in the presence of surface-charged defects: microscopic mechanisms and piezoresponse force spectroscopy observations. Phys. Rev. B 78:054101 [Google Scholar]
  13. Kalinin SV, Jesse S, Rodriguez BJ, Chu YH, Ramesh R. 13.  et al. 2008. Probing the role of single defects on the thermodynamics of electric-field induced phase transitions. Phys. Rev. Lett. 100:155703 [Google Scholar]
  14. Rodriguez BJ, Choudhury S, Chu YH, Bhattacharyya A, Jesse S. 14.  et al. 2009. Unraveling deterministic mesoscopic polarization switching mechanisms: spatially resolved studies of a tilt grain boundary in bismuth ferrite. Adv. Funct. Mater. 19:2053–63 [Google Scholar]
  15. Kalinin SV, Shao R, Bonnell DA. 15.  2005. Local phenomena in oxides by advanced scanning probe microscopy. J. Am. Ceram. Soc. 88:1077–98 [Google Scholar]
  16. Gerber C, Lang HP. 16.  2006. How the doors to the nanoworld were opened. Nat. Nanotechnol. 1:3–5 [Google Scholar]
  17. Sadewasser S, Glatzel T. 17.  2011. Kelvin Probe Force Microscopy: Measuring and Compensating Electrostatic Forces New York: Springer [Google Scholar]
  18. Kalinin SV, Rodriguez BJ, Jesse S, Maksymovych P, Seal K. 18.  et al. 2008. Local bias-induced phase transitions. Mater. Today 11:16–27 [Google Scholar]
  19. Kalinin SV, Rodriguez BJ, Jesse S, Chu YH, Zhao T. 19.  et al. 2007. Intrinsic single-domain switching in ferroelectric materials on a nearly ideal surface. Proc. Natl. Acad. Sci. USA 104:20204–9 [Google Scholar]
  20. Jesse S, Lee HN, Kalinin SV. 20.  2006. Quantitative mapping of switching behavior in piezoresponse force microscopy. Rev. Sci. Instrum. 77:073702 [Google Scholar]
  21. Balke N, Jesse S, Morozovska AN, Eliseev E, Chung DW. 21.  et al. 2010. Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nat. Nanotechnol. 5:749–54 [Google Scholar]
  22. Jesse S, Nikiforov MP, Germinario LT, Kalinin SV. 22.  2008. Local thermomechanical characterization of phase transitions using band excitation atomic force acoustic microscopy with heated probe. Appl. Phys. Lett. 93:073104 [Google Scholar]
  23. Oliver WC, Pharr GM. 23.  1992. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7:1564–83 [Google Scholar]
  24. Kalinin SV, Karapetian E, Kachanov M. 24.  2004. Nanoelectromechanics of piezoresponse force microscopy. Phys. Rev. B 70:184101 [Google Scholar]
  25. Karapetian E, Kachanov M, Kalinin SV. 25.  2005. Nanoelectromechanics of piezoelectric indentation and applications to scanning probe microscopies of ferroelectric materials. Philos. Mag. 85:1017–51 [Google Scholar]
  26. Butt HJ, Cappella B, Kappl M. 26.  2005. Force measurements with the atomic force microscope: technique, interpretation and applications. Surf. Sci. Rep. 59:1–152 [Google Scholar]
  27. Jesse S, Guo S, Kumar A, Rodriguez BJ, Proksch R, Kalinin SV. 27.  2010. Resolution theory, and static and frequency-dependent cross-talk in piezoresponse force microscopy. Nanotechnology 21:405703 [Google Scholar]
  28. Soergel E. 28.  2011. Piezoresponse force microscopy (PFM). J. Phys. D 44:464003 [Google Scholar]
  29. Jesse S, Kalinin SV, Proksch R, Baddorf AP, Rodriguez BJ. 29.  2007. The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale. Nanotechnology 18:435503 [Google Scholar]
  30. Jesse S, Kalinin SV. 30.  2011. Band excitation in scanning probe microscopy: sines of change. J. Phys. D 44:464006 [Google Scholar]
  31. Kos AB, Hurley DC. 31.  2008. Nanomechanical mapping with resonance tracking scanned probe microscope. Meas. Sci. Technol. 19:015504 [Google Scholar]
  32. Nath R, Chu YH, Polomoff NA, Ramesh R, Huey BD. 32.  2008. High speed piezoresponse force microscopy: <1 frame per second nanoscale imaging. Appl. Phys. Lett. 93:072905 [Google Scholar]
  33. Kalinin SV, Jesse S, Proksch R. 33.  2008. Information acquisition & processing in scanning probe microscopy. R&D Mag. 50:420 [Google Scholar]
  34. Kalinin SV, Rodriguez BJ, Jesse S, Proksch R. 34.  2007. A biased view of the nanoworld: electromechanical imaging. R&D Mag. 49:34–36 [Google Scholar]
  35. Garcia R, Perez R. 35.  2002. Dynamic atomic force microscopy methods. Surf. Sci. Rep. 47:197–301 [Google Scholar]
  36. Mayergoyz ID, Friedman G. 36.  1988. Generalized Preisach model of hysteresis. IEEE Trans. Magn. 24:212–17 [Google Scholar]
  37. Jesse S, Mirman B, Kalinin SV. 37.  2006. Resonance enhancement in piezoresponse force microscopy: mapping electromechanical activity, contact stiffness, and Q factor. Appl. Phys. Lett. 89:022906 [Google Scholar]
  38. Jesse S, Kalinin SV. 38.  2009. Principal component and spatial correlation analysis of spectroscopic-imaging data in scanning probe microscopy. Nanotechnology 20:085714 [Google Scholar]
  39. Nikiforov MP, Reukov VV, Thompson GL, Vertegel AA, Guo S. 39.  et al. 2009. Functional recognition imaging using artificial neural networks: applications to rapid cellular identification via broadband electromechanical response. Nanotechnology 20:405708 [Google Scholar]
  40. Nikiforov MP, Thompson GL, Reukov VV, Jesse S, Guo S. 40.  et al. 2010. Double-layer mediated electromechanical response of amyloid fibrils in liquid environment. ACS Nano 4:689–98 [Google Scholar]
  41. Jesse S, Baddorf AP, Kalinin SV. 41.  2006. Switching spectroscopy piezoresponse force microscopy of ferroelectric materials. Appl. Phys. Lett. 88:062908 [Google Scholar]
  42. Rodriguez BJ, Jesse S, Alexe M, Kalinin SV. 42.  2008. Spatially resolved mapping of polarization switching behavior in nanoscale ferroelectrics. Adv. Mater. 20:109–14 [Google Scholar]
  43. Jesse S, Rodriguez BJ, Choudhury S, Baddorf AP, Vrejoiu I. 43.  et al. 2008. Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials. Nat. Mater. 7:209–15 [Google Scholar]
  44. Tan Z, Roytburd AL, Levin I, Seal K, Rodriguez BJ. 44.  et al. 2008. Piezoelectric response of nanoscale PbTiO3 in composite PbTiO3–CoFe2O4 epitaxial films. Appl. Phys. Lett. 93:074101 [Google Scholar]
  45. Bintachitt P, Trolier-McKinstry S, Seal K, Jesse S, Kalinin SV. 45.  2009. Switching spectroscopy piezoresponse force microscopy of polycrystalline capacitor structures. Appl. Phys. Lett. 94:042906 [Google Scholar]
  46. Seal K, Jesse S, Nikiforov MP, Kalinin SV, Fujii I. 46.  et al. 2009. Spatially resolved spectroscopic mapping of polarization reversal in polycrystalline ferroelectric films: crossing the resolution barrier. Phys. Rev. Lett. 103:057601 [Google Scholar]
  47. Wicks S, Seal K, Jesse S, Anbusathaiah V, Leach S. 47.  et al. 2010. Collective dynamics in nanostructured polycrystalline ferroelectric thin films using local time-resolved measurements and switching spectroscopy. Acta Mater. 58:67–75 [Google Scholar]
  48. Rodriguez BJ, Jesse S, Bokov AA, Ye ZG, Kalinin SV. 48.  2009. Mapping bias-induced phase stability and random fields in relaxor ferroelectrics. Appl. Phys. Lett. 95:092904 [Google Scholar]
  49. Rodriguez BJ, Jesse S, Morozovska AN, Svechnikov SV, Kiselev DA. 49.  et al. 2010. Real space mapping of polarization dynamics and hysteresis loop formation in relaxor-ferroelectric PbMg1/3Nb2/3O3-PbTiO3 solid solutions. J. Appl. Phys. 108:042006 [Google Scholar]
  50. Rodriguez BJ, Jesse S, Kim J, Ducharme S, Kalinin SV. 50.  2008. Local probing of relaxation time distributions in ferroelectric polymer nanomesas: time-resolved piezoresponse force spectroscopy and spectroscopic imaging. Appl. Phys. Lett. 92:232903 [Google Scholar]
  51. Kalinin SV, Rodriguez BJ, Jesse S, Morozovska AN, Bokov AA, Ye ZG. 51.  2009. Spatial distribution of relaxation behavior on the surface of a ferroelectric relaxor in the ergodic phase. Appl. Phys. Lett. 95:142902 [Google Scholar]
  52. Kalinin SV, Rodriguez BJ, Budai JD, Jesse S, Morozovska AN. 52.  et al. 2010. Direct evidence of mesoscopic dynamic heterogeneities at the surfaces of ergodic ferroelectric relaxors. Phys. Rev. B 81:064107 [Google Scholar]
  53. Bintachitt P, Jesse S, Damjanovic D, Han Y, Reaney IM. 53.  et al. 2010. Collective dynamics underpins Rayleigh behavior in disordered polycrystalline ferroelectrics. Proc. Natl. Acad. Sci. USA 107:7219–24 [Google Scholar]
  54. Griggio F, Jesse S, Kumar A, Marincel DM, Tinberg DS. 54.  et al. 2011. Mapping piezoelectric nonlinearity in the Rayleigh regime using band excitation piezoresponse force microscopy. Appl. Phys. Lett. 98:212901 [Google Scholar]
  55. Jesse S, Maksymovych P, Kalinin SV. 55.  2008. Rapid multidimensional data acquisition in scanning probe microscopy applied to local polarization dynamics and voltage dependent contact mechanics. Appl. Phys. Lett. 93:112903 [Google Scholar]
  56. Maksymovych P, Balke N, Jesse S, Huijben M, Ramesh R. 56.  et al. 2009. Defect-induced asymmetry of local hysteresis loops on BiFeO3 surfaces. J. Mater. Sci. 44:5095–101 [Google Scholar]
  57. Balke N, Jesse S, Morozovska AN, Eliseev E, Chung DW. 57.  et al. 2010. Nanometer-scale electrochemical intercalation and diffusion mapping of Li-ion battery materials. Nat. Nanotechnol. 5:749–54 [Google Scholar]
  58. Anbusathaiah V, Jesse S, Arredondo MA, Kartawidjaja FC, Ovchinnikov OS. 58.  et al. 2010. Ferroelastic domain wall dynamics in ferroelectric bilayers. Acta Mater. 58:5316–25 [Google Scholar]
  59. McLachlan MA, McComb DW, Ryan MP, Morozovska AN, Eliseev EA. 59.  et al. 2011. Probing local and global ferroelectric phase stability and polarization switching in ordered macroporous PZT. Adv. Funct. Mater. 21:941–47 [Google Scholar]
  60. Kumar A, Ovchinnikov O, Guo S, Griggio F, Jesse S. 60.  et al. 2011. Spatially resolved mapping of disorder type and distribution in random systems using artificial neural network recognition. Phys. Rev. B 84:024203 [Google Scholar]
  61. Kim Y, Kumar A, Tselev A, Kravchenko II, Han H. 61.  et al. 2011. Non-linear phenomena in multiferroic nanocapacitors: joule heating and electromechanical effects. ACS Nano 22:9104–12 [Google Scholar]
  62. Nikiforov MP, Jesse S, Morozovska AN, Eliseev EA, Germinario LT, Kalinin SV. 62.  2009. Probing the temperature dependence of the mechanical properties of polymers at the nanoscale with band excitation thermal scanning probe microscopy. Nanotechnology 20:395709 [Google Scholar]
  63. Nikiforov MP, Gam S, Jesse S, Composto RJ, Kalinin SV. 63.  2010. Morphology mapping of phase-separated polymer films using nanothermal analysis. Macromolecules 43:6724–30 [Google Scholar]
  64. Nikiforov MP, Hohlbauch S, King WP, Voïtchovsky K, Contera SA. 64.  et al. 2011. Temperature-dependent phase transitions in zeptoliter volumes of a complex biological membrane. Nanotechnology 22:055709 [Google Scholar]
  65. Balke N, Jesse S, Kim Y, Adamczyk L, Tselev A. 65.  et al. 2010. Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution. Nano Lett. 10:3420–25 [Google Scholar]
  66. Guo S, Jesse S, Kalnaus S, Balke N, Daniel C, Kalinin SV. 66.  2011. Direct mapping of ion diffusion times on LiCoO2 surfaces with nanometer resolution. J. Electrochem. Soc. 158:A982–90 [Google Scholar]
  67. Jesse S, Balke N, Eliseev E, Tselev A, Dudney N. 67.  et al. 2011. Direct mapping of ionic transport in a Si anode on the nanoscale: time-domain electrochemical strain spectroscopy. ACS Nano 5:9682–95 [Google Scholar]
  68. Ovchinnikov O, Jesse S, Guo S, Seal K, Bintachitt P. 68.  et al. 2010. Local measurements of Preisach density in polycrystalline ferroelectric capacitors using piezoresponse force spectroscopy. Appl. Phys. Lett. 96:112906 [Google Scholar]
  69. Guo S, Ovchinnikov OS, Curtis ME, Johnson MB, Jesse S, Kalinin SV. 69.  2010. Spatially resolved probing of Preisach density in polycrystalline ferroelectric thin films. J. Appl. Phys. 108:084103 [Google Scholar]
  70. Balke N, Jesse S, Kim Y, Adamczyk L, Ivanov IN. 70.  et al. 2010. Decoupling electrochemical reaction and diffusion processes in ionically-conductive solids on the nanometer scale. ACS Nano 4:7349–57 [Google Scholar]
  71. Vasudevan R, Liu Y, Li J, Liang WI, Kumar A. 71.  et al. 2011. Nanoscale-control of phase variants in strain-engineered BiFeO3. Nano Lett. 11:3346–54 [Google Scholar]
  72. Arruda TM, Kumar A, Kalinin SV, Jesse S. 72.  2011. Mapping irreversible electrochemical processes on the nanoscale: ionic phenomena in Li ion conductive glass ceramics. Nano Lett. 11:4161–67 [Google Scholar]
  73. Kumar A, Ovchinnikov OS, Funakubo H, Jesse S, Kalinin SV. 73.  2011. Real-space mapping of dynamic phenomena during hysteresis loop measurements: dynamic switching spectroscopy piezoresponse force microscopy. Appl. Phys. Lett. 98:202903 [Google Scholar]
  74. Kumar A, Ciucci F, Morozovska AN, Kalinin SV, Jesse S. 74.  2011. Measuring oxygen reduction/evolution reactions on the nanoscale. Nat. Chem. 3:707–13 [Google Scholar]
  75. Yamanaka K, Ogiso H, Kolosov O. 75.  1994. Analysis of subsurface imaging and effect of contact elasticity in the ultrasonic force microscope. Jpn. J. Appl. Phys. 33:3197–203 [Google Scholar]
  76. Rabe U, Arnold W. 76.  1994. Acoustic microscopy by atomic force microscopy. Appl. Phys. Lett. 64:1493–95 [Google Scholar]
  77. Yamanaka K, Nakano S. 77.  1998. Quantitative elasticity evaluation by contact resonance in an atomic force microscope. Appl. Phys. A 66:S313–17 [Google Scholar]
  78. Rabe U, Kester E, Arnold W. 78.  1999. Probing linear and non-linear tip–sample interaction forces by atomic force acoustic microscopy. Surf. Interface Anal. 27:386–91 [Google Scholar]
  79. Rabe U, Amelio S, Kester E, Scherer V, Hirsekorn S, Arnold W. 79.  2000. Quantitative determination of contact stiffness using atomic force acoustic microscopy. Ultrasonics 38:430–37 [Google Scholar]
  80. Yamanaka K, Maruyama Y, Tsuji T, Nakamoto K. 80.  2001. Resonance frequency and Q factor mapping by ultrasonic atomic force microscopy. Appl. Phys. Lett. 78:1939–41 [Google Scholar]
  81. Kobayashi K, Yamada H, Matsushige K. 81.  2002. Resonance tracking ultrasonic atomic force microscopy. Surf. Interface Anal. 33:89–91 [Google Scholar]
  82. Rabe U, Janser K, Arnold W. 82.  1996. Vibrations of free and surface-coupled atomic force microscope cantilevers: theory and experiment. Rev. Sci. Instrum. 67:3281–93 [Google Scholar]
  83. Rabe U. 83.  2006. Atomic force acoustic microscopy. Applied Scanning Probe Methods II B Bhushan, H Fuchs 37–90 New York: Springer [Google Scholar]
  84. Rabe U, Kopycinska M, Hirsekorn S, Saldana JM, Schneider G, Arnold W. 84.  2002. High-resolution characterization of piezoelectric ceramics by ultrasonic scanning force microscopy techniques. J. Phys. D 35:2621–35 [Google Scholar]
  85. Kos A, Hurley D. 85.  2008. Nanomechanical mapping with resonance tracking scanned probe microscope. Meas. Sci. Technol. 19:015504 [Google Scholar]
  86. Hurley D, Kopycinska-Müller M, Kos A, Geiss R. 86.  2005. Nanoscale elastic-property measurements and mapping using atomic force acoustic microscopy methods. Meas. Sci. Technol. 16:2167–72 [Google Scholar]
  87. Stan G, King SW, Cook RF. 87.  2012. Nanoscale mapping of contact stiffness and damping by contact resonance atomic force microscopy. Nanotechnology 23:215703 [Google Scholar]
  88. Killgore J, Yablon D, Tsou A, Gannepalli A, Yuya P. 88.  et al. 2011. Viscoelastic property mapping with contact resonance force microscopy. Langmuir 27:13983–87 [Google Scholar]
  89. Yablon DG, Gannepalli A, Proksch R, Killgore J, Hurley DC. 89.  et al. 2012. Quantitative viscoelastic mapping of polyolefin blends with contact resonance atomic force microscopy. Macromolecules 45:4363–70 [Google Scholar]
  90. van Heek KH. 90.  2000. Progress of coal science in the 20th century. Fuel 79:1–26 [Google Scholar]
  91. Longwell JP, Rubin ES, Wilson J. 91.  1995. Coal: energy for the future. Prog. Energy Combust. Sci. 21:269–360 [Google Scholar]
  92. Speight JG. 92.  2012. The Chemistry and Technology of Coal Boca Raton, FL: CRC, 3rd ed.. [Google Scholar]
  93. Son JY, Lee G, Shin YH. 93.  2009. Surface charge dynamics on ferroelectric PbZr0.48Ti0.52O3 films responding to the switching bias of electric force microscope. Appl. Phys. Lett. 94:162902 [Google Scholar]
  94. Pirc R, Blinc R, Bobnar V. 94.  2001. Dynamics of relaxor ferroelectrics. Phys. Rev. B 63:054203 [Google Scholar]
  95. Balke N, Jesse S, Morozovska A, Eliseev E, Chung D. 95.  et al. 2010. Nanometer-scale electrochemical intercalation and diffusion mapping of Li-ion battery materials. Nat. Nanotechnol. 5:749–54 [Google Scholar]
  96. Kumar A, Ehara Y, Wada A, Funakubo H, Griggio F. 96.  et al. 2012. Dynamic piezoresponse force microscopy: spatially resolved probing of polarization dynamics in time and voltage domains. J. Appl. Phys. 112:052021 [Google Scholar]
  97. Haykin SO. 97.  2008. Neural Networks and Learning Machines Englewood Cliffs, NJ: Prentice Hall, 3rd ed.. [Google Scholar]
/content/journals/10.1146/annurev-physchem-040513-103609
Loading
/content/journals/10.1146/annurev-physchem-040513-103609
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error