1932

Abstract

Multidimensional femtosecond time-resolved vibrational coherence spectroscopy allows one to investigate the evolution of vibrational coherence in electronic excited states. Methods such as pump-degenerate four-wave mixing and pump-impulsive vibrational spectroscopy combine an initial ultrashort laser pulse with a nonlinear probing sequence to reinduce vibrational coherence exclusively in the excited states. By carefully exploiting specific electronic resonances, one can detect vibrational coherence from 0 cm−1 to over 2,000 cm−1 and map its evolution. This review focuses on the observation and mapping of high-frequency vibrational coherence for all- biological polyenes such as β-carotene, lycopene, retinal, and retinal Schiff base. We discuss the role of molecular symmetry in vibrational coherence activity in the S electronic state and the interplay of coupling between electronic states and vibrational coherence.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040513-103619
2014-04-01
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/physchem/65/1/annurev-physchem-040513-103619.html?itemId=/content/journals/10.1146/annurev-physchem-040513-103619&mimeType=html&fmt=ahah

Literature Cited

  1. Britton G, Liaaen-Jensen S, Pfander H. 1.  2008. Carotenoids 4 Natural Functions Basel: Birkhäuser
  2. Demmig-Adams B, Gilmore AM, Adams WW III. 2.  1996. Carotenoids 3: in vivo functions of carotenoids in higher plants. FASEB J. 10:403–12 [Google Scholar]
  3. Hampp N. 3.  2000. Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chem. Rev. 100:1755–76 [Google Scholar]
  4. Siefermannharms D. 4.  1987. The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol. Plant. 69:561–68 [Google Scholar]
  5. Polívka T, Sundström V. 5.  2004. Ultrafast dynamics of carotenoid excited states: from solution to natural and artificial systems. Chem. Rev. 104:2021–71 [Google Scholar]
  6. Hudson B, Kohler B. 6.  1974. Linear polyene electronic structure and spectroscopy. Annu. Rev. Phys. Chem. 25:437–60 [Google Scholar]
  7. Schulten K, Karplus M. 7.  1972. On the origin of a low-lying forbidden transition in polyenes and related molecules. Chem. Phys. Lett. 14:305–9 [Google Scholar]
  8. Cogdell RJ, Andersson PO, Gillbro T. 8.  1992. Carotenoid singlet states and their involvement in photosynthetic light-harvesting pigments. J. Photochem. Photobiol. B 15:105–12 [Google Scholar]
  9. Gillbro T, Andersson PO, Liu RSH, Asato AE, Takaishi S, Cogdell RJ. 9.  1993. Location of the carotenoid 2Ag-state and its role in photosynthesis. Photochem. Photobiol. 57:44–48 [Google Scholar]
  10. Vangrondelle R, Dekker JP, Gillbro T, Sundström V. 10.  1994. Energy transfer and trapping in photosynthesis. Biochim. Biophys. Acta 1187:1–65 [Google Scholar]
  11. Herek JL, Wohlleben W, Cogdell RJ, Zeidler D, Motzkus M. 11.  2002. Quantum control of energy flow in light harvesting. Nature 417:533–35 [Google Scholar]
  12. Cerullo G, Polli D, Lanzani G, De Silvestri S, Hashimoto H, Cogdell RJ. 12.  2002. Photosynthetic light harvesting by carotenoids: detection of an intermediate excited state. Science 298:2395–98 [Google Scholar]
  13. Jahns P, Holzwarth AR. 13.  2012. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim. Biophys. Acta 1817:182–93 [Google Scholar]
  14. Macpherson AN, Gillbro T. 14.  1998. Solvent dependence of the ultrafast S2-S1 internal conversion rate of β-carotene. J. Phys. Chem. A 102:5049–58 [Google Scholar]
  15. Hörvin Billsten H, Zigmantas D, Sundström V, Polívka T. 15.  2002. Dynamics of vibrational relaxation in the S1 state of carotenoids having 11 conjugated C=C bonds. Chem. Phys. Lett. 355:465–70 [Google Scholar]
  16. Polívka T, Kaligotla S, Chabera P, Frank HA. 16.  2011. An intramolecular charge transfer state of carbonyl carotenoids: implications for excited state dynamics of apo-carotenals and retinal. Phys. Chem. Chem. Phys. 13:10787–96 [Google Scholar]
  17. Maksimenka R, Dietzek B, Szeghalmi A, Siebert T, Kiefer W, Schmitt M. 17.  2005. Population dynamics of vibrational modes in stilbene-3 upon photoexcitation to the first excited state. Chem. Phys. Lett. 408:37–43 [Google Scholar]
  18. Siebert T, Schmitt M, Grafe S, Engel V. 18.  2006. Ground state vibrational wave-packet and recovery dynamics studied by time-resolved CARS and pump-CARS spectroscopy. J. Raman Spectrosc. 37:397–403 [Google Scholar]
  19. Siebert T, Schmitt M, Engel V, Materny A, Kiefer W. 19.  2002. Population dynamics in vibrational modes during non-Born-Oppenheimer processes: CARS spectroscopy used as a mode-selective filter. J. Am. Chem. Soc. 124:6242–43 [Google Scholar]
  20. Oberle J, Jonusauskas G, Abraham E, Rulliere C. 20.  1995. Enhancement and subpicosecond dynamics of optical nonlinearities of excited states: trans-stilbene in solution. Chem. Phys. Lett. 241:281–89 [Google Scholar]
  21. Motzkus M, Pedersen S, Zewail AH. 21.  1996. Femtosecond real-time probing of reactions. 19. Nonlinear (DFWM) techniques for probing transition states of uni- and bimolecular reactions. J. Phys. Chem. 100:5620–33 [Google Scholar]
  22. Fujiyoshi S, Takeuchi S, Tahara T. 22.  2003. Time-resolved impulsive stimulated Raman scattering from excited-state polyatomic molecules in solution. J. Phys. Chem. A 107:494–500 [Google Scholar]
  23. Hornung T, Skenderovic H, Motzkus M. 23.  2005. Observation of all-trans-β-carotene wavepacket motion on the electronic ground and excited dark state using degenerate four-wave mixing (DFWM) and pump-DFWM. Chem. Phys. Lett. 402:283–88 [Google Scholar]
  24. Hauer J, Buckup T, Motzkus M. 24.  2007. Pump-degenerate four wave mixing as a technique for analyzing structural and electronic evolution: multidimensional time-resolved dynamics near a conical intersection. J. Phys. Chem. A 111:10517–29 [Google Scholar]
  25. Scaria A, Liebers J, Kleinekathofer U, Materny A. 25.  2009. Probing the contributions of hot vibrational states using pump-degenerate four-wave mixing. Chem. Phys. Lett. 470:39–43 [Google Scholar]
  26. Buckup T, Hauer J, Mohring J, Motzkus M. 26.  2009. Multidimensional spectroscopy of β-carotene: vibrational cooling in the excited state. Arch. Biochem. Biophys. 483:219–23 [Google Scholar]
  27. Liebers J, Scaria A, Materny A, Kleinekathofer U. 27.  2010. Probing the vibrational dynamics of high-lying electronic states using pump-degenerate four-wave mixing. Phys. Chem. Chem. Phys. 12:1351–56 [Google Scholar]
  28. Marek MS, Buckup T, Motzkus M. 28.  2011. Direct observation of a dark state in lycopene using pump-DFWM. J. Phys. Chem. B 115:8328–37 [Google Scholar]
  29. Kraack JP, Buckup T, Motzkus M. 29.  2013. Coherent high-frequency vibrational dynamics in the excited electronic state of all-trans retinal derivatives. J. Phys. Chem. Lett. 4:383–87 [Google Scholar]
  30. Banin U, Kosloff R, Ruhman S. 30.  1994. Vibrational relaxation of nascent diiodide ions studied by femtosecond transient resonance impulsive stimulated Raman scattering (TRISRS): experiment and simulation. Chem. Phys. 183:289–307 [Google Scholar]
  31. Takeuchi S, Ruhman S, Tsuneda T, Chiba M, Taketsugu T, Tahara T. 31.  2008. Spectroscopic tracking of structural evolution in ultrafast stilbene photoisomerization. Science 322:1073–77 [Google Scholar]
  32. Morrissey FX, Dexheimer SL. 32.  2012. Vibrational spectroscopy of structurally relaxed self-trapped excitons via excited-state resonant impulsive stimulated Raman spectroscopy. J. Phys. Chem. B 116:10582–89 [Google Scholar]
  33. Horspool WM, Song P-S. 33.  1995. CRC Handbook of Organic Photochemistry and Photobiology Boca Raton, FL: CRC
  34. Bautista JA, Hiller RG, Sharples FP, Gosztola D, Wasielewski M, Frank HA. 34.  1999. Singlet and triplet energy transfer in the peridinin–chlorophyll a–protein from Amphidinium carterae. J. Phys. Chem. A 103:2267–73 [Google Scholar]
  35. Zigmantas D, Hiller RG, Sharples FP, Frank HA, Sundström V, Polívka T. 35.  2004. Effect of a conjugated carbonyl group on the photophysical properties of carotenoids. Phys. Chem. Chem. Phys. 6:3009–16 [Google Scholar]
  36. Stalke S, Wild DA, Lenzer T, Kopczynski M, Lohse PW, Oum K. 36.  2008. Solvent-dependent ultrafast internal conversion dynamics of n′-apo-β-carotenoic-n′-acids (n = 8, 10, 12). Phys. Chem. Chem. Phys. 10:2180–88 [Google Scholar]
  37. Chen Z, Lee C, Lenzer T, Oum K. 37.  2006. Solvent effects on the S0(11Ag) → S2(11Bu+) transition of β-carotene, echinenone, canthaxanthin, and astaxanthin in supercritical CO2 and CF3H. J. Phys. Chem. A 110:11291–97 [Google Scholar]
  38. Kopczynski M, Ehlers F, Lenzer T, Oum K. 38.  2007. Evidence for an intramolecular charge transfer state in 12′-apo-β-caroten-12′-al and 8′-apo-β-caroten-8′-al: influence of solvent polarity and temperature. J. Phys. Chem. A 111:5370–81 [Google Scholar]
  39. Fuss W, Haas Y, Zilberg S. 39.  2000. Twin states and conical intersections in linear polyenes. Chem. Phys. 259:273–95 [Google Scholar]
  40. Negri F, Orlandi G, Zerbetto F, Zgierski MZ. 40.  1989. Theoretical study of the force field of the lowest singlet electronic states of long polyenes. J. Chem. Phys. 91:6215–24 [Google Scholar]
  41. Zerbetto F, Zgierski MZ, Negri F, Orlandi G. 41.  1988. Theoretical study of the force fields of the three lowest singlet electronic states of linear polyenes. J. Chem. Phys. 89:3681–88 [Google Scholar]
  42. Orlandi G, Zerbetto F, Zgierski MZ. 42.  1991. Theoretical analysis of spectra of short polyenes. Chem. Rev. 91:867–91 [Google Scholar]
  43. Mukamel S. 43.  1995. Principles of Nonlinear Optical Spectroscopy New York: Oxford Univ. Press
  44. Bartana A, Banin U, Ruhman S, Kosloff R. 44.  1994. Intensity effects on impulsive excitation of ground surface coherent vibrational motion: a ‘V’ jump simulation. Chem. Phys. Lett. 229:211–17 [Google Scholar]
  45. Wohlleben W, Buckup T, Hashimoto H, Cogdell RJ, Herek JL, Motzkus M. 45.  2004. Pump-deplete-probe spectroscopy and the puzzle of carotenoid dark states. J. Phys. Chem. B 108:3320–25 [Google Scholar]
  46. Buckup T, Savolainen J, Wohlleben W, Herek JL, Hashimoto H. 46.  et al. 2006. Pump-probe and pump-deplete-probe spectroscopies on carotenoids with N = 9–15 conjugated bonds. J. Chem. Phys. 125:194505 [Google Scholar]
  47. Larsen DS, Papagiannakis E, van Stokkum IHM, Vengris M, Kennis JTM, van Grondelle R. 47.  2003. Excited state dynamics of β-carotene explored with dispersed multi-pulse transient absorption. Chem. Phys. Lett. 381:733–42 [Google Scholar]
  48. Papagiannakis E, Vengris M, Larsen DS, van Stokkum IHM, Hiller RG, van Grondelle R. 48.  2006. Use of ultrafast dispersed pump-dump-probe and pump-repump-probe spectroscopies to explore the light-induced dynamics of peridinin in solution. J. Phys. Chem. B 110:512–21 [Google Scholar]
  49. Kraack JP, Motzkus M, Buckup T. 49.  2011. Selective nonlinear response preparation using femtosecond spectrally resolved four-wave-mixing. J. Chem. Phys. 135:224505 [Google Scholar]
  50. Kraack JP, Wand A, Buckup T, Motzkus M, Ruhman S. 50.  2013. Mapping multidimensional excited state dynamics using pump-impulsive-vibrational-spectroscopy and pump-degenerate-four-wave-mixing. Phys. Chem. Chem. Phys. 15:14487–501 [Google Scholar]
  51. Jurna M, Korterik JP, Otto C, Offerhaus HL. 51.  2007. Shot noise limited heterodyne detection of CARS signals. Opt. Express 15:15207–13 [Google Scholar]
  52. Ohta K, Larsen DS, Yang M, Fleming GR. 52.  2001. Influence of intramolecular vibrations in third-order, time-domain resonant spectroscopies. II. Numerical calculations. J. Chem. Phys. 114:8020–39 [Google Scholar]
  53. Kukura P, McCamant DW, Mathies RA. 53.  2007. Femtosecond stimulated Raman spectroscopy. Annu. Rev. Phys. Chem. 58:461–88 [Google Scholar]
  54. Mukamel S, Biggs JD. 54.  2011. Communication: comment on the effective temporal and spectral resolution of impulsive stimulated Raman signals. J. Chem. Phys. 134:161101 [Google Scholar]
  55. Hauer J, Buckup T, Motzkus M. 55.  2006. Enhancement of molecular modes by electronically resonant multipulse excitation: further progress towards mode selective chemistry. J. Chem. Phys. 125:061101 [Google Scholar]
  56. Tavan P, Schulten K. 56.  1987. Electronic excitations in finite and infinite polyenes. Phys. Rev. B 36:4337–58 [Google Scholar]
  57. Zhang Q, Kandel SA, Wasserman TAW, Vaccaro PH. 57.  1992. Detection of stimulated-emission pumping via degenerate four-wave mixing. J. Chem. Phys. 96:1640–43 [Google Scholar]
  58. Ruhman S, Hou BX, Friedman N, Ottolenghi M, Sheves M. 58.  2002. Following evolution of bacteriorhodopsin in its reactive excited state via stimulated emission pumping. J. Am. Chem. Soc. 124:8854–58 [Google Scholar]
  59. Bismuth O, Komm P, Friedman N, Eliash T, Sheves M, Ruhman S. 59.  2010. Deciphering excited state evolution in halorhodopsin with stimulated emission pumping. J. Phys. Chem. B 114:3046–51 [Google Scholar]
  60. Joo T, Albrecht AC. 60.  1993. Electronic dephasing studies of molecules in solution at room temperature by femtosecond degenerate four wave mixing. Chem. Phys. 176:233–47 [Google Scholar]
  61. Joo T, Albrecht AC. 61.  1993. Vibrational frequencies and dephasing times in excited electronic states by femtosecond time-resolved four-wave mixing. Chem. Phys. 173:17–26 [Google Scholar]
  62. Sashima T, Koyama Y, Yamada T, Hashimoto H. 62.  2000. The 1Bu+, 1Bu, and 2Ag energies of crystalline lycopene, β-carotene, and mini-9-β-carotene as determined by resonance-Raman excitation profiles: dependence of the 1Bu state energy on the conjugation length. J. Phys. Chem. B 104:5011–19 [Google Scholar]
  63. Nagae H, Kuki M, Zhang JP, Sashima T, Mukai Y, Koyama Y. 63.  2000. Vibronic coupling through the in-phase, C=C stretching mode plays a major role in the 2Ag to 1Ag internal conversion of all-trans-β-carotene. J. Phys. Chem. A 104:4155–66 [Google Scholar]
  64. Christensen RL, Goyette M, Gallagher L, Duncan J, DeCoster B. 64.  et al. 1999. S1 and S2 states of apo- and diapocarotenes. J. Phys. Chem. A 103:2399–407 [Google Scholar]
  65. McCamant DW, Kukura P, Mathies RA. 65.  2003. Femtosecond time-resolved stimulated Raman spectroscopy: application to the ultrafast internal conversion in β-carotene. J. Phys. Chem. A 107:8208–14 [Google Scholar]
  66. Yoshizawa M, Aoki H, Hashimoto H. 66.  2001. Vibrational relaxation of the 2Ag excited state in all-trans-β-carotene obtained by femtosecond time-resolved Raman spectroscopy. Phys. Rev. B 63:180301 [Google Scholar]
  67. Kraack JP, Buckup T, Hampp N, Motzkus M. 67.  2011. Ground- and excited-state vibrational coherence dynamics in bacteriorhodopsin probed with degenerate four-wave-mixing experiments. ChemPhysChem 12:1851–59 [Google Scholar]
  68. Kahan A, Nahmias O, Friedman N, Sheves M, Ruhman S. 68.  2007. Following photoinduced dynamics in bacteriorhodopsin with 7-fs impulsive vibrational spectroscopy. J. Am. Chem. Soc. 129:537–46 [Google Scholar]
  69. Kobayashi T, Saito T, Ohtani H. 69.  2001. Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization. Nature 414:531–34 [Google Scholar]
  70. Groma GI, Colonna A, Martin JL, Vos MH. 70.  2011. Vibrational motions associated with primary processes in bacteriorhodopsin studied by coherent infrared emission spectroscopy. Biophys. J. 100:1578–86 [Google Scholar]
  71. Callender RH, Doukas A, Crouch R, Nakanishi K. 71.  1976. Molecular flow resonance Raman effect from retinal and rhodopsin. Biochemistry 15:1621–29 [Google Scholar]
  72. Birge RR, Bennett JA, Hubbard LM, Fang HL, Pierce BM. 72.  et al. 1982. Two-photon spectroscopy of all-trans-retinal: nature of the low-lying singlet states. J. Am. Chem. Soc. 104:2519–25 [Google Scholar]
  73. Fujii R, Ishikawa T, Koyama Y, Taguchi M, Isobe Y. 73.  et al. 2001. Fluorescence spectroscopy of all-trans-anhydrorhodovibrin and spirilloxanthin: detection of the 1Bu fluorescence. J. Phys. Chem. A 105:5348–55 [Google Scholar]
  74. Gambetta A, Manzoni C, Menna E, Meneghetti M, Cerullo G. 74.  et al. 2006. Real-time observation of nonlinear coherent phonon dynamics in single-walled carbon nanotubes. Nat. Phys. 2:515–20 [Google Scholar]
  75. Lanzani G, Cerullo G, Brabec C, Sariciftci NS. 75.  2003. Time domain investigation of the intrachain vibrational dynamics of a prototypical light-emitting conjugated polymer. Phys. Rev. Lett. 90:047402 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040513-103619
Loading
/content/journals/10.1146/annurev-physchem-040513-103619
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error