1932

Abstract

DNA photolyases are light-activated enzymes that repair DNA damage induced by ultraviolet (UV) radiation. UV radiation causes two of the most abundant mutagenic and cytotoxic DNA lesions: cyclobutane pyrimidine dimers and 6-4 photolesions. Photolyases selectively bind to DNA and initiate the splitting of mutagenic pyrimidine dimers via photoinduced electron transfer from a flavin adenine dinucleotide anion (FADH) to the lesion triggering its repair. This review discusses the consecutive steps of the repair process, from both experimental and theoretical points of view. It covers the following issues: the process of how photolyases accommodate the lesion into their binding pockets, excitation energy transfer between two involved catalytic cofactors, photoinduced electron transfer to the lesion, the splitting of the pyrimidine dimer radical anion, and the fate of the unstable radical species created after the splitting of the thymine dimer. In particular, mechanisms of the splitting and restoration of the original bases are described in detail, and the most probable repair pathways are outlined.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040513-103626
2014-04-01
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/physchem/65/1/annurev-physchem-040513-103626.html?itemId=/content/journals/10.1146/annurev-physchem-040513-103626&mimeType=html&fmt=ahah

Literature Cited

  1. Sinha RP, Hader D-P. 1.  2002. UV-induced DNA damage and repair: a review. Photochem. Photobiol. Sci. 1:225–36 [Google Scholar]
  2. Essen LO, Klar T. 2.  2006. Light-driven DNA repair by photolyases. Cell. Mol. Life Sci. 63:1266–77 [Google Scholar]
  3. Weber S. 3.  2005. Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase. Biochim. Biophys. Acta 1707:1–23 [Google Scholar]
  4. Kamiya H, Iwai S, Kasai H. 4.  1998. The (6-4) photoproduct of thymine-thymine induces targeted substitution mutations in mammalian cells. Nucleic Acids Res. 26:2611–17 [Google Scholar]
  5. Carrier WL, Snyder RD, Regan JD. 5.  1982. The Science of Photomedicine New York: Plenum [Google Scholar]
  6. Taylor J-S. 6.  1995. DNA, sunlight and skin cancer. Pure Appl. Chem. 67:183–90 [Google Scholar]
  7. Matsumura Y, Ananthaswamy H. 7.  2002. Molecular mechanisms of photocarcinogenesis. Front. Biosci. 7:D765–83 [Google Scholar]
  8. Sanders DB, Wiest O. 8.  2010. A model for the enzyme-substrate complex of DNA photolyase and photodamaged DNA. J. Am. Chem. Soc. 121:5127–34 [Google Scholar]
  9. Büchi G, Inman CG, Lipinsky ES. 9.  1954. Light-catalyzed organic reactions. I. The reaction of carbonyl compounds with 2-methyl-2-butene in the presence of ultraviolet light. J. Am. Chem. Soc. 76:4327–31 [Google Scholar]
  10. Baccarelli I, Bald I, Gianturco FA, Illenberger E, Kopyra J. 10.  2011. Electron-induced damage of DNA and its components: experiments and theoretical models. Phys. Rep. 508:1–44 [Google Scholar]
  11. Glas AF, Schneider S, Maul MJ, Hennecke U, Carell T. 11.  2009. Crystal structure of the T(6-4)C lesion in complex with a (6-4) DNA photolyase and repair of UV-induced (6-4) and Dewar photolesions. Eur. J. Chem. 15:10387–96 [Google Scholar]
  12. Wang Y, Gaspar PP, Taylor JS. 12.  2000. Quantum chemical study of the electron-transfer-catalyzed splitting of oxetane and azetidine intermediates proposed in the photoenzymatic repair of (6-4) photoproducts of DNA. J. Am. Chem. Soc. 122:5510–19 [Google Scholar]
  13. Faraji S, Wirz L, Dreuw A. 13.  2013. Quantum chemical study of the enzymatic repair of T(6-4)C/C(6-4)T UV photolesions by DNA photolyases. Chem. Phys. Chem. 14:2817–24 [Google Scholar]
  14. May NL, Egly J, Coin F. 14.  2010. True lies: the double life of the nucleotide excision repair factors in transcription and DNA repair. J. Nucleic Acids 2010:616342 [Google Scholar]
  15. Reardon JT, Sancar A. 15.  2003. Recognition and repair of the cyclobutane thymine dimer, a major cause of skin cancers, by the human excision nuclease. Genes Dev. 17:2539–51 [Google Scholar]
  16. Liu Y, Prasad R, Beard WA, Kedar PS, Hou EW. 16.  et al. 2007. Coordination of steps in single-nucleotide base excision repair mediated by apurinic/apyrimidinic endonuclease 1 and DNA polymerase. J. Biol. Chem. 282:13532–41 [Google Scholar]
  17. Selby CP, Sancar A. 17.  2006. A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity. Proc. Natl. Acad. Sci. USA 103:17696–700 [Google Scholar]
  18. Sancar A. 18.  2003. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem. Rev. 103:2203–37 [Google Scholar]
  19. Zhao X, Liu J, Hsu DS, Zhao S, Taylor JS, Sancar A. 19.  1997. Reaction mechanism of (6-4) photolyase. J. Biol. Chem. 272:32580–90 [Google Scholar]
  20. Okamura T, Sancar A, Heelis P, Begley T, Hirata Y, Mataga N. 20.  1991. Picosecond laser photolysis studies on the photorepair of pyrimidine dimers by DNA photolyase. 1. Laser photolysis of photolyase-2-deoxyuridine dinucleotide photodimer complex. J. Am. Chem. Soc. 113:3143–45 [Google Scholar]
  21. Todo T, Takemori H, Ryo H, Ihara M, Matsunaga T. 21.  et al. 1993. A new photoreactivating enzyme that specifically repairs ultraviolet light-induced (6-4) photoproducts. Nature 361:371–74 [Google Scholar]
  22. Rupert CS, Goodgal SH, Herriott RM. 22.  1958. Photoreactivation in vitro of ultraviolet-inactivated Hemophilus influenzae transforming factor. J. Gen. Physiol. 41:451–71 [Google Scholar]
  23. Sancar A. 23.  2008. Structure and function of photolyase and in vivo enzymology: 50th anniversary. J. Biol. Chem. 283:32153–57 [Google Scholar]
  24. Hahn J, Michel-Beyerle ME, Rösch N. 24.  1998. Conformation of the flavin adenine dinucleotide cofactor FAD in DNA-photolyase: a molecular dynamics study. Mol. Model. Annu. 4:73–82 [Google Scholar]
  25. Kao Y-T, Saxena C, He T-F, Guo L, Wang L. 25.  et al. 2008. Ultrafast dynamics of flavins in five redox states. J. Am. Chem. Soc. 130:13132–39 [Google Scholar]
  26. Malhotra K, Kim ST, Walsh C, Sancar A. 26.  1992. Roles of FAD and 8-hydroxy-5-deazaflavin chromophores in photoreactivation by Anacystis nidulans DNA photolyase. J. Biol. Chem. 267:15406–11 [Google Scholar]
  27. Kao Y-T, Tan C, Song S-H, Oztrk N, Li J. 27.  et al. 2008. Ultrafast dynamics and anionic active states of the flavin cofactor in cryptochrome and photolyase. J. Am. Chem. Soc. 130:7695–701 [Google Scholar]
  28. Cederbaum LS, Zobeley J, Tarantelli F. 28.  1997. Giant intermolecular decay and fragmentation of clusters. Phys. Rev. Lett. 79:4778–81 [Google Scholar]
  29. Santra R, Cederbaum L. 29.  2002. Non-Hermitian electronic theory and applications to clusters. Phys. Rep. 368:1–117 [Google Scholar]
  30. Förster T. 30.  1948. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys. 437:55–75 [Google Scholar]
  31. Li J, Liu Z, Tan C, Guo X, Wang L. 31.  et al. 2010. Dynamics and mechanism of repair of ultraviolet-induced (6-4) photoproduct by photolyase. Nature 466:887–90 [Google Scholar]
  32. Kim ST, Heelis PF, Sancar A. 32.  1992. Energy transfer (deazaflavin-FADH2) and electron transfer (FADH2-TT) kinetics in Anacystis nidulans photolyase. Biochemistry 31:11244–48 [Google Scholar]
  33. Carell T, Burgdorf LT, Kundu LM, Cichon M. 33.  2001. The mechanism of action of DNA photolyases. Curr. Opin. Chem. Biol. 5:491–98 [Google Scholar]
  34. Maul MJ, Barends TRM, Glas AF, Cryle MJ, Domratcheva T. 34.  et al. 2008. Crystal structure and mechanism of a DNA (6-4) photolyase. Angew. Chem. Int. Ed. Engl. 47:10076–80 [Google Scholar]
  35. Liu Z, Tan C, Guo X, Kao Y-T, Li J. 35.  et al. 2011. Dynamics and mechanism of cyclobutane pyrimidine dimer repair by DNA photolyase. Proc. Natl. Acad. Sci. USA 108:14831–36 [Google Scholar]
  36. Liu Z, Guo X, Tan C, Li J, Kao Y-T. 36.  et al. 2012. Electron tunneling pathways and role of adenine in repair of cyclobutane pyrimidine dimer by DNA photolyase. J. Am. Chem. Soc. 134:8104–14 [Google Scholar]
  37. Chang C-W, Guo L, Kao Y-T, Li J, Tan C. 37.  et al. 2010. Ultrafast solvation dynamics at binding and active sites of photolyases. Proc. Natl. Acad. Sci. USA 107:2914–19 [Google Scholar]
  38. Kim ST, Heelis PF, Okamura T, Hirata Y, Mataga N, Sancar A. 38.  1991. Determination of rates and yields of interchromophore (folate → flavin) energy transfer and intermolecular (flavin → DNA) electron transfer in Escherichia coli photolyase by time-resolved fluorescence and absorption spectroscopy. Biochemistry 30:11262–70 [Google Scholar]
  39. Yamamoto J, Martin R, Iwai S, Plaza P, Brettel K. 39.  2013. Repair of the (6-4) photoproduct by DNA photolyase requires two photons. Angew. Chem. Int. Ed. Engl. 52:7432–36 [Google Scholar]
  40. Harbach PHP, Borowka J, Bohnwagner M-V, Dreuw A. 40.  2010. DNA (6-4) photolesion repair occurs in the electronic ground state of the TT dinucleotide dimer radical anion. J. Phys. Chem. Lett. 1:2556–60 [Google Scholar]
  41. Harbach PHP, Schneider M, Faraji S, Dreuw A. 41.  2013. Intermolecular Coulombic decay in biology: the initial electron detachment from FADH in DNA photolyases. J. Phys. Chem. Lett. 4:943–49 [Google Scholar]
  42. Sadeghian K, Bocola M, Merz T, Schütz M. 42.  2010. Theoretical study on the repair mechanism of the (6-4) photolesion by the (6-4) photolyase. J. Am. Chem. Soc. 132:16285–95 [Google Scholar]
  43. Masson F, Laino T, Rothlisberger U, Hutter J. 43.  2009. A QM/MM investigation of thymine dimer radical anion splitting catalyzed by DNA photolyase. J. Chem. Phys. Phys. Chem. 10:400–10 [Google Scholar]
  44. Zheng X, Garcia J, Stuchebrukhov AA. 44.  2008. Theoretical study of excitation energy transfer in DNA photolyase. J. Phys. Chem. B 112:8724–29 [Google Scholar]
  45. Antony J, Medvedev DM, Stuchebrukhov AA. 45.  2000. Theoretical study of electron transfer between the photolyase catalytic cofactor FADH and DNA thymine dimer. J. Am. Chem. Soc. 122:1057–65 [Google Scholar]
  46. Durbeej B, Eriksson LA. 46.  2000. Thermodynamics of the photoenzymic repair mechanism studied by density functional theory. J. Am. Chem. Soc. 122:10126–32 [Google Scholar]
  47. Borg OA, Eriksson LA, Durbeej B. 47.  2007. Electron-transfer induced repair of 6-4 photoproducts in DNA: a computational study. J. Phys. Chem. A 111:2351–61 [Google Scholar]
  48. Harrison CB, O'Neil LL, Wiest O. 48.  2005. Computational studies of DNA photolyase. J. Phys. Chem. A 109:7001–12 [Google Scholar]
  49. Čondić-Jurkić K, Smith A-S, Zipse H, Smith DM. 49.  2012. The protonation states of the active-site histidines in (6-4) photolyase. J. Chem. Theory Comput. 8:1078–91 [Google Scholar]
  50. Hassanali AA, Zhong D, Singer SJ. 50.  2011. An AIMD study of the CPD repair mechanism in water: reaction free energy surface and mechanistic implications. J. Phys. Chem. B 115:3848–59 [Google Scholar]
  51. Domratcheva T. 51.  2011. Neutral histidine and photoinduced electron transfer in DNA photolyases. J. Am. Chem. Soc. 133:18172–82 [Google Scholar]
  52. Yamamoto J, Hitomi K, Hayashi R, Getzoff ED, Iwai S. 52.  2009. Role of the carbonyl group of the (6-4) photoproduct in the (6-4) photolyase reaction. Biochemistry 48:9306–12 [Google Scholar]
  53. Faraji S, Dreuw A. 53.  2012. Proton-transfer-steered mechanisms of photolesion repair by (6-4) photolyases. J. Phys. Chem. Lett. 3:227–30 [Google Scholar]
  54. Masson F, Laino T, Tavernelli I, Rothlisberger U, Hutter J. 54.  2008. Computational study of thymine dimer radical anion splitting in the self-repair process of duplex DNA. J. Am. Chem. Soc. 130:3443–50 [Google Scholar]
  55. Park H, Kim S, Sancar A, Deisenhofer J. 55.  1995. Crystal structure of DNA photolyase from Escherichia coli. Science 268:1866–72 [Google Scholar]
  56. Mees A, Klar T, Gnau P, Hennecke U, Eker APM. 56.  et al. 2004. Crystal structure of a photolyase bound to a CPD-like DNA lesion after in situ repair. Science 306:1789–93 [Google Scholar]
  57. Friederl MG, Cichon MK, Carell T. 57.  2005. Model compounds for (6-4) photolyases: a comparative flavin induced cleavage study of oxetanes and thietanes. Org. Biomol. Chem. 3:1937–41 [Google Scholar]
  58. Hitomi K, Nakamura H, Kim S, Mizukoshi T, Ishikawa T. 58.  et al. 2001. Role of two histidines in the (6-4) photolyase reaction. J. Biol. Chem. 276:10103–9 [Google Scholar]
  59. Schleicher E, Hitomi K, Kay CWM, Getzoff ED, Takeshi T, Weber S. 59.  2007. Electron nuclear double resonance differentiates complementary roles for active site histidines in (6-4) photolyase. J. Biol. Chem. 16:4738–47 [Google Scholar]
  60. Liu Z, Tan C, Guo X, Kao Y-T, Li J. 60.  et al. 2011. Dynamics and mechanism of cyclobutane pyrimidine dimer repair by DNA photolyase. Proc. Natl. Acad. Sci. USA 108:14831–36 [Google Scholar]
  61. Kao Y-T, Song Q-H, Saxena C, Wang L, Zhong D. 61.  2012. Dynamics and mechanism of DNA repair in a biomimetic system: flavin-thymine dimer adduct. J. Am. Chem. Soc. 134:1501–3 [Google Scholar]
  62. Harris CB, Ippen EP, Mourou GA, Zewail AH. 62.  1990. Ultrafast Phenomena VII Berlin: Springer-Verlag [Google Scholar]
  63. Zewail AH. 63.  1994. Femtochemistry: Ultrafast Dynamics of the Chemical Bond Singapore: World Sci. [Google Scholar]
  64. Domratcheva T, Schlichting I. 64.  2009. Electronic structure of (6-4) DNA photoproduct repair involving a non-oxetane pathway. J. Am. Chem. Soc. 131:17793–99 [Google Scholar]
  65. Dreuw A. 65.  2006. Quantum chemical methods for the investigation of photoinitiated processes in biological systems: theory and applications. ChemPhysChem 7:2259–74 [Google Scholar]
  66. Grimme S. 66.  2004. Calculation of the electronic spectra of large molecules. Reviews in Computational Chemistry KB Lipkowitz, R Larter, TR Cundari 153–18 New York: Wiley [Google Scholar]
  67. Köppel H, Domcke W, Cederbaum LS. 67.  1984. Multimode molecular dynamics beyond the Born-Oppenheimer approximation. Adv. Chem. Phys. 57:59–246 [Google Scholar]
  68. Domcke W, Yarkony DR, Köppel H. 68.  2004. Conical Intersections: Electronic Structure, Dynamics and Spectroscopy Singapore: Word Sci. [Google Scholar]
  69. Senn HM, Thiel W. 69.  2009. QM/MM methods for biomolecular systems. Angew. Chem. Int. Ed. Engl. 48:1198–229 [Google Scholar]
  70. Warshel A, Levitt M. 70.  1976. Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J. Mol. Biol 103:227–49 [Google Scholar]
  71. Day PN, Jensen JH, Gordon MS, Webb SP, Stevens WJ. 71.  et al. 1996. An effective fragment method for modeling solvent effects in quantum mechanical calculations. J. Chem. Phys. 105:1968–86 [Google Scholar]
  72. Gordon MS, Fedorov DG, Pruitt SR, Slipchenko LV. 72.  2012. Fragmentation methods: a route to accurate calculations on large systems. Chem. Rev. 112:632–72 [Google Scholar]
  73. Klamt A, Schuurmann G. 73.  1993. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 2 1993:799–805 [Google Scholar]
  74. Tapia O, Goscinski O. 74.  1975. Self-consistent reaction field theory of solvent effects. Mol. Phys. 29:1653–61 [Google Scholar]
  75. Liao R, Thiel W. 75.  2012. Comparison of QM-only and QM/MM models for the mechanism of tungsten-dependent acetylene hydratase. J. Chem. Theory Comput. 8:3793–803 [Google Scholar]
  76. Woiczikowski PB, Steinbrecher T, Kubar T, Elstner M. 76.  2011. Nonadiabatic QM/MM simulations of fast charge transfer in Escherichia coli DNA photolyase. J. Phys. Chem. B 115:9846–63 [Google Scholar]
  77. Hassanali AA, Zhong D, Singer SJ. 77.  2011. An AIMD study of CPD repair mechanism in water: role of solvent in ring splitting. J. Phys. Chem. B 115:3860–71 [Google Scholar]
  78. Asgatay S, Petermann C, Harakat D, Guillaume D, Taylor JS, Pascale C. 78.  2008. Evidence that the (6-4) photolyase mechanism can proceed through an oxetane intermediate. J. Am. Chem. Soc. 130:12618–19 [Google Scholar]
  79. Faraji S, Groenhof G, Dreuw A. 79.  2013. A combined QM/MM investigation on the light-driven electron-induced repair of the (6-4) thymine dimer catalyzed by DNA photolyase. J. Phys. Chem. B 117:10071–79 [Google Scholar]
  80. Kozuch S, Shaik S. 80.  2011. How to conceptualize catalytic cycles? The energetic span model. Acc. Chem. Res. 44:101–10 [Google Scholar]
  81. Dreuw A, Faraji S. 81.  2013. A quantum chemical perspective on (6-4) photolesion repair by photolyases. Phys. Chem. Chem. Phys. 15:19957–69 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040513-103626
Loading
/content/journals/10.1146/annurev-physchem-040513-103626
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error