Infrared spectroscopy has a long history as a tool for the identification of chemical compounds. More recently, various implementations of infrared spectroscopy have been successfully applied to studies of heterogeneous catalytic reactions with the objective of identifying intermediates and determining catalytic reaction mechanisms. We discuss selective applications of these techniques with a focus on several heterogeneous catalytic reactions, including hydrogenation, deNO, water-gas shift, and reverse-water-gas shift. The utility of using isotopic substitutions and other techniques in tandem with infrared spectroscopy is discussed. We comment on the modes of implementation and the advantages and disadvantages of the various infrared techniques. We also note future trends and the role of computational calculations in such studies. The infrared techniques considered are transmission Fourier transform infrared spectroscopy, infrared reflection-absorption spectroscopy, polarization-modulation infrared reflection-absorption spectroscopy, sum-frequency generation, diffuse reflectance infrared Fourier transform spectroscopy, attenuated total reflectance, infrared emission spectroscopy, photoacoustic infrared spectroscopy, and surface-enhanced infrared absorption spectroscopy.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Hoffmann FM. 1.  1983. Infrared reflection-absorption spectroscopy of adsorbed molecules. Surf. Sci. Rep. 3:107–92 [Google Scholar]
  2. Conway BE, Tilak BV. 2.  1992. Behavior and characterization of kinetically involved chemisorbed intermediates in electrocatalysis of gas evolution reactions. Adv. Catal. 38:1–148 [Google Scholar]
  3. Ryczkowski J. 3.  2001. IR spectroscopy in catalysis. Catal. Today 68:263–381 [Google Scholar]
  4. Sueutaka W. 4.  1995. Surface Infrared and Raman Spectroscopy: Methods and Applications New York: Springer [Google Scholar]
  5. Griffiths P, De Haseth JA. 5.  2007. Fourier Transform Infrared Spectrometry New York: Wiley [Google Scholar]
  6. Weckhuysen BM. 6.  2004. In Situ Spectroscopy of Catalysts Valencia, CA: Am. Sci. [Google Scholar]
  7. Haw JF. 7.  2002. In-Situ Spectroscopy in Heterogeneous Catalysis Weinheim, Ger.: Wiley-VCH [Google Scholar]
  8. Lamberti C, Groppo E, Spoto G, Bordiga S, Zecchina A. 8.  2007. Infrared spectroscopy of transient surface species. Adv. Catal. 51:1–74 [Google Scholar]
  9. Lamberti C, Zecchina A, Groppo E, Bordiga S. 9.  2010. Probing the surfaces of heterogeneous catalysts by in situ IR spectroscopy. Chem. Soc. Rev. 39:4951–5001 [Google Scholar]
  10. Zaera F. 10.  2012. Probing liquid/solid interfaces at the molecular level. Chem. Rev. 112:2920–86 [Google Scholar]
  11. Hollins P, Pritchard J. 11.  1985. Infrared studies of chemisorbed layers on single crystals. Prog. Surf. Sci. 19:275–350 [Google Scholar]
  12. Chabal YJ. 12.  1988. Surface infrared spectroscopy. Surf. Sci. Rep. 8:211–357 [Google Scholar]
  13. Rupprechter G. 13.  2007. A surface science approach to ambient pressure catalytic reactions. Catal. Today 126:3–17 [Google Scholar]
  14. Delgass WN. 14.  1979. Spectroscopy in Heterogeneous Catalysis San Diego: Academic [Google Scholar]
  15. Buck M, Himmelhaus M. 15.  2001. Vibrational spectroscopy of interfaces by infrared-visible sum frequency generation. J. Vac. Sci. Technol. A 19:2717–36 [Google Scholar]
  16. Griffiths PR, Fuller MP. 16.  1982. Mid-infrared spectrometry of powdered samples. Advances in Infrared Raman Spectroscopy RJH Clark, RE Hester 63–129 London: Heyden [Google Scholar]
  17. Goodman DW. 17.  1995. Model studies in catalysis using surface science probes. Chem. Rev. 95:523–36 [Google Scholar]
  18. Fukui K, Miyauchi H, Iwasawa Y. 18.  1997. Highly sensitive detection of adsorbed species on a SiO2 surface by reflection-absorption infrared spectroscopy. Chem. Phys. Lett. 274:133–39 [Google Scholar]
  19. Trenary M. 19.  2000. Reflection absorption infrared spectroscopy and the structure of molecular adsorbates on metal surfaces. Annu. Rev. Phys. Chem. 51:381–403 [Google Scholar]
  20. Wilson EL, Brown WA. 20.  2010. Low pressure RAIRS studies of model catalytic systems. J. Phys. Chem. C 114:6879–93 [Google Scholar]
  21. Meier DM, Urakawa A, Mader R, Baiker A. 21.  2009. Design and performance of a flow-through polarization-modulation infrared reflection-absorption spectroscopy cell for time-resolved simultaneous surface and liquid phase detection under concentration and temperature perturbations. Rev. Sci. Instrum. 80:094101 [Google Scholar]
  22. Rupprechter G. 22.  2007. Sum frequency generation and polarization-modulation infrared reflection absorption spectroscopy of functioning model catalysts from ultrahigh vacuum to ambient pressure. Adv. Catal. 51:133–263 [Google Scholar]
  23. Fan JF, Trenary M. 23.  1994. Symmetry and the surface infrared selection rule for the determination of the structure of molecules on metal surfaces. Langmuir 10:3649–57 [Google Scholar]
  24. Desikusumastuti A, Staudt T, Gronbeck H, Libuda J. 24.  2008. Identifying surface species by vibrational spectroscopy: bridging versus monodentate nitrates. J. Catal. 255:127–33 [Google Scholar]
  25. Farkas A. 25.  2008. In situ IR spectroscopic studies of the CO oxidation reaction over a ruthenium model catalyst PhD Diss., Justus Liebig Univ., Giessen, Ger. [Google Scholar]
  26. Greenler RG, Snider DR, Witt D, Sorbello RS. 26.  1982. The metal-surface selection rule for infrared spectra of molecules adsorbed on small metal particles. Surf. Sci. 118:415–28 [Google Scholar]
  27. Pearce HA, Sheppard N. 27.  1976. Possible importance of a metal-surface selection rule in interpretation of infrared spectra of molecules adsorbed on particulate metals: infrared spectra from ethylene chemisorbed on silica-supported metal catalysts. Surf. Sci. 59:205–17 [Google Scholar]
  28. Stacchiola D, Azad S, Burkholder L, Tysoe WT. 28.  2001. An investigation of the reaction pathway for ethylene hydrogenation on Pd(111). J. Phys. Chem. B 105:11233–39 [Google Scholar]
  29. Yin J, Trenary M, Meyer R. 29.  2010. Site switching from di-σ ethylene to π-bonded ethylene in the presence of coadsorbed nitrogen on Pt(111). J. Phys. Chem. C 114:12230–33 [Google Scholar]
  30. Koestner RJ, Frost JC, Stair PC, Van Hove MA, Somorjai GA. 30.  1982. Evidence for the formation of stable alkylidyne structures from C3 and C4 unsaturated hydrocarbons adsorbed on the Pt(111) single-crystal surface. Surf. Sci. 116:85–103 [Google Scholar]
  31. Beebe TP, Yates JT. 31.  1986. An in situ infrared spectroscopic investigation of the role of ethylidyne in the ethylene hydrogenation reaction on palladium/alumina. J. Am. Chem. Soc. 108:663–71 [Google Scholar]
  32. Ohtani T, Kubota J, Kondo JN, Hirose C, Domen K. 32.  1999. In situ observation of hydrogenation of ethylene on a Pt(111) surface under atmospheric pressure by infrared reflection absorption spectroscopy. J. Phys. Chem. B 103:4562–65 [Google Scholar]
  33. Mohsin SB, Trenary M, Robota HJ. 33.  1989. Kinetics of ethylidyne formation on Pt(111) from time-dependent infrared spectroscopy. Chem. Phys. Lett. 154:511–15 [Google Scholar]
  34. Mohsin SB, Trenary M, Robota HJ. 34.  1991. Identification of ethylene-derived species on Al2O3-supported Rh, Ir, Pd, and Pt catalysts by infrared spectroscopy. J. Phys. Chem. 95:6657–61 [Google Scholar]
  35. Janssens TVW, Zaera F. 35.  1995. The role of hydrogen-deuterium exchange reactions in the conversion of ethylene to ethylidyne on Pt(111). Surf. Sci. 344:77–84 [Google Scholar]
  36. Godbey D, Zaera F, Yeates R, Somorjai GA. 36.  1986. Hydrogenation of chemisorbed ethylene on clean, hydrogen, and ethylidyne covered platinum(111) crystal surfaces. Surf. Sci. 167:150–66 [Google Scholar]
  37. Rekoske JE, Cortright RD, Goddard SA, Sharma SB, Dumesic JA. 37.  1992. Microkinetic analysis of diverse experimental data for ethylene hydrogenation on platinum. J. Phys. Chem. 96:1880–88 [Google Scholar]
  38. Podkolzin SG, Watwe RM, Yan QL, de Pablo JJ, Dumesic JA. 38.  2001. DFT calculations and Monte Carlo simulations of the co-adsorption of hydrogen atoms and ethylidyne species on Pt(111). J. Phys. Chem. B 105:8550–62 [Google Scholar]
  39. Mei DH, Neurock M, Smith CM. 39.  2009. Hydrogenation of acetylene-ethylene mixtures over Pd and Pd-Ag alloys: first-principles-based kinetic Monte Carlo simulations. J. Catal. 268:181–95 [Google Scholar]
  40. Ludwig W, Savara A, Brandt B, Schauermann S. 40.  2011. A kinetic study on the conversion of cis-2-butene with deuterium on a Pd/Fe3O4 model catalyst. Phys. Chem. Chem. Phys. 13:966–77 [Google Scholar]
  41. Aleksandrov HA, Moskaleva LV, Zhao ZJ, Basaran D, Chen ZX. 41.  et al. 2012. Ethylene conversion to ethylidyne on Pd(111) and Pt(111): a first-principles-based kinetic Monte Carlo study. J. Catal. 285:187–95 [Google Scholar]
  42. Zaera F. 42.  1996. On the mechanism for the hydrogenation of olefins on transition-metal surfaces: the chemistry of ethylene on Pt(111). Langmuir 12:88–94 [Google Scholar]
  43. Deng RP, Herceg E, Trenary M. 43.  2004. Formation and hydrogenation of ethylidene on the Pt(111) surface. Surf. Sci. 560:L195–201 [Google Scholar]
  44. Zaera F, Janssens TVW, Ofner H. 44.  1996. Reflection absorption infrared spectroscopy and kinetic studies of the reactivity of ethylene on Pt(111) surfaces. Surf. Sci. 368:371–76 [Google Scholar]
  45. Oefner H, Zaera F. 45.  1997. Isothermal kinetic measurements for the hydrogenation of ethylene on Pt(111) under vacuum: significance of weakly-bound species in the reaction mechanism. J. Phys. Chem. B 101:396–408 [Google Scholar]
  46. Zaera F. 46.  2013. Key unanswered questions about the mechanism of olefin hydrogenation catalysis by transition-metal surfaces: a surface-science perspective. Phys. Chem. Chem. Phys. 15:11988–2003 [Google Scholar]
  47. Petrik NG, Kimmel GA. 47.  2012. Adsorption geometry of CO versus coverage on TiO2(110) from s- and p-polarized infrared spectroscopy. J. Phys. Chem. Lett. 3:3425–30 [Google Scholar]
  48. Xu MC, Noei H, Fink K, Muhler M, Wang YM, Woll C. 48.  2012. The surface science approach for understanding reactions on oxide powders: the importance of IR spectroscopy. Angew. Chem. Int. Ed. Engl. 51:4731–34 [Google Scholar]
  49. Heidberg J, Kampshoff E, Stein H, Weiss H, Warskulat M. 49.  1988. FTIR spectroscopy as a highly sensitive technique to study adsorption and desorption on ionic film and single-crystal surfaces. Microchim. Acta 2:105–8 [Google Scholar]
  50. Vogt J, Weiss H. 50.  2008. LEED and PIRS structure analysis of physisorbed molecules on insulators: monolayer C2D2/KCl(100). Phys. Rev. B 77:125415 [Google Scholar]
  51. Berger E, Griffith DWT, Schuster G, Wilson SR. 51.  1989. Spectroscopy of matrices and thin films with an integrating sphere. Appl. Spectrosc. 43:320–24 [Google Scholar]
  52. Berger E, Griffith DWT, Schuster G, Wilson SR. 52.  1988. Matrix-isolation-FTIR spectroscopy with an integrating sphere. Microchim. Acta 2:239–41 [Google Scholar]
  53. Jentoft FC. 53.  2009. Ultraviolet–visible–near infrared spectroscopy in catalysis: theory, experiment, analysis, and application under reaction conditions. Adv. Catal. 52:129–211 [Google Scholar]
  54. Hanssen LM, Snail KA. 54.  2002. Integrating spheres for mid- and near-infrared reflection spectroscopy. Handbook of Vibrational Spectroscopy 2 JM Chalmers, PR Griffiths 1175–91 New York: Wiley [Google Scholar]
  55. Weckhuysen BM. 55.  2010. In-situ characterisation of heterogeneous catalysts. Chem. Soc. Rev. (Spec. Issue) 39:124541–5071 [Google Scholar]
  56. Vimont A, Thibault-Starzyk F, Daturi M. 56.  2010. Analysing and understanding the active site by IR spectroscopy. Chem. Soc. Rev. 39:4928–50 [Google Scholar]
  57. Lamberti C, Zecchina A, Groppo E, Bordiga S. 57.  2010. Probing the surfaces of heterogeneous catalysts by in situ IR spectroscopy. Chem. Soc. Rev. 39:4951–5001 [Google Scholar]
  58. Bentrup U. 58.  2010. Combining in situ characterization methods in one set-up: looking with more eyes into the intricate chemistry of the synthesis and working of heterogeneous catalysts. Chem. Soc. Rev. 39:4718–30 [Google Scholar]
  59. Jentoft FC, Kröhnert J, Subbotina IR, Kazansky VB. 59.  2013. Quantitative analysis of IR intensities of alkanes adsorbed on solid acid catalysts. J. Phys. Chem. C 117:5873–81 [Google Scholar]
  60. Mitchell MR. 60.  1993. Fundamentals and applications of diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. Structure-Property Relations in Polymers: Spectroscopy and Performance MW Urban, CD Craver 351–75 Washington, DC: Am. Chem. Soc. [Google Scholar]
  61. Basu P, Ballinger TH, Yates JT. 61.  1988. Wide temperature-range IR spectroscopy cell for studies of adsorption and desorption on high area solids. Rev. Sci. Instrum. 59:1321–27 [Google Scholar]
  62. Richards PD, Ryther RJ, Weitz E. 62.  1990. Diode laser probes of tert-butyl radical reaction kinetics: the reaction of C(CH3)3 with HBr, DBr, and HI. J. Phys. Chem. 94:3663–67 [Google Scholar]
  63. Epling WS, Nova I, Peden CHF. 63.  2008. Catalytic control of emissions from diesel-powered vehicles. Catal. Today 136:1–188 [Google Scholar]
  64. Epling W, Yezerets A, Nova I, Szanyi J, Peden C. 64.  2012. Catalytic control of lean-burn engine exhaust emissions. Catal. Today 184:1–300 [Google Scholar]
  65. Kim DH, Mudiyanselage K, Szanyi J, Zhu H, Kwak JH, Peden CHF. 65.  2012. Characteristics of Pt-K/MgAl2O4 lean NOx trap catalysts. Catal. Today 184:2–7 [Google Scholar]
  66. Epling WS, Peden CHF, Szanyi J. 66.  2008. Carbonate formation and stability on a Pt/BaO/γ-Al2O3 NOx storage/reduction catalyst. J. Phys. Chem. C 112:10952–59 [Google Scholar]
  67. Anstrom M, Topsoe NY, Dumesic JA. 67.  2003. Density functional theory studies of mechanistic aspects of the SCR reaction on vanadium oxide catalysts. J. Catal. 213:115–25 [Google Scholar]
  68. Tunter G, van Leeuven WF, Snepvanger LJM. 68.  1986. Kinetics and mechanism of the NOx reduction with NH3 on V2O5-WO3-TiO2 catalyst. Ind. Eng. Chem. Prod. Res. Dev. 25:633–36 [Google Scholar]
  69. Zhu ZP, Liu ZY, Niu HX, Liu SJ. 69.  1999. Promoting effect of SO2 on activated carbon-supported vanadia catalyst for NO reduction by NH3 at low temperatures. J. Catal. 187:245–48 [Google Scholar]
  70. Singoredjo L, Korver R, Kaptejin F, Moulijn J. 70.  1992. Alumina supported manganese oxides for the low-temperature selective catalytic reduction of nitric oxide with ammonia. Appl. Catal. B 1:297–316 [Google Scholar]
  71. Schneider H, Scharf U, Wokaun A, Baiker A. 71.  1994. Chromia on titania: IV. Nature of active sites for selective catalytic reduction of NO by NH3. J. Catal. 147:545–56 [Google Scholar]
  72. Chen JP, Yang RT, Buzanowski MA, Cichanowicz JF. 72.  1990. Cold selective catalytic reduction of nitric oxide for flue gas applications. Ind. Eng. Chem. Res. 29:1431–35 [Google Scholar]
  73. Yeom YH, Henao J, Li MJ, Sachtler WMH, Weitz E. 73.  2005. The role of NO in the mechanism of NOx reduction with ammonia over a BaNa-Y catalyst. J. Catal. 231:181–93 [Google Scholar]
  74. Millon E. 74.  1847. Note sur la decomposition du nitrate d'ammonique. Ann. Chim. Phys. 19:255 [Google Scholar]
  75. Li M-J, Yeom Y-H, Weitz E, Sachtler WMH. 75.  2006. An acid catalyzed step in the catalytic reduction of NOx to N2. Catal. Lett. 112:129–32 [Google Scholar]
  76. Savara A, Li M-J, Sachtler WMH, Weitz E. 76.  2008. Catalytic reduction of NH4NO3 by NO: effects of solid acids and implications for low temperature DeNOx processes. Appl. Catal. B 81:251–57 [Google Scholar]
  77. Sun Q, Gao Z-X, Chen H-Y, Sachtler WMH. 77.  2001. Reduction of NOx with ammonia over Fe/MFI: reaction mechanism based on isotopic labeling. J. Catal. 201:89–99 [Google Scholar]
  78. Nova I, Ciardelli C, Tronconi E, Chatterjee D, Bandl-Konrad B. 78.  2006. NH3-NO/NO2 chemistry of V-based catalysts and its role in the mechanism of fast SCR reaction. Catal. Today 114:3–12 [Google Scholar]
  79. Ruggeri MP, Grossale A, Nova I, Tronconi E, Jirglova H, Sobalik Z. 79.  2012. FTIR in situ mechanistic study of the NH3-NO/NO2 “Fast SCR” reaction over a commercial Fe-ZSM-5 catalyst. Catal. Today 184:107–14 [Google Scholar]
  80. Szanyi J, Kwak JH, Moline RA, Peden CHF. 80.  2003. The adsorption of NO2 and the NO + O2 reaction on Na-Y,FAU: an in situ FTIR investigation. Phys. Chem. Chem. Phys. 184045–51 [Google Scholar]
  81. Penkova A, Hadjivanov K, Mihaylov M, Daturi M, Saussey J, Lavalley J-C. 81.  2004. FTIR spectroscopy study of low temperature NO adsorption and NO + O2 coadsorption on H-ZSM-5. Langmuir 20:5425–31 [Google Scholar]
  82. Li G, Jones CA, Grassian VA, Larsen SC. 82.  2005. Selective catalytic reduction of NO2 with urea in nanocrystalline NaY zeolite. J. Catal. 234:401–13 [Google Scholar]
  83. Hadjiivanov K, Klissurski D, Ramis G, Busca G. 83.  1996. Fourier transform IR study of NOx adsorption on a CuZSM-5 DeNOx catalyst. Appl. Catal. B 7:251–67 [Google Scholar]
  84. Held W, Konig A, Richter T, Puppe L. 84.  1990. Catalytic NOxreduction in net oxidizing exhaust gas SAE Tech. Pap. 900496, SAE Int., Warrendale, PA [Google Scholar]
  85. Finocchio E, Baldi M, Busca G, Pistarino C, Romezzano G. 85.  et al. 2000. A study of the abatement of VOC over V2O5-WO3-TiO2 and alternative SCR catalysts. Catal. Today 59:261–68 [Google Scholar]
  86. Poignant F, Saussey J, Levalley JC, Mabilon G. 86.  1996. In situ FT-IR study of NH3 formation during the reduction of NOx with propane on H/Cu-ZSM-5 in excess oxygen. Chem. Commun. 29:93–97 [Google Scholar]
  87. Cowan AD, Cant NW, Haynes BH, Nelson GF. 87.  1998. The catalytic chemistry of nitromethane over Co-ZSM-5 and other catalysts in connection with the methane-NOx, SCR reaction. J. Catal. 176:329–43 [Google Scholar]
  88. Panov AG, Tonkyn RG, Balmer ML, Peden CHF, Malkin A, Hoard JW. 88.  2001. Selective reduction of NOxin oxygen rich environments with plasma-assisted catalysis: the role of plasma and reactive intermediates SAE Tech. Pap. 2001-01-3513, SAE Int., Warrendale, PA [Google Scholar]
  89. Savara A, Sachtler WMH, Weitz E. 89.  2009. TPD of NO2 and NO3 from Na-Y: the relative stabilities of nitrates and nitrites in low temperature DeNOx catalysis. Appl. Catal. B 90:120–25 [Google Scholar]
  90. Yeom YH, Wen B, Sachtler WMH, Weitz E. 90.  2004. NOx reduction from diesel emissions over a nontransition metal zeolite catalyst: a mechanistic study using FTIR spectroscopy. J. Phys. Chem. B 108:5386–404 [Google Scholar]
  91. Kwak JH, Szanyi J, Peden CHF. 91.  2003. Nonthermal plasma-assisted catalytic NOx reduction over Ba-Y,FAU: the effect of catalyst preparation. J. Catal. 220:291–98 [Google Scholar]
  92. Szanyi J, Kwak JH, Moline RA, Peden CFH. 92.  2004. Adsorption, coadsorption, and reaction of acetaldehyde and NO2 on Na-Y,FAU: an in situ FTIR investigation. J. Phys. Chem. B 108:17050–58 [Google Scholar]
  93. Yeom YH, Li M, Sachtler WMH, Weitz E. 93.  2007. Low-temperature NOx reduction with ethanol over Ag/Y: a comparison with Ag/γ -Al2O3 and BaNa/Y. J. Catal. 246:413–27 [Google Scholar]
  94. Sung C-Y, Snurr RQ, Broadbelt LJ. 94.  2009. DFT study of deNOx reactions in the gas phase: mimicking the reaction mechanism over BaNaY zeolites. J. Phys. Chem. A 113:6730–39 [Google Scholar]
  95. Haouas M, Bernasconi S, Kogelbauer A, Prins R. 95.  2001. An NMR study of the nitration of toluene over zeolites by HNO3-Ac2O. Phys. Chem. Chem. Phys. 3:5067–75 [Google Scholar]
  96. Yeom Y, Li M, Savara A, Sachtler W, Weitz E. 96.  2008. An overview of the mechanisms of NOx reduction with oxygenates over zeolite and γ-Al2O3 catalysts. Catal. Today 136:55–63 [Google Scholar]
  97. Yeom Y-H, Li M-J, Sachtler WMH, Weitz E. 97.  2007. NO2 reduction with nitromethane over Ag/Y: a catalyst with high activity over a wide temperature range. Catal. Lett. 118:173–79 [Google Scholar]
  98. Sung CY, Broadbelt LJ, Snurr RQ. 98.  2009. QM/MM study of the effect of local environment on dissociative adsorption in BaY zeolites. J. Phys. Chem. C 113:15643–51 [Google Scholar]
  99. Celik FE, Kim T, Mlinar AN, Bell AT. 99.  2010. An investigation into the mechanism and kinetics of dimethoxymethane carbonylation over FAU and MFI zeolites. J. Catal. 274:150–62 [Google Scholar]
  100. Savara A, Danon A, Sachtler WMH, Weitz E. 100.  2009. TPD of nitric acid from BaNa-Y: evidence that a nanoscale environment can alter a reaction mechanism. Phys. Chem. Chem. Phys. 11:1180–88 [Google Scholar]
  101. Savara A, Weitz E. 101.  2010. Kinetics of NO + H+ + NO3 → NO2 + HNO2 on BaNa-Y: evidence for a diffusion-limited A + B → 0 reaction on a surface. J. Phys. Chem. C 114:20621–28 [Google Scholar]
  102. Yeom YH, Li MJ, Sachtler WMH, Weitz E. 102.  2006. A study of the mechanism for NOx reduction with ethanol on γ-alumina supported silver. J. Catal. 238:100–10 [Google Scholar]
  103. Cant NW, Chambers DC, Liu IOY. 103.  2005. The formation of isocyanic acid during the reaction of NH3 with NO and excess CO over silica-supported platinum, palladium and rhodium. J. Catal. 231:201–12 [Google Scholar]
  104. Boroumand F, van den Bergh H, Moser JE. 104.  1994. Quantitative diffuse reflectance and diffuse transmittance infrared spectroscopy of surface-derivatized silica powders. Anal. Chem. 66:2260–66 [Google Scholar]
  105. Meunier FC. 105.  2010. The design and testing of kinetically appropriate operando spectroscopic cells for investigating heterogeneous catalytic reactions. Chem. Soc. Rev. 39:4602–14 [Google Scholar]
  106. Tamm S, Ingelsten HH, Palmqvist AEC. 106.  2008. On the different roles of isocyanate and cyanide species in propene-SCR over silver/alumina. J. Catal. 255:304–12 [Google Scholar]
  107. Pietrzyk P, Dujardin C, Gora-Marzek K, Granger P, Sojka Z. 107.  2012. Spectroscopic IR, EPR, and operando DRIFT insights into surface reaction pathways of selective reduction of NO by propene over the Co-BEA zeolite. Phys. Chem. Chem. Phys. 14:2203–15 [Google Scholar]
  108. Ji YY, Toops TJ, Pihl JA, Crocker M. 108.  2009. NOx storage and reduction in model lean NOx trap catalysts studied by in situ DRIFTS. Appl. Catal. B 91:329–38 [Google Scholar]
  109. Nova I, Castoldi L, Prinetto F, Del Santo V, Lietti L. 109.  et al. 2004. NOx adsorption study over Pt-Ba/alumina catalysts: FT-IR and reactivity study. Top. Catal. 30–31:181–86 [Google Scholar]
  110. Wang D, Zhang L, Kamasamudram K, Epling WS. 110.  2013. In situ-DRIFTS study of selective catalytic reduction of NOx by NH3 over Cu-exchanged SAPO-34. ACS Catal. 3:871–81 [Google Scholar]
  111. Goguet A, Meunier FC, Tibiletti D, Breen JP, Burch R. 111.  2004. Spectrokinetic investigation of reverse water-gas-shift reaction intermediates over a Pt/CeO2 catalyst. J. Phys. Chem. B 108:20240–46 [Google Scholar]
  112. Meunier FC, Tibiletti D, Goguet A, Shekhtman S, Hardacre C, Burch R. 112.  2007. On the complexity of the water-gas shift reaction mechanism over a Pt/CeO2 catalyst: effect of the temperature on the reactivity of formate surface species studied by operando DRIFT during isotopic transient at chemical steady state. Catal. Today 126:143–47 [Google Scholar]
  113. Kung MC, Davis RJ, Kung HH. 113.  2007. Understanding Au-catalyzed low-temperature CO oxidation. J. Phys. Chem. C 111:11767–75 [Google Scholar]
  114. Wu Z, Shou S, Shu H, Dai S, Overbury SH. 114.  2009. DRIFT-QMS study of room temperature CO oxidation on Au/SiO catalyst: nature and role of different Au species. J. Phys. Chem. C 113:3726–34 [Google Scholar]
  115. Henao JD, Caputo T, Yang JH, Kung MC, Kung HH. 115.  2006. In situ transient FTIR and XANES studies of the evolution of surface species in CO oxidation on Au/TiO2. J. Phys. Chem. B 110:8689–700 [Google Scholar]
  116. Romero-Sarria F, Marinez LM, Centino MA, Odriozola JA. 116.  2007. Surface dynamics of Au/CeO2 catalyst during CO oxidation. J. Phys. Chem. C 111:14469–75 [Google Scholar]
  117. Shi X, Tanaka K-I, He H, Shou M, Xu W, Zhang X. 117.  2008. The mechanism for the selective oxidation of CO enhanced by H2O on a novel PROC catalyst. Catal. Lett. 120:210–14 [Google Scholar]
  118. Tanaka K-I, Shou M, He H, Shi X, Zhang X. 118.  2009. Dynamic characterization of intermediates for low-temperature PROX reaction of CO in H2 oxidation of CO with OH via HCOO intermediate. J. Phys. Chem. C 113:12427–33 [Google Scholar]
  119. Childers JW, Rohl R, Palmer RA. 119.  1986. Direct comparison of the capabilities of photoacoustic and diffuse reflectance spectroscopies in the ultraviolet, visible, and near-infrared regions. Anal. Chem. 58:2629–36 [Google Scholar]
  120. Yang CQ. 120.  1991. Comparison of photoacoustic and diffuse reflectance infrared spectroscopy as near-surface analysis techniques. Appl. Spectrosc. 45:102–8 [Google Scholar]
  121. Ryczkowski J. 121.  2007. Application of infrared photoacoustic spectroscopy in catalysis. Catal. Today 124:11–20 [Google Scholar]
  122. Ryczkowski J. 122.  2010. Infrared photoacoustic spectroscopy in catalysis and surface science. Appl. Surf. Sci. 256:5545–50 [Google Scholar]
  123. McGovern SJ, Royce BSH, Benziger JB. 123.  1984. Infrared photoacoustic spectroscopy of adsorption on powders. Appl. Surf. Sci. 18:401–13 [Google Scholar]
  124. Sullivan DH, Conner WC, Harold MP. 124.  1992. Surface analysis with FT-IR emission spectroscopy. Appl. Spectrosc. 46:811–18 [Google Scholar]
  125. Borello E, Coluccia S, Zecchina A. 125.  1985. Infrared emission study of the reaction of CO with ammonia preadsorbed on MgO. J. Catal. 93:331–39 [Google Scholar]
  126. van Woerkom PCM, de Groot RL. 126.  1982. Infrared emission spectra from a heterogeneous catalyst system in reaction conditions. 2: Infrared spectroscopic studies. Appl. Opt. 21:3114–18 [Google Scholar]
  127. Primet M, Fouilloux P, Imelik B. 127.  1980. Chemisorptive properties of platinum supported on zeolite Y studied by infrared emission spectroscopy. J. Catal. 61:553–58 [Google Scholar]
  128. Mink J, Szilagyi T, Wachholz S, Kunath D. 128.  1986. FT-IR emission studies of chemisorbed species on supported metal catalysts. J. Mol. Spectrosc. 141:389–94 [Google Scholar]
  129. Wu ZL, Zhou SH, Zhu HG, Dai S, Overbury SH. 129.  2009. DRIFTS-QMS study of room temperature CO oxidation on Au/SiO2 catalyst: nature and role of different Au species. J. Phys. Chem. C 113:3726–34 [Google Scholar]
  130. Wu ZB, Jiang BQ, Liu Y, Wang HQ, Jin RB. 130.  2007. DRIFT study of manganese/titania-based catalysts for low-temperature selective catalytic reduction of NO with NH3. Environ. Sci. Technol. 41:5812–17 [Google Scholar]
  131. Lu XY, Faguy PW, Liu ML. 131.  2002. In situ potential-dependent FTIR emission spectroscopy: a novel probe for high temperature fuel cell interfaces. J. Electrochem. Soc. 149:A1293–98 [Google Scholar]
  132. Handke M, Harrick NJ. 132.  1986. A new accessory for infrared-emission spectroscopy measurements. Appl. Spectrosc. 40:401–5 [Google Scholar]
  133. McClelland JF, Luo S, Jones RW, Seaverson LM. 133.  1993. A practical guide to FTIR photoacoustic spectroscopy. Practical Sampling Techniques for Infrared Analysis PB Coleman 107–44 Boca Raton, FL: CRC [Google Scholar]
  134. Mojet BL, Ebbesen SD, Lefferts L. 134.  2010. Light at the interface: the potential of attenuated total reflection infrared spectroscopy for understanding heterogeneous catalysis in water. Chem. Soc. Rev. 39:4643–55 [Google Scholar]
  135. Andanson JM, Baiker A. 135.  2010. Exploring catalytic solid/liquid interfaces by in situ attenuated total reflection infrared spectroscopy. Chem. Soc. Rev. 39:4571–84 [Google Scholar]
  136. Ortiz-Hernandez I, Owens DJ, Strunk MR, Williams CT. 136.  2006. Multivariate analysis of ATR-IR spectroscopic data: applications to the solid-liquid catalytic interface. Langmuir 22:2629–39 [Google Scholar]
  137. Rupprechter G, Bandara A. 137.  2011. Sum frequency generation (SFG) spectroscopy. Surface and Thin Film Analysis: A Compendium of Principles, Instrumentation, and Applications G Friedbacher, H Bubert 407–35 Weinheim, Ger.: Wiley-VCH, 2nd ed.. [Google Scholar]
  138. Li K, Dubey S, Bhandari HB, Hu Z, Turner CH, Klein TM. 138.  2007. In situ attenuated total reflectance Fourier transform infrared spectroscopy of hafnium(IV) tert butoxide adsorption onto hydrogen terminated Si(100) and Si(111). J. Vac. Sci. Technol. A 25:1389–94 [Google Scholar]
  139. Minnich CB, Buskens P, Steffens HC, Bauerlein PS, Butvina LN. 139.  et al. 2007. Highly flexible fibre optic ATR-IR probe for inline reaction monitoring. Org. Process Res. Dev. 11:94–97 [Google Scholar]
  140. Wirz R, Ferri D, Baiker A. 140.  2006. ATR-IR spectroscopy of pendant NH2 groups on silica involved in the Knoevenagel condensation. Langmuir 22:3698–706 [Google Scholar]
  141. Burgi T, Bieri M. 141.  2004. Time-resolved in situ ATR spectroscopy of 2-propanol oxidation over Pd/Al2O3: evidence for 2-propoxide intermediate. J. Phys. Chem. B 108:13364–69 [Google Scholar]
  142. Ortiz-Hernandez I, Williams CT. 142.  2007. In situ studies of butyronitrile adsorption and hydrogenation on Pt/Al2O3 using attenuated total reflection infrared spectroscopy. Langmuir 23:3172–78 [Google Scholar]
  143. Tan S, Sun XJ, Williams CT. 143.  2011. In situ ATR-IR study of prochiral 2-methyl-2-pentenoic acid adsorption on Al2O3 and Pd/Al2O3. Phys. Chem. Chem. Phys. 13:19573–79 [Google Scholar]
  144. Sun XJ, Williams CT. 144.  2012. In-situ ATR-IR investigation of methylcinnamic acid adsorption and hydrogenation on Pd/Al2O3. Catal. Commun. 17:13–17 [Google Scholar]
  145. Aroca R. 145.  2006. Surface-Enhanced Vibrational Spectroscopy New York: Wiley233 [Google Scholar]
  146. Osawa M, Ataka K, Yoshii K, Nishikawa Y. 146.  1993. Surface-enhanced infrared spectroscopy: the origin of the absorption enhancement and band selection rule in the infrared spectra of molecules adsorbed on fine metal particles. Appl. Spectrosc. 47:1497–502 [Google Scholar]
  147. Osawa M. 147.  2001. Surface-enhanced infrared absorption. Appl. Spectrosc. 81:163–87 [Google Scholar]
  148. Le F, Brandl DW, Urzhumov YA, Wang H, Kundu J. 148.  et al. 2008. Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. ACS Nano 2:707–18 [Google Scholar]
  149. Pucci A, Neubrech F, Weber D, Hong S, Toury T, de la Chapelle ML. 149.  2010. Surface enhanced infrared spectroscopy using gold nanoantennas. Phys. Status Solidi B 247:2071–74 [Google Scholar]
  150. Somorjai GA, Rupprechter G. 150.  1999. Molecular studies of catalytic reactions on crystal surfaces at high pressures and high temperatures by infrared-visible sum frequency generation (SFG) surface vibrational spectroscopy. J. Phys. Chem. B 103:1623–38 [Google Scholar]
  151. Somorjai GA, Park JY. 151.  2008. Molecular surface chemistry by metal single crystals and nanoparticles from vacuum to high pressure. Chem. Soc. Rev. 37:2155–62 [Google Scholar]
  152. de Aguiar HB, Scheu R, Jena KC, de Beer AGF, Roke S. 152.  2012. Comparison of scattering and reflection SFG: a question of phase-matching. Phys. Chem. Chem. Phys. 14:6826–32 [Google Scholar]
  153. Foster AJ, Lobo RF. 153.  2010. Identifying reaction intermediates and catalytic active sites through in situ characterization techniques. Chem. Soc. Rev. 39:4783–93 [Google Scholar]
  154. Bratlie K. 154.  2003. High-pressure catalytic reactions of C6 hydrocarbons on platinum single-crystals and nanoparticles PhD Diss., Univ. Calif., Berkeley [Google Scholar]
  155. Gross A. 155.  2008. Adsorption at nanostructured surfaces from first principles. J. Comput. Theor. Nanosci. 5:894–922 [Google Scholar]
  156. Haubrich J, Loffreda D, Delbecq F, Sautet P, Jugnet Y. 156.  et al. 2011. Mechanistic and spectroscopic identification of initial reaction intermediates for prenal decomposition on a platinum model catalyst. Phys. Chem. Chem. Phys. 13:6000–9 [Google Scholar]
  157. Calaza FC, Xu Y, Mullins DR, Overbury SH. 157.  2012. Oxygen vacancy-assisted coupling and enolization of acetaldehyde on CeO2(111). J. Am. Chem. Soc. 134:18034–45 [Google Scholar]
  158. Vayssilov GN, Mihaylov M, St. Petkov P, Hadjiivanov KI, Neyman KM. 158.  2011. Reassignment of the vibrational spectra of carbonates, formates, and related surface species on ceria: a combined density functional and infrared spectroscopy investigation. J. Phys. Chem. C 115:23435–54 [Google Scholar]
  159. Jugnet Y, Bertolini JC, Barbosa LAMM, Sautet P. 159.  2002. Vibrational identification of the surface reaction intermediates for the dehalogenation of trichloroethene on PdCu(110) alloy. Surf. Sci. 505:153–62 [Google Scholar]
  160. Liu W, Savara A, Ren XG, Ludwig W, Dostert KH. 160.  et al. 2012. Toward low-temperature dehydrogenation catalysis: isophorone adsorbed on Pd(111). J. Phys. Chem. Lett. 3:582–86 [Google Scholar]
  161. Stavitski E, Weckhuysen BM. 161.  2010. Infrared and Raman imaging of heterogeneous catalysts. Chem. Soc. Rev. 39:4615–25 [Google Scholar]
  162. Snively CM, Oskarsdottir G, Lauterbach J. 162.  2001. Chemically sensitive parallel analysis of combinatorial catalyst libraries. Catal. Today 67:357–68 [Google Scholar]
  163. Hendershot RJ, Fanson PT, Snively CM, Lauterbach JA. 163.  2003. High-throughput catalytic science: parallel analysis of transients in catalytic reactions. Angew. Chem. Int. Ed. Engl. 42:1152–55 [Google Scholar]
  164. Xu XJG, Rang M, Craig IM, Raschke MB. 164.  2012. Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity. J. Phys. Chem. Lett. 3:1836–41 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error