This article reviews the mechanisms through which molecules adsorbed to the surfaces of semiconductor nanocrystals, quantum dots (QDs), influence the pathways for and dynamics of intra- and interband exciton relaxation in these nanostructures. In many cases, the surface chemistry of the QDs determines the competition between Auger relaxation and electronic-to-vibrational energy transfer in the intraband cooling of hot carriers, and between electron or hole-trapping processes and radiative recombination in relaxation of band-edge excitons. The latter competition determines the photoluminescence quantum yield of the nanocrystals, which is predictable through a set of mostly phenomenological models that link the surface coverage of ligands with specific chemical properties to the rate constants for nonradiative exciton decay.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Kudera S, Zanella M, Giannini C, Rizzo A, Li Y. 1.  et al. 2007. Sequential growth of magic-size CdSe nanocrystals. Adv. Mater. 19:548–52 [Google Scholar]
  2. Widmann F, Simon J, Daudin B, Feuillet G, Rouvière JL. 2.  et al. 1998. Blue-light emission from GaN self-assembled quantum dots due to giant piezoelectric effect. Phys. Rev. B 58:R15989–92 [Google Scholar]
  3. Morris-Cohen AJ, Malicki M, Peterson MD, Slavin JW, Weiss EA. 3.  2013. Chemical, structural, and quantitative analysis of the ligand shells of colloidal quantum dots. Chem. Mater. 25:1155–65 [Google Scholar]
  4. Peng ZA, Peng X. 4.  2001. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123:183–84 [Google Scholar]
  5. Qu L, Peng ZA, Peng X. 5.  2001. Alternative routes toward high quality CdSe nanocrystals. Nano Lett. 1:333–37 [Google Scholar]
  6. Chen Y, Rosenzweig Z. 6.  2002. Luminescent CdS quantum dots as selective ion probes. Anal. Chem. 74:5132–38 [Google Scholar]
  7. Fan H, Leve EW, Scullin C, Gabaldon J, Tallant D. 7.  et al. 2005. Surfactant-assisted synthesis of water-soluble and biocompatible semiconductor quantum dot micelles. Nano Lett. 5:645–48 [Google Scholar]
  8. Bullen C, Mulvaney P. 8.  2006. The effects of chemisorption on the luminescence of CdSe quantum dots. Langmuir 22:3007–13 [Google Scholar]
  9. Qu L, Peng X. 9.  2002. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 124:2049–55 [Google Scholar]
  10. Guyot-Sionnest P, Wehrenberg B, Yu D. 10.  2005. Intraband relaxation in CdSe nanocrystals and the strong influence of the surface ligands. J. Chem. Phys. 123:074709 [Google Scholar]
  11. Kilina S, Velizhanin KA, Ivanov S, Prezhdo OV, Tretiak S. 11.  2012. Surface ligands increase photoexcitation relaxation rates in CdSe quantum dots. ACS Nano 6:6515–24 [Google Scholar]
  12. Knowles KE, McArthur EA, Weiss EA. 12.  2011. A multi-timescale map of radiative and nonradiative decay pathways for excitons in CdSe quantum dots. ACS Nano 5:2026–35 [Google Scholar]
  13. Norris DJ, Bawendi MG. 13.  1996. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys. Rev. B 53:16338–46 [Google Scholar]
  14. Norris DJ, Sacra A, Murray CB, Bawendi MG. 14.  1994. Measurement of the size dependent hole spectrum in CdSe quantum dots. Phys. Rev. Lett. 72:2612–15 [Google Scholar]
  15. Ekimov AI, Hache F, Schanne-Klein MC, Ricard D, Flytzanis C. 15.  et al. 1993. Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions. J. Opt. Soc. Am. B 10:100–7 [Google Scholar]
  16. Hunsche S, Dekorsy T, Klimov V, Kurz H. 16.  1996. Ultrafast dynamics of carrier-induced absorption changes in highly-excited CdSe nanocrystals. Appl. Phys. B 62:3–10 [Google Scholar]
  17. Kang I, Wise FW. 17.  1997. Electronic structure and optical properties of PbS and PbSe quantum dots. J. Opt. Soc. Am. B 14:1632–46 [Google Scholar]
  18. An JM, Franceschetti A, Dudiy SV, Zunger A. 18.  2006. The peculiar electronic structure of PbSe quantum dots. Nano Lett. 6:2728–35 [Google Scholar]
  19. Klimov VI, McBranch DW. 19.  1997. Auger-process-induced charge separation in semiconductor nanocrystals. Phys. Rev. B 55:13173–79 [Google Scholar]
  20. Klimov V, Hunsche S, Kurz H. 20.  1994. Biexciton effects in femtosecond nonlinear transmission of semiconductor quantum dots. Phys. Rev. B 50:8110–13 [Google Scholar]
  21. Kang KI, Kepner AD, Gaponenko SV, Koch SW, Hu YZ, Peyghambarian N. 21.  1993. Confinement-enhanced biexciton binding energy in semiconductor quantum dots. Phys. Rev. B 48:15449–52 [Google Scholar]
  22. Guyot-Sionnest P, Hines M. 22.  1998. Intraband transitions in semiconductor nanocrystals. Appl. Phys. Lett. 72:686–88 [Google Scholar]
  23. McArthur EA, Morris-Cohen AJ, Knowles KE, Weiss EA. 23.  2010. Charge carrier resolved relaxation of the first excitonic state in CdSe quantum dots probed with near-infrared transient absorption spectroscopy. J. Phys. Chem. B 114:14514–20 [Google Scholar]
  24. Califano M, Franceschetti A, Zunger A. 24.  2005. Temperature dependence of excitonic radiative decay in CdSe quantum dots: the role of surface hole traps. Nano Lett. 5:2360–64 [Google Scholar]
  25. Jones M, Lo SS, Scholes GD. 25.  2009. Signatures of exciton dynamics and carrier trapping in the time-resolved photoluminescence of colloidal CdSe nanocrystals. J. Phys. Chem. C 113:18632–42 [Google Scholar]
  26. Wehrenberg BL, Wang C, Guyot-Sionnest P. 26.  2002. Interband and intraband optical studies of PbSe colloidal quantum dots. J. Phys. Chem. B 106:10634–40 [Google Scholar]
  27. Shim M, Guyot-Sionnest P. 27.  2000. n-Type colloidal semiconductor nanocrystals. Nature 407:981–83 [Google Scholar]
  28. Pandey A, Guyot-Sionnest P. 28.  2007. Intraband spectroscopy and band offsets of colloidal II–VI core/shell structures. J. Chem. Phys. 127:104710 [Google Scholar]
  29. Morris-Cohen AJ, Aruda KO, Rasmussen AM, Canzi G, Seideman T. 29.  et al. 2012. Controlling the rate of electron transfer between a quantum dot and a tri-ruthenium molecular cluster by tuning the chemistry of the interface. Phys. Chem. Chem. Phys. 14:13794–801 [Google Scholar]
  30. Morris-Cohen AJ, Frederick MT, Cass LC, Weiss EA. 30.  2011. Simultaneous determination of the adsorption constant and the photoinduced electron transfer rate for a CdS quantum dot–viologen complex. J. Am. Chem. Soc. 133:10146–54 [Google Scholar]
  31. Boulesbaa A, Huang Z, Wu D, Lian T. 31.  2009. Competition between energy and electron transfer from CdSe QDs to adsorbed rhodamine B. J. Phys. Chem. C 114:962–69 [Google Scholar]
  32. Huang J, Huang Z, Yang Y, Zhu H, Lian T. 32.  2010. Multiple exciton dissociation in CdSe quantum dots by ultrafast electron transfer to adsorbed methylene blue. J. Am. Chem. Soc. 132:4858–64 [Google Scholar]
  33. Morris-Cohen AJ, Peterson MD, Frederick MT, Kamm JM, Weiss EA. 33.  2012. Evidence for a through-space pathway for electron transfer from quantum dots to carboxylate-functionalized viologens. J. Phys. Chem. Lett. 3:2840–44 [Google Scholar]
  34. Rodgers MAJ, Da Silva e Wheeler MF. 34.  1978. Quenching of fluorescence from pyrene in micellar solutions by cationic quenchers. Chem. Phys. Lett. 53:165–69 [Google Scholar]
  35. Boulesbaa A, Issac A, Stockwell D, Huang Z, Huang J. 35.  et al. 2007. Ultrafast charge separation at CdS quantum dot/rhodamine B molecule interface. J. Am. Chem. Soc. 129:15132–33 [Google Scholar]
  36. Huang J, Huang Z, Jin S, Lian T. 36.  2008. Exciton dissociation in CdSe quantum dots by hole transfer to phenothiazine. J. Phys. Chem. C 112:19734–38 [Google Scholar]
  37. Morris-Cohen AJ, Vasilenko V, Amin VA, Reuter MG, Weiss EA. 37.  2011. Model for adsorption of ligands to colloidal quantum dots with concentration-dependent surface structure. ACS Nano 6:557–65 [Google Scholar]
  38. Tachiya M. 38.  1975. Application of a generating function to reaction kinetics in micelles: kinetics of quenching of luminescent probes in micelles. Chem. Phys. Lett. 33:289–92 [Google Scholar]
  39. Tachiya M. 39.  1982. Kinetics of quenching of luminescent probes in micellar systems. II. J. Chem. Phys. 76:340–48 [Google Scholar]
  40. Klimov VI, McBranch DW. 40.  1998. Femtosecond 1P-to-1S electron relaxation in strongly confined semiconductor nanocrystals. Phys. Rev. Lett. 80:4028–31 [Google Scholar]
  41. Guyot-Sionnest P, Shim M, Matranga C, Hines M. 41.  1999. Intraband relaxation in CdSe quantum dots. Phys. Rev. B 60:2181–84 [Google Scholar]
  42. Cooney RR, Sewall SL, Dias EA, Sagar D, Anderson KE, Kambhampati P. 42.  2007. Unified picture of electron and hole relaxation pathways in semiconductor quantum dots. Phys. Rev. B 75:245311 [Google Scholar]
  43. Pandey A, Guyot-Sionnest P. 43.  2008. Slow electron cooling in colloidal quantum dots. Science 322:929–32 [Google Scholar]
  44. Cooney RR, Sewall SL, Anderson KE, Dias EA, Kambhampati P. 44.  2007. Breaking the phonon bottleneck for holes in semiconductor quantum dots. Phys. Rev. Lett. 98:177403 [Google Scholar]
  45. Xu S, Mikhailovsky AA, Hollingsworth JA, Klimov VI. 45.  2002. Hole intraband relaxation in strongly confined quantum dots: revisiting the “phonon bottleneck” problem. Phys. Rev. B 65:045319 [Google Scholar]
  46. Klimov VI, Mikhailovsky AA, McBranch DW, Leatherdale CA, Bawendi MG. 46.  2000. Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 287:1011–13 [Google Scholar]
  47. Baker DR, Kamat PV. 47.  2010. Tuning the emission of CdSe quantum dots by controlled trap enhancement. Langmuir 26:11272–76 [Google Scholar]
  48. Du H, Chen C, Krishnan R, Krauss TD, Harbold JM. 48.  et al. 2002. Optical properties of colloidal PbSe nanocrystals. Nano Lett. 2:1321–24 [Google Scholar]
  49. Liu H, Guyot-Sionnest P. 49.  2010. Photoluminescence lifetime of lead selenide colloidal quantum dots. J. Phys. Chem. C 114:14860–63 [Google Scholar]
  50. Warner JH, Thomsen E, Watt AR, Heckenberg NR, Rubinsztein-Dunlop H. 50.  2005. Time-resolved photoluminescence spectroscopy of ligand-capped PbS nanocrystals. Nanotechnology 16:175–79 [Google Scholar]
  51. Knowles KE, Malicki M, Weiss EA. 51.  2012. Dual-time scale photoinduced electron transfer from PbS quantum dots to a molecular acceptor. J. Am. Chem. Soc. 134:12470–73 [Google Scholar]
  52. Aharoni A, Oron D, Banin U, Rabani E, Jortner J. 52.  2008. Long-range electronic-to-vibrational energy transfer from nanocrystals to their surrounding matrix environment. Phys. Rev. Lett. 100:057404 [Google Scholar]
  53. Klimov VI, McBranch DW, Leatherdale CA, Bawendi MG. 53.  1999. Electron and hole relaxation pathways in semiconductor quantum dots. Phys. Rev. B 60:13740–49 [Google Scholar]
  54. Logunov S, Green T, Marguet S, El-Sayed MA. 54.  1998. Interfacial carriers dynamics of CdS nanoparticles. J. Phys. Chem. A 102:5652–58 [Google Scholar]
  55. Sewall SL, Cooney RR, Anderson KE, Dias EA, Sagar D, Kambhampati P. 55.  2008. State-resolved studies of biexcitons and surface trapping dynamics in semiconductor quantum dots. J. Chem. Phys. 129:084701 [Google Scholar]
  56. Morris-Cohen AJ, Donakowski MD, Knowles KE, Weiss EA. 56.  2009. The effect of a common purification procedure on the chemical composition of the surfaces of CdSe quantum dots synthesized with trioctylphosphine oxide. J. Phys. Chem. C 114:897–906 [Google Scholar]
  57. Bockelmann U, Bastard G. 57.  1990. Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases. Phys. Rev. B 42:8947–51 [Google Scholar]
  58. Lowisch M, Rabe M, Kreller F, Henneberger F. 58.  1999. Electronic excitations and longitudinal optical phonon modes of self-assembled CdSe quantum dots revealed by microprobe studies. Appl. Phys. Lett. 74:2489–91 [Google Scholar]
  59. Sagar D, Cooney RR, Sewall SL, Dias EA, Barsan MM. 59.  et al. 2008. Size dependent, state-resolved studies of exciton-phonon couplings in strongly confined semiconductor quantum dots. Phys. Rev. B 77:235321 [Google Scholar]
  60. Benisty H, Sotomayor-Torres C, Weisbuch C. 60.  1991. Intrinsic mechanism for the poor luminescence properties of quantum-box systems. Phys. Rev. B 44:10945–48 [Google Scholar]
  61. Gfroerer T, Sturge M, Kash K, Yater J, Plaut A. 61.  et al. 1996. Slow relaxation of excited states in strain-induced quantum dots. Phys. Rev. B 53:16474–80 [Google Scholar]
  62. Urayama J, Norris TB, Singh J, Bhattacharya P. 62.  2001. Observation of phonon bottleneck in quantum dot electronic relaxation. Phys. Rev. Lett. 86:4930–33 [Google Scholar]
  63. Woggon U, Giessen H, Gindele F, Wind O, Fluegel B, Peyghambarian N. 63.  1996. Ultrafast energy relaxation in quantum dots. Phys. Rev. B 54:17681–90 [Google Scholar]
  64. Wundke K, Potting S, Auxier J, Schulzgen A, Peyghambarian N, Borrelli N. 64.  2000. PbS quantum-dot-doped glasses for ultrashort-pulse generation. Appl. Phys. Lett. 76:10–12 [Google Scholar]
  65. Nirmal M, Norris DJ, Kuno M, Bawendi MG, Efros AL, Rosen M. 65.  1995. Observation of the “dark exciton” in CdSe quantum dots. Phys. Rev. Lett. 75:3728–31 [Google Scholar]
  66. Norris DJ, Bawendi MG. 66.  1995. Structure in the lowest absorption feature of CdSe quantum dots. J. Chem. Phys. 103:5260–68 [Google Scholar]
  67. Efros AL, Rosen M, Kuno M, Nirmal M, Norris DJ, Bawendi M. 67.  1996. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Phys. Rev. B 54:4843–56 [Google Scholar]
  68. Hyeon-Deuk K, Prezhdo OV. 68.  2011. Time-domain ab initio study of Auger and phonon-assisted Auger processes in a semiconductor quantum dot. Nano Lett. 11:1845–50 [Google Scholar]
  69. Sagar DM, Cooney RR, Sewall SL, Kambhampati P. 69.  2008. State-resolved exciton-phonon couplings in CdSe semiconductor quantum dots. J. Phys. Chem. C 112:9124–27 [Google Scholar]
  70. Prezhdo OV. 70.  2009. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies. Acc. Chem. Res. 42:2005–16 [Google Scholar]
  71. Tyagi P, Cooney RR, Sewall SL, Sagar DM, Saari JI, Kambhampati P. 71.  2010. Controlling piezoelectric response in semiconductor quantum dots via impulsive charge localization. Nano Lett. 10:3062–67 [Google Scholar]
  72. Kelley AM. 72.  2010. Electron-phonon coupling in CdSe nanocrystals. J. Phys. Chem. Lett. 1:1296–300 [Google Scholar]
  73. Alivisatos A, Harris T, Carroll P, Steigerwald M, Brus L. 73.  1989. Electron-vibration coupling in semiconductor clusters studied by resonance Raman spectroscopy. J. Chem. Phys. 90:3463–68 [Google Scholar]
  74. Klimov V, Mikhailovsky A, McBranch D, Leatherdale C, Bawendi M. 74.  2000. Mechanisms for intraband energy relaxation in semiconductor quantum dots: the role of electron-hole interactions. Phys. Rev. B 61:R13349–52 [Google Scholar]
  75. An JM, Califano M, Franceschetti A, Zunger A. 75.  2008. Excited-state relaxation in PbSe quantum dots. J. Chem. Phys. 128:164720 [Google Scholar]
  76. Narvaez GA, Bester G, Zunger A. 76.  2006. Carrier relaxation mechanisms in self-assembled (In,Ga)As/GaAs quantum dots: efficient PS Auger relaxation of electrons. Phys. Rev. B 74:075403 [Google Scholar]
  77. Shim M, Shilov SV, Braiman MS, Guyot-Sionnest P. 77.  2000. Long-lived delocalized electron states in quantum dots: a step-scan Fourier transform infrared study. J. Phys. Chem. B 104:1494–96 [Google Scholar]
  78. Robel I, Gresback R, Kortshagen U, Schaller RD, Klimov VI. 78.  2009. Universal size-dependent trend in Auger recombination in direct-gap and indirect-gap semiconductor nanocrystals. Phys. Rev. Lett. 102:177404 [Google Scholar]
  79. Htoon H, Hollingsworth JA, Dickerson R, Klimov VI. 79.  2003. Effect of zero- to one-dimensional transformation on multiparticle Auger recombination in semiconductor quantum rods. Phys. Rev. Lett. 91:227401 [Google Scholar]
  80. Robel I, Bunker BA, Kamat PV, Kuno M. 80.  2006. Exciton recombination dynamics in CdSe nanowires: bimolecular to three-carrier Auger kinetics. Nano Lett. 6:1344–49 [Google Scholar]
  81. Kambhampati P. 81.  2010. Unraveling the structure and dynamics of excitons in semiconductor quantum dots. Acc. Chem. Res. 44:1–13 [Google Scholar]
  82. Kambhampati P. 82.  2011. Hot exciton relaxation dynamics in semiconductor quantum dots: radiationless transitions on the nanoscale. J. Phys. Chem. C 115:22089–109 [Google Scholar]
  83. Semonin OE, Johnson JC, Luther JM, Midgett AG, Nozik AJ, Beard MC. 83.  2010. Absolute photoluminescence quantum yields of IR-26 dye, PbS, and PbSe quantum dots. J. Phys. Chem. Lett. 1:2445–50 [Google Scholar]
  84. Wang X, Qu L, Zhang J, Peng X, Xiao M. 84.  2003. Surface-related emission in highly luminescent CdSe quantum dots. Nano Lett. 3:1103–6 [Google Scholar]
  85. Dahan M, Laurence T, Pinaud F, Chemla D, Alivisatos A. 85.  et al. 2001. Time-gated biological imaging by use of colloidal quantum dots. Opt. Lett. 26:825–27 [Google Scholar]
  86. Moreels I, Lambert K, Smeets D, De Muynck D, Nollet T. 86.  et al. 2009. Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 3:3023–30 [Google Scholar]
  87. Kilina S, Ivanov S, Tretiak S. 87.  2009. Effect of surface ligands on optical and electronic spectra of semiconductor nanoclusters. J. Am. Chem. Soc. 131:7717–26 [Google Scholar]
  88. Knowles KE, Tice DB, McArthur EA, Solomon GC, Weiss EA. 88.  2010. Chemical control of the photoluminescence of CdSe quantum dot–organic complexes with a series of para-substituted aniline ligands. J. Am. Chem. Soc. 132:1041–50 [Google Scholar]
  89. Munro AM, Jen-La Plante I, Ng MS, Ginger DS. 89.  2007. Quantitative study of the effects of surface ligand concentration on CdSe nanocrystal photoluminescence. J. Phys. Chem. C 111:6220–27 [Google Scholar]
  90. Kalyuzhny G, Murray RW. 90.  2005. Ligand effects on optical properties of CdSe nanocrystals. J. Phys. Chem. B 109:7012–21 [Google Scholar]
  91. Ji X, Copenhaver D, Sichmeller C, Peng X. 91.  2008. Ligand bonding and dynamics on colloidal nanocrystals at room temperature: the case of alkylamines on CdSe nanocrystals. J. Am. Chem. Soc. 130:5726–35 [Google Scholar]
  92. Fischer SA, Crotty AM, Kilina SV, Ivanov SA, Tretiak S. 92.  2012. Passivating ligand and solvent contributions to the electronic properties of semiconductor nanocrystals. Nanoscale 4:904–14 [Google Scholar]
  93. Kippeny TC, Bowers MJ, Dukes AD III, McBride JR, Orndorff RL. 93.  et al. 2008. Effects of surface passivation on the exciton dynamics of CdSe nanocrystals as observed by ultrafast fluorescence upconversion spectroscopy. J. Chem. Phys. 128:084713 [Google Scholar]
  94. Wang MF, Oh JK, Dykstra TE, Lou XD, Scholes GD, Winnik MA. 94.  2006. Surface modification of CdSe and CdSe/ZnS semiconductor nanocrystals with poly(N,N-dimethylaminoethyl methacrylate). Macromolecules 39:3664–72 [Google Scholar]
  95. Knowles KE, Tice DB, McArthur EA, Solomon GC, Weiss EA. 95.  2009. Chemical control of the photoluminescence of CdSe quantum dot–organic complexes with a series of para-substituted aniline ligands. J. Am. Chem. Soc. 132:1041–50 [Google Scholar]
  96. Landes C, Burda C, Braun M, El-Sayed M. 96.  2001. Photoluminescence of CdSe nanoparticles in the presence of a hole acceptor: n-butylamine. J. Phys. Chem. B 105:2981–86 [Google Scholar]
  97. Omogo B, Aldana JF, Heyes CD. 97.  2013. Radiative and nonradiative lifetime engineering of quantum dots in multiple solvents by surface atom stoichiometry and ligands. J. Phys. Chem. C 117:2317–27 [Google Scholar]
  98. Bae WK, Joo J, Padilha LA, Won J, Lee DC. 98.  et al. 2012. Highly effective surface passivation of PbSe quantum dots through reaction with molecular chlorine. J. Am. Chem. Soc. 134:20160–68 [Google Scholar]
  99. Rossetti R, Brus L. 99.  1982. Electron-hole recombination emission as a probe of surface chemistry in aqueous CdS colloids. J. Phys. Chem. 86:4470–72 [Google Scholar]
  100. Blaudeck T, Zenkevich EI, Cichos F, von Borczyskowski C. 100.  2008. Probing wave functions at semiconductor quantum-dot surfaces by non-FRET photoluminescence quenching. J. Phys. Chem. C 112:20251–57 [Google Scholar]
  101. Kovalenko MV, Schaller RD, Jarzab D, Loi MA, Talapin DV. 101.  2012. Inorganically functionalized PbS-CdS colloidal nanocrystals: integration into amorphous chalcogenide glass and luminescent properties. J. Am. Chem. Soc. 134:2457–60 [Google Scholar]
  102. Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D. 102.  et al. 2001. Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B 105:8861–71 [Google Scholar]
  103. Aldana J, Wang YA, Peng X. 103.  2001. Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Am. Chem. Soc. 123:8844–50 [Google Scholar]
  104. Wuister SF, de Mello Donegá C, Meijerink A. 104.  2004. Influence of thiol capping on the exciton luminescence and decay kinetics of CdTe and CdSe quantum dots. J. Phys. Chem. B 108:17393–97 [Google Scholar]
  105. Munro AM, Ginger DS. 105.  2008. Photoluminescence quenching of single CdSe nanocrystals by ligand adsorption. Nano Lett. 8:2585–90 [Google Scholar]
  106. Jeong S, Achermann M, Nanda J, Lvanov S, Klimov VI, Hollingsworth JA. 106.  2005. Effect of the thiol-thiolate equilibrium on the photophysical properties of aqueous CdSe/ZnS nanocrystal quantum dots. J. Am. Chem. Soc. 127:10126–27 [Google Scholar]
  107. Koole R, Schapotschnikow P, de Mello Donegá C, Vlugt TJH, Meijerink A. 107.  2008. Time-dependent photoluminescence spectroscopy as a tool to measure the ligand exchange kinetics on a quantum dot surface. ACS Nano 2:1703–14 [Google Scholar]
  108. Barkhouse DAR, Pattantyus-Abraham AG, Levina L, Sargent EH. 108.  2008. Thiols passivate recombination centers in colloidal quantum dots leading to enhanced photovoltaic device efficiency. ACS Nano 2:2356–62 [Google Scholar]
  109. Wuister SF, Swart I, van Driel F, Hickey SG, de Mello Donegá C. 109.  2003. Highly luminescent water-soluble CdTe quantum dots. Nano Lett. 3:503–7 [Google Scholar]
  110. Breus VV, Heyes CD, Nienhaus GU. 110.  2007. Quenching of CdSe-ZnS core-shell quantum dot luminescence by water-soluble thiolated ligands. J. Phys. Chem. C 111:18589–94 [Google Scholar]
  111. Liu I-S, Lo H-H, Chien C-T, Lin Y-Y, Chen C-W. 111.  et al. 2008. Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands. J. Mater. Chem. 18:675–82 [Google Scholar]
  112. Jasieniak J, Mulvaney P. 112.  2007. From Cd-rich to Se-rich: the manipulation of CdSe nanocrystal surface stoichiometry. J. Am. Chem. Soc. 129:2841–48 [Google Scholar]
  113. Wei HH-Y, Evans CM, Swartz BD, Neukirch AJ, Young J. 113.  et al. 2012. Colloidal semiconductor quantum dots with tunable surface composition. Nano Lett. 12:4465–71 [Google Scholar]
  114. Stobbe S, Hvam JM, Lodahl P. 114.  2011. On the interpretation of wave function overlaps in quantum dots. Phys. Status Solidi B 248:855–58 [Google Scholar]
  115. Schreuder MA, McBride JR, Dukes AD, Sammons JA, Rosenthal SJ. 115.  2009. Control of surface state emission via phosphonic acid modulation in ultrasmall CdSe nanocrystals: the role of ligand electronegativity. J. Phys. Chem. C 113:8169–76 [Google Scholar]
  116. Rosson TE, Claiborne SM, McBride JR, Stratton BS, Rosenthal SJ. 116.  2012. Bright white light emission from ultrasmall cadmium selenide nanocrystals. J. Am. Chem. Soc. 134:8006–9 [Google Scholar]
  117. Bowers MJ, McBride JR, Rosenthal SJ. 117.  2005. White-light emission from magic-sized cadmium selenide nanocrystals. J. Am. Chem. Soc. 127:15378–79 [Google Scholar]
  118. Layek A, De S, Thorat R, Chowdhury A. 118.  2011. Spectrally resolved photoluminescence imaging of ZnO nanocrystals at single-particle levels. J. Phys. Chem. Lett. 2:1241–47 [Google Scholar]
  119. Sapra S, Mayilo S, Klar TA, Rogach AL, Feldmann J. 119.  2007. Bright white-light emission from semiconductor nanocrystals: by chance and by design. Adv. Mater. 19:569–72 [Google Scholar]
  120. Chandramohan S, Ryu BD, Kim HK, Hong C-H, Suh E-K. 120.  2011. Trap-state-assisted white light emission from a CdSe nanocrystal integrated hybrid light-emitting diode. Opt. Lett. 36:802–4 [Google Scholar]
  121. Bowers MJ II, McBride JR, Garrett MD, Sammons JA, Dukes AD III. 121.  et al. 2009. Structure and ultrafast dynamics of white-light-emitting CdSe nanocrystals. J. Am. Chem. Soc. 131:5730–31 [Google Scholar]
  122. Xie H-Y, Liang J-G, Zhang Z-L, Liu Y, He Z-K, Pang D-W. 122.  2004. Luminescent CdSe-ZnS quantum dots as selective Cu2+ probe. Spectrochim. Acta A 60:2527–30 [Google Scholar]
  123. Zhang JZ, Geselbracht MJ, Ellis AB. 123.  1993. Binding of fullerenes to cadmium sulfide and cadmium selenide surfaces: photoluminescence as a probe of strong, Lewis acidity-driven, surface adduct formation. J. Am. Chem. Soc. 115:7789–93 [Google Scholar]
  124. Park JJ, Lacerda SHDP, Stanley SK, Vogel BM, Kim S. 124.  et al. 2008. Langmuir adsorption study of the interaction of CdSe/ZnS quantum dots with model substrates: influence of substrate surface chemistry and pH. Langmuir 25:443–50 [Google Scholar]
  125. Donakowski MD, Godbe JM, Sknepnek R, Knowles KE, Olvera de la Cruz M, Weiss EA. 125.  2010. A quantitative description of the binding equilibria of para-substituted aniline ligands and CdSe quantum dots. J. Phys. Chem. C 114:22526–34 [Google Scholar]
  126. Hughes BK, Ruddy DA, Blackburn JL, Smith DK, Bergren MR. 126.  et al. 2012. Control of PbSe quantum dot surface chemistry and photophysics using an alkylselenide ligand. ACS Nano 6:5498–506 [Google Scholar]
  127. Chappell HE, Hughes BK, Beard MC, Nozik AJ, Johnson JC. 127.  2011. Emission quenching in PbSe quantum dot arrays by short-term air exposure. J. Phys. Chem. Lett. 2:889–93 [Google Scholar]
  128. Jones M, Kumar S, Lo SS, Scholes GD. 128.  2008. Exciton trapping and recombination in type II CdSe/CdTe nanorod heterostructures. J. Phys. Chem. C 112:5423–31 [Google Scholar]
  129. Jones M, Lo SS, Scholes GD. 129.  2009. Quantitative modeling of the role of surface traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics. Proc. Natl. Acad. Sci. USA 106:3011–16 [Google Scholar]
  130. Mooney J, Krause MM, Saari JI, Kambhampati P. 130.  2013. Challenge to the deep-trap model of the surface in semiconductor nanocrystals. Phys. Rev. B 87:081201 [Google Scholar]
  131. Valerini D, Cretí A, Lomascolo M, Manna L, Cingolani R, Anni M. 131.  2005. Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix. Phys. Rev. B 71:235409 [Google Scholar]
  132. Jortner J. 132.  1976. Temperature dependent activation energy for electron transfer between biological molecules. J. Chem. Phys. 64:4860–67 [Google Scholar]
  133. Kim T-H, Cho K-S, Lee EK, Lee SJ, Chae J. 133.  et al. 2011. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics 5:176–82 [Google Scholar]
  134. Sun Q, Wang YA, Li LS, Wang DY, Zhu T. 134.  et al. 2007. Bright, multicoloured light-emitting diodes based on quantum dots. Nat. Photonics 1:717–22 [Google Scholar]
  135. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S. 135.  et al. 2005. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–44 [Google Scholar]
  136. Nozik AJ. 136.  2002. Quantum dot solar cells. Physica E 14:115–20 [Google Scholar]
  137. Semonin OE, Luther JM, Choi S, Chen H-Y, Gao J. 137.  et al. 2011. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334:1530–33 [Google Scholar]
  138. Zhu H, Song N, Rodríguez-Córdoba W, Lian T. 138.  2012. Wave function engineering for efficient extraction of up to nineteen electrons from one CdSe/CdS quasi-type II quantum dot. J. Am. Chem. Soc. 134:4250–57 [Google Scholar]
  139. Nann T, Ibrahim SK, Woi PM, Xu S, Ziegler J, Pickett CJ. 139.  2010. Water splitting by visible light: a nanophotocathode for hydrogen production. Angew. Chem. Int. Ed. Engl. 49:1574–77 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error