1932

Abstract

The photophysical behavior of organic semiconductors is governed by their excitonic states. In this review, I classify the three different exciton types (Frenkel singlet, Frenkel triplet, and charge transfer) typically encountered in organic semiconductors. Experimental challenges that arise in the study of solid-state organic systems are discussed. The steady-state spectroscopy of intermolecular delocalized Frenkel excitons is described, using crystalline tetracene as an example. I consider the problem of a localized exciton diffusing in a disordered matrix in detail, and experimental results on conjugated polymers and model systems suggest that energetic disorder leads to subdiffusive motion. Multiexciton processes such as singlet fission and triplet fusion are described, emphasizing the role of spin state coherence and magnetic fields in studying singlet ↔ triplet pair interconversion. Singlet fission provides an example of how all three types of excitons (triplet, singlet, and charge transfer) may interact to produce useful phenomena for applications such as solar energy conversion.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040513-103654
2014-04-01
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/physchem/65/1/annurev-physchem-040513-103654.html?itemId=/content/journals/10.1146/annurev-physchem-040513-103654&mimeType=html&fmt=ahah

Literature Cited

  1. Scholes GD, Rumbles G. 1.  2006. Excitons in nanoscale systems. Nat. Mater. 5:683–96 [Google Scholar]
  2. Broude VL, Rashba EI, Sheka EF. 2.  1985. Spectroscopy of Molecular Excitons. New York: Springer-Verlag [Google Scholar]
  3. Craig DP, Walmsley SH. 3.  1968. Excitons in Molecular Crystals New York: W.A. Benjamin [Google Scholar]
  4. Robinson GW. 4.  1970. Electronic and vibrational excitons in molecular crystals. Annu. Rev. Phys. Chem. 21:429–74 [Google Scholar]
  5. Davydov AS. 5.  1971. Theory of Molecular Excitons New York: Plenum [Google Scholar]
  6. Philpott MR. 6.  1973. Modern aspects of exciton theory. Adv. Chem. Phys. 23:227–341 [Google Scholar]
  7. Agranovich VM, Galanin MD. 7.  1982. Electronic Excitation Energy Transfer in Condensed Matter Amsterdam: North-Holland [Google Scholar]
  8. Pope M, Swenberg CE. 8.  1999. Electronic Processes in Organic Crystals and Polymers New York: Oxford Univ. Press [Google Scholar]
  9. Barford W. 9.  2005. Electronic and Optical Properties of Conjugated Polymers New York: Oxford Univ. Press [Google Scholar]
  10. Anderson PW. 10.  1963. Concepts in Solids New York: W.A. Benjamin [Google Scholar]
  11. Egri I. 11.  1979. A simple model for the unified treatment of Wannier and Frenkel excitons. J. Phys. C 12:1843–53 [Google Scholar]
  12. Aslangul C, Saint-James D. 12.  1983. Excitons in a 1-D crystal with electron-hole interaction of variable range and strength. J. Phys. 44:359–74 [Google Scholar]
  13. Munn RW. 13.  1984. Exciton-phonon coupling in the Frenkel and Wannier limits. Chem. Phys. 84:413–20 [Google Scholar]
  14. Merrifield RE. 14.  1961. Ionized states in a one-dimensional molecular crystal. J. Chem. Phys. 34:1835–39 [Google Scholar]
  15. Murrell JN, Tanaka J. 15.  1964. The theory of the electronic spectra of aromatic hydrocarbon dimers. Mol. Phys. 7:363–80 [Google Scholar]
  16. Hernandez JP, Choi S-I. 16.  1969. Optical absorption by charge-transfer excitons in linear molecular crystals. J. Chem. Phys. 50:1524–32 [Google Scholar]
  17. Klein DJ, Soos ZG. 17.  1971. Site representation for charge transfer excitations in molecular crystals. Mol. Phys. 20:1013–24 [Google Scholar]
  18. Yamagata H, Spano FC. 18.  2011. Vibronic coupling in quantum wires: applications to polydiacetylene. J. Chem. Phys. 135:054906 [Google Scholar]
  19. Yamagata H, Spano FC. 19.  2012. Interplay between intrachain and interchain interactions in semiconducting polymer assemblies: the HJ-aggregate model. J. Chem. Phys. 136:184901 [Google Scholar]
  20. McGlynn SP. 20.  1969. Molecular Spectroscopy of the Triplet State Englewood Cliffs, NJ: Prentice Hall [Google Scholar]
  21. Baldo MA, O'Brien DF, You Y, Shoustikov A, Sibley S. 21.  et al. 1998. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 305:151–54 [Google Scholar]
  22. Yersin H, Rausch AF, Czerwieniec R, Hofbeck T, Fischer T. 22.  2011. The triplet state of organo-transition metal compounds: triplet harvesting and singlet harvesting for efficient OLEDs. Coord. Chem. Rev. 255:2622–52 [Google Scholar]
  23. Petelenz P. 23.  1976. Mixing of Frenkel excitons and ionic excited states of a linear molecular crystal with two molecules in the unit cell. Phys. Stat. Solidi B 78:489–500 [Google Scholar]
  24. Petelenz B, Petelenz P, Shurvell HF, Smith VH. 24.  1988. Reconsideration of the electroabsorption spectra of the tetracene and pentacene crystals. Chem. Phys. 119:25–39 [Google Scholar]
  25. Yamagata H, Norton J, Hontz E, Olivier Y, Beljonne D. 25.  et al. 2011. The nature of singlet excitons in oligoacene molecular crystals. J. Chem. Phys. 134:204703 [Google Scholar]
  26. Tanaka J. 26.  1963. The electronic spectra of aromatic molecular crystals. II. The crystal structure and spectra of perylene. Bull. Chem. Soc. Jpn. 36:1237–49 [Google Scholar]
  27. Matsui A. 27.  1990. Picosecond spectroscopy of exciton relaxation in organic crystals. J. Opt. Soc. Am. B 7:1615–29 [Google Scholar]
  28. Yago T, Tamaki Y, Furube A, Katoh R. 28.  2008. Self-trapping limited exciton diffusion in a monomeric perylene crystal as revealed by femtosecond transient absorption microscopy. Phys. Chem. Chem. Phys. 10:4435–41 [Google Scholar]
  29. Nguyen T, Doan V, Schwartz BJ. 29.  1999. Conjugated polymer aggregates in solution: control of interchain interactions. J. Chem. Phys. 110:4068–78 [Google Scholar]
  30. Warta W, Stehle R, Karl N. 30.  1985. Ultrapure, high mobility organic photoconductors. Appl. Phys. A 36:163–70 [Google Scholar]
  31. de Boer RWI, Gershenson ME, Morpurgo AF, Podzorov V. 31.  2004. Organic single-crystal field-effect transistors. Phys. Stat. Solidi A 201:1302–31 [Google Scholar]
  32. Philpott MR. 32.  1980. Optical reflection spectroscopy of organic solids. Annu. Rev. Phys. Chem. 31:97–129 [Google Scholar]
  33. Tavazzi S, Campione M, Laicini M, Raimondo L, Borghesi A, Spearman P. 33.  2006. Measured Davydov splitting in oligothiophene crystals. J. Chem. Phys. 124:194710 [Google Scholar]
  34. Baldo M, Deutsch M, Burrows P, Gossenberger H, Gerstenberg M. 34.  et al. 1998. Organic vapor phase deposition. Adv. Mater. 10:1505–14 [Google Scholar]
  35. Nalwa HS, Kasai H, Okada S, Oikawa H, Matsuda H. 35.  et al. 1993. Fabrication of organic nanocrystals for electronics and photonics. Adv. Mater. 5:758–60 [Google Scholar]
  36. Chin KK, Natarajan A, Gard MN, Campos LM, Shepherd H. 36.  et al. 2007. Pump-probe spectroscopy and circular dichroism of nanocrystalline benzophenone: towards absolute kinetic measurements in solid state photochemical reactions. Chem. Commun. 2007:4266–68 [Google Scholar]
  37. Greene BI, Millard RR. 37.  1985. Singlet-exciton fusion in molecular solids: a direct subpicosecond determination of the time-dependent annihilation rates. Phys. Rev. Lett. 55:1331–34 [Google Scholar]
  38. Barford W. 38.  2007. Exciton transfer integrals between polymer chains. J. Chem. Phys. 126:134905 [Google Scholar]
  39. Manas ES, Spano FC. 39.  1998. Absorption and spontaneous emission in aggregates of conjugated polymers. J. Chem. Phys. 109:8087–101 [Google Scholar]
  40. Cornil J, dos Santos DA, Crispin X, Silbey R, Bredas JL. 40.  1998. Influence of interchain interactions on the absorption and luminescence of conjugated oligomers and polymers: a quantum-chemical characterization. J. Am. Chem. Soc. 120:1289–99 [Google Scholar]
  41. Bassler H, Schweitzer B. 41.  1999. Site-selective fluorescence spectroscopy of conjugated polymers and oligomers. Acc. Chem. Res. 32:173–82 [Google Scholar]
  42. Scholes GD, Larsen DS, Fleming GR, Rumbles G, Burn PL. 42.  2000. Origin of line broadening in the electronic absorption spectra of conjugated polymers: three-pulse-echo studies of MEH-PPV in toluene. Phys. Rev. B 61:13670–78 [Google Scholar]
  43. Basu S. 43.  1964. Theory of solvent effects on molecular electronic spectra. Adv. Quantum Chem. 1:145–69 [Google Scholar]
  44. Kasha M, Rawls HR, El-Bayoumi MA. 44.  1965. The exciton model in molecular spectroscopy. Pure Appl. Chem. 11:371–92 [Google Scholar]
  45. Spano FC. 45.  2010. The spectral signatures of Frenkel polarons in H- and J-aggregates. Acc. Chem. Res. 43:429–39 [Google Scholar]
  46. Muccini M, Schneider M, Taliani C, Sokolowski M, Umbach E. 46.  et al. 2000. Effect of wave-function delocalization on the exciton splitting in organic conjugated materials. Phys. Rev. B 62:6296–300 [Google Scholar]
  47. Spano FC. 47.  2006. Excitons in conjugated oligomer aggregates, films and crystals. Annu. Rev. Phys. Chem. 57:217–43 [Google Scholar]
  48. Lim SH, Bjorklund TG, Spano FC, Bardeen CJ. 48.  2004. Exciton delocalization and superradiance in tetracene thin films and nanoaggregates. Phys. Rev. Lett. 92:107402 [Google Scholar]
  49. Voigt M, Langner A, Schouwink P, Lupton JM, Mahrt RF, Sokolowski M. 49.  2007. Picosecond time resolved photoluminescence spectroscopy of tetracene on highly oriented pyrolytic graphite: dynamical relaxation, trap emission, and superradiance. J. Chem. Phys. 127:114705 [Google Scholar]
  50. Camposeo A, Polo M, Tavazzi S, Silvestri L, Spearman P. 50.  et al. 2010. Polarized superradiance from delocalized exciton transitions in tetracene single crystals. Phys. Rev. B 81:033306 [Google Scholar]
  51. Ahn TS, Muller AM, Al-Kaysi RO, Spano FC, Norton JE. 51.  et al. 2008. Experimental and theoretical study of temperature dependent exciton delocalization and relaxation in anthracene thin films. J. Chem. Phys. 128:054505 [Google Scholar]
  52. Lim SH, Bjorklund TG, Bardeen CJ. 52.  2004. Characterization of individual submicron distyrylbenzene aggregates using temperature-dependent picosecond fluorescence and atomic force microscopy. J. Phys. Chem. B 108:4289–95 [Google Scholar]
  53. Meinardi F, Cerminara M, Sassella A, Borghesi A, Spearman P. 53.  et al. 2002. Intrinsic excitonic luminescence in odd and even numbered oligothiophenes. Phys. Rev. Lett. 89:157403 [Google Scholar]
  54. Sun H, Zhao Z, Spano FC, Beljonne D, Cornil J. 54.  et al. 2003. Absorption and emission in quaterthienyl thin films. Adv. Mater. 15:818–22 [Google Scholar]
  55. Niles ET, Roehling JD, Yamagata H, Wise AJ, Spano FC. 55.  et al. 2012. J-aggregate behavior in poly-3-hexylthiophene nanofibers. J. Phys. Chem. Lett. 3:259–63 [Google Scholar]
  56. Clark J, Silva C, Friend RH, Spano FC. 56.  2007. Role of intermolecular coupling in the photophysics of disordered organic semiconductors: aggregate emission in regioregular polythiophene. Phys. Rev. Lett. 98:206406 [Google Scholar]
  57. Hochstrasser RM. 57.  1962. The luminescence of organic molecular crystals. Rev. Mod. Phys. 34:531–50 [Google Scholar]
  58. Sebastian L, Weiser G, Peter G, Bassler H. 58.  1983. Charge-transfer transitions in crystalline anthracene and their role in photoconductivity. Chem. Phys. 75:103–14 [Google Scholar]
  59. Zhu X-Y, Yang Q, Muntwiler M. 59.  2009. Charge-transfer excitons at organic semiconductor surfaces and interfaces. Acc. Chem. Res. 42:1779–87 [Google Scholar]
  60. Peumans P, Uchida S, Forrest SR. 60.  2003. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature 425:158–62 [Google Scholar]
  61. Menke SM, Luhman WA, Holmes RJ. 61.  2013. Tailored exciton diffusion in organic photovoltaic cells for enhanced power conversion efficiency. Nat. Mater. 12:152–57 [Google Scholar]
  62. Förster T. 62.  1948. Intermolecular energy migration and fluorescence. Ann. Phys. 2:55–75 [Google Scholar]
  63. Gochanour CR, Andersen HC, Fayer MD. 63.  1979. Electronic excited state transport in solution. J. Chem. Phys. 70:4254–71 [Google Scholar]
  64. Haan SW, Zwanzig R. 64.  1978. Förster migration of electronic excitation between randomly distributed molecules. J. Chem. Phys. 68:1879–83 [Google Scholar]
  65. Loring RF, Andersen HC, Fayer MD. 65.  1982. Electronic excited state transport and trapping in solution. J. Chem. Phys. 76:2015–27 [Google Scholar]
  66. Jang S, Shin KJ, Lee S. 66.  1995. Effects of excitation migration and translational diffusion in the luminescence quenching dynamics. J. Chem. Phys. 102:815–27 [Google Scholar]
  67. Fennel F, Lochbrunner S. 67.  2011. Long distance energy transfer in a polymer matrix doped with a perylene dye. Phys. Chem. Chem. Phys. 13:3527–33 [Google Scholar]
  68. Al-Kaysi RO, Ahn TS, Muller AM, Bardeen CJ. 68.  2006. The photophysical properties of chromophores at high (100 mM and above) concentrations in polymers and as neat solids. Phys. Chem. Chem. Phys. 8:3453–59 [Google Scholar]
  69. Schlosser M, Lochbrunner S. 69.  2006. Exciton migration by ultrafast Förster transfer in highly doped matrices. J. Phys. Chem. B 110:6001–9 [Google Scholar]
  70. Krueger BP, Scholes GD, Fleming GR. 70.  1998. Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J. Phys. Chem. B 102:5378–86 [Google Scholar]
  71. Beenken WJD, Pullerits T. 71.  2004. Excitonic coupling in polythiophenes: comparison of different calculation methods. J. Chem. Phys. 120:2490–95 [Google Scholar]
  72. Scholes GD. 72.  2003. Long-range resonance energy transfer in molecular systems. Annu. Rev. Phys. Chem. 54:57–87 [Google Scholar]
  73. Wong KF, Bagchi B, Rossky PJ. 73.  2004. Distance and orientational dependence of excitation transfer rates in conjugated systems: beyond the Förster theory. J. Phys. Chem. A 108:5752–63 [Google Scholar]
  74. Ortiz W, Krueger BP, Kleiman VD, Krause JL, Roitberg AE. 74.  2005. Energy transfer in the nanostar: the role of Coulombic coupling and dynamics. J. Phys. Chem. B 109:11512–19 [Google Scholar]
  75. Beljonne D, Curuchet C, Scholes GD, Silbey RJ. 75.  2009. Beyond Förster resonance energy transfer in biological and nanoscale systems. J. Phys. Chem. B 113:6583–99 [Google Scholar]
  76. Gaab KM, Bardeen CJ. 76.  2004. Wavelength and temperature dependence of the femtosecond pump-probe anisotropies in the conjugated polymer MEH-PPV: implications for energy transfer dynamics. J. Phys. Chem. B 108:4619–26 [Google Scholar]
  77. Gochanour CR, Fayer MD. 77.  1981. Electronic excited-state transport in random systems: time-resolved fluorescence depolarization measurements. J. Phys. Chem. 85:1989–94 [Google Scholar]
  78. Gaab KM, Bardeen CJ. 78.  2004. Nonstationary rotational diffusion in room temperature liquids measured by femtosecond three-pulse transient anisotropy. Phys. Rev. Lett. 93:056001 [Google Scholar]
  79. Gaab KM, Bardeen CJ. 79.  2004. Anomalous exciton diffusion in the conjugated polymer MEH-PPV measured using a three-pulse pump-dump-probe anisotropy experiment. J. Phys. Chem. A 108:10801–6 [Google Scholar]
  80. Blom PWM, Vissenberg MCJM. 80.  1998. Dispersive hole transport in poly(p-phenylene vinylene). Phys. Rev. Lett. 80:3819–22 [Google Scholar]
  81. Colby KA, Burdett JJ, Frisbee RF, Zhu L, Dillon RJ, Bardeen CJ. 81.  2010. Electronic energy migration on different time scales: concentration dependence of the time-resolved anisotropy and fluorescence quenching of Lumogen Red in poly(methyl methacrylate). J. Phys. Chem. A 114:3471–82 [Google Scholar]
  82. Colby KA, Bardeen CJ. 82.  2011. Electronic energy migration in solid versus liquid host matrices for concentrated perylenediimide dye solutions. J. Phys. Chem. A 115:7574–81 [Google Scholar]
  83. Ahn TS, Wright N, Bardeen CJ. 83.  2007. The effects of orientational and energetic disorder on Forster energy migration along a one-dimensional lattice. Chem. Phys. Lett. 446:43–48 [Google Scholar]
  84. Schonherr G, Eiermann R, Bassler H, Silver M. 84.  1980. Dispersive exciton transport in a hopping system with Guassian energy distribution. Chem. Phys. 52:287–98 [Google Scholar]
  85. Athansopoulos S, Emelianova EV, Walker AB, Beljonne D. 85.  2009. Exciton diffusion in energetically disordered organic materials. Phys. Rev. B 80:195209 [Google Scholar]
  86. Vlaming SM, Malyshev VA, Eisfeld A, Knoester J. 86.  2013. Subdiffusive exciton motion in systems with heavy-tailed disorder. J. Chem. Phys. 138:214316 [Google Scholar]
  87. Silinsh EA, Capek V. 87.  1994. Organic Molecular Crystals: Interaction, Localization, and Transport Phenomena New York: AIP [Google Scholar]
  88. Emelianova EV, Athanasopoulos S, Silbey RJ, Beljonne D. 88.  2010. 2D excitons as primary energy carriers in organic crystals: the case of oligoacenes. Phys. Rev. Lett. 104:206405 [Google Scholar]
  89. Jang S, Newton MD, Silbey RJ. 89.  2004. Multichromophoric Förster resonance energy transfer. Phys. Rev. Lett. 92:218301 [Google Scholar]
  90. Scholes GD. 90.  2002. Designing light-harvesting antenna systems based on superradiant molecular aggregates. Chem. Phys. 275:375–86 [Google Scholar]
  91. Kuhn H, Kuhn C. 91.  1996. Chromophore coupling effects. J-Aggregates T Kobayashi 1–40 Singapore: World Sci. [Google Scholar]
  92. Powell RC, Soos ZG. 92.  1975. Singlet exciton energy transfer in organic solids. J. Lumin. 11:1–45 [Google Scholar]
  93. Adams DM, Kerimo J, O'Connor DB, Barbara PF. 93.  1999. Spatial imaging of singlet energy migration in perylene bis(phenethylimide) thin films. J. Phys. Chem. A 103:10138–43 [Google Scholar]
  94. Irkhin P, Biaggio I. 94.  2011. Direct imaging of anisotropic exciton diffusion and triplet diffusion length in rubrene single crystals. Phys. Rev. Lett. 107:017402 [Google Scholar]
  95. Muller AM, Bardeen CJ. 95.  2007. Using a streak camera to resolve the motion of molecular excited states with picosecond time resolution and 150 nm spatial resolution. J. Phys. Chem. C 111:12483–89 [Google Scholar]
  96. Engel GS, Calhoun TR, Read EL, Ahn TK, Mancal T. 96.  et al. 2007. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446:782–86 [Google Scholar]
  97. Scholes GD. 97.  2010. Quantum-coherent electronic energy transfer: Did nature think of it first?. J. Phys. Chem. Lett. 1:2–8 [Google Scholar]
  98. Parker CA, Hatchard CG, Joyce TA. 98.  1965. Selective and mutual sensitization of delayed fluorescence. Nature 205:1282–84 [Google Scholar]
  99. Ryasnyanskiy A, Biaggio I. 99.  2011. Triplet exciton dynamics in rubrene single crystals. Phys. Rev. B 84:193203 [Google Scholar]
  100. Insangulov RR, Kozlov DV, Castellano FN. 100.  2005. Low power upconversion using MLCT sensitizers. Chem. Commun. 2005:3776–78 [Google Scholar]
  101. Baluschev S, Miteva T, Yakutkin V, Nelles G, Yasuda A, Wegner G. 101.  2006. Up-conversion fluorescence: noncoherent excitation by sunlight. Phys. Rev. Lett. 97:143903 [Google Scholar]
  102. Singh S, Jones WJ, Siebrand W, Stoicheff BP, Schneider WG. 102.  1965. Laser generation of excitons and fluorescence in anthracene crystals. J. Chem. Phys. 42:330–42 [Google Scholar]
  103. Swenberg CE, Geacintov NE. 103.  1973. Excitonic interactions in organic solids. Organic Molecular Photophysics 1 JB Birks 489–564 New York: Wiley [Google Scholar]
  104. Smith MB, Michl J. 104.  2010. Singlet fission. Chem. Rev. 110:6891–936 [Google Scholar]
  105. Shockley W, Queisser HJ. 105.  1961. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32:510–19 [Google Scholar]
  106. Hanna MC, Nozik AJ. 106.  2006. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100:074510 [Google Scholar]
  107. Shpaisman H, Niitsoo O, Lubomirsky I, Cahen D. 107.  2008. Can up- and down-conversion and multi-exciton generation improve photovoltaics?. Sol. Energy Mater. Sol. Cells 92:1541–46 [Google Scholar]
  108. Paci I, Johnson JC, Chen X, Rana G, Popovic D. 108.  et al. 2006. Singlet fission for dye-sensitized solar cells: Can a suitable sensitizer be found?. J. Am. Chem. Soc. 128:16546–53 [Google Scholar]
  109. Minami T, Ito S, Nakano M. 109.  2013. Fundamental of diradical-character-based molecular design for singlet fission. J. Phys. Chem. Lett. 4:2133–37 [Google Scholar]
  110. Lanzani G, Cerullo G, Zavelani-Rossi M, Silvestri SD. 110.  2001. Triplet-exciton generation mechanism in a new soluble (red-phase) polydiacetylene. Phys. Rev. Lett. 87:187402 [Google Scholar]
  111. Wang C, Tauber MJ. 111.  2010. High-yield singlet fission in a zeaxanthin aggregate observed by picosecond resonance Raman spectroscopy. J. Am. Chem. Soc. 132:13988–91 [Google Scholar]
  112. Rao A, Wilson MWB, Hodgkiss JM, Albert-Seifried S, Bassler H, Friend RH. 112.  2010. Exciton fission and charge generation via triplet excitons in pentacene/C60 bilayers. J. Am. Chem. Soc. 132:12698–703 [Google Scholar]
  113. Johnson JC, Nozik AJ, Michl J. 113.  2010. High triplet yield from singlet fission in a thin film of 1,3-diphenylisobenzofuran. J. Am. Chem. Soc. 132:16302–3 [Google Scholar]
  114. Wilson MWB, Rao A, Clark J, Kumar RSS, Brida D. 114.  et al. 2011. Ultrafast dynamics of exciton fission in polycrystalline pentacene. J. Am. Chem. Soc. 133:11830–33 [Google Scholar]
  115. Chan WL, Ligges M, Jailaubekov A, Kaake L, Miaja-Avila L, Zhu XY. 115.  2011. Observing the multiexciton state in singlet fission and ensuing ultrafast multielectron transfer. Science 334:1541–45 [Google Scholar]
  116. Chan WL, Ligges M, Zhu XY. 116.  2012. The energy barrier in singlet fission can be overcome through coherent coupling and entropic gain. Nat. Chem. 4:840–45 [Google Scholar]
  117. Roberts ST, McAnally ER, Mastron JN, Webber DH, Whited MT. 117.  et al. 2012. Efficient singlet fission discovered in a disordered acene film. J. Am. Chem. Soc. 134:6388–400 [Google Scholar]
  118. Swenberg CE, Stacy WT. 118.  1968. Bimolecular radiationless transitions in crystalline tetracene. Chem. Phys. Lett. 2:327–28 [Google Scholar]
  119. Burdett JJ, Bardeen CJ. 119.  2012. Quantum beats in crystalline tetracene delayed fluorescence due to triplet pair coherences produced by direct singlet fission. J. Am. Chem. Soc. 134:8597–607 [Google Scholar]
  120. Burdett JJ, Gosztola D, Bardeen CJ. 120.  2011. The dependence of singlet exciton relaxation on excitation density and temperature in polycrystalline tetracene thin films: kinetic evidence for a dark intermediate state and implications for singlet fission. J. Chem. Phys. 135:214508 [Google Scholar]
  121. Burdett JJ, Bardeen CJ. 121.  2013. The dynamics of singlet fission in crystalline tetracene and covalent analogs. Acc. Chem. Res. 46:1312–20 [Google Scholar]
  122. Burdett JJ, Muller AM, Gosztola D, Bardeen CJ. 122.  2010. Excited state dynamics in solid and monomeric tetracene: the roles of superradiance and exciton fission. J. Chem. Phys. 133:144506 [Google Scholar]
  123. Muller AM, Avlasevich YS, Mullen K, Bardeen CJ. 123.  2006. Evidence for exciton fission and fusion in a covalently linked tetracene dimer. Chem. Phys. Lett. 421:518–22 [Google Scholar]
  124. Muller AM, Avlasevich YS, Schoeller WW, Mullen K, Bardeen CJ. 124.  2007. Exciton fission and fusion in bis(tetracene) molecules with different covalent linker structures. J. Am. Chem. Soc. 129:14240–50 [Google Scholar]
  125. Chabr M, Wild UP, Funfschilling J, Zschokke-Granacher I. 125.  1981. Quantum beats of prompt fluorescence in tetracene crystals. Chem. Phys. 57:425–30 [Google Scholar]
  126. Funfschilling J, Zschokke-Granacher I, Canonica S, Wild UP. 126.  1985. Quantum beats in the fluorescence decay of tetracene crystals. Helv. Phys. Acta 58:347–54 [Google Scholar]
  127. Yarmus L, Rosenthal J, Chopp M. 127.  1972. EPR of triplet excitons in tetracene crystals: spin polarization and the role of singlet exciton fission. Chem. Phys. Lett. 16:477–81 [Google Scholar]
  128. Lupton JM, McCamey DR, Boehme C. 128.  2010. Coherent spin manipulation in molecular semiconductors: getting a handle on organic spintronics. ChemPhysChem 11:3040–58 [Google Scholar]
  129. Gumstrup EM, Johnson JC, Damrauer NH. 129.  2010. Enhanced triplet formation in polycrystalline tetracene films by femtosecond optical-pulse shaping. Phys. Rev. Lett. 105:257403 [Google Scholar]
  130. Geacintov N, Pope M, Vogel F. 130.  1969. Effect of magnetic field on the fluorescence of tetracene crystals: exciton fission. Phys. Rev. Lett. 22:593–96 [Google Scholar]
  131. Merrifield RE, Avakian P, Groff RP. 131.  1969. Fission of singlet excitons into pairs of triplet excitons in tetracene crystals. Chem. Phys. Lett. 3:155–57 [Google Scholar]
  132. Piland GB, Burdett JJ, Kurunthu D, Bardeen CJ. 132.  2013. Magnetic field effects on singlet fission and fluorescence decay dynamics in amorphous rubrene. J. Phys. Chem. C 117:1224–36 [Google Scholar]
  133. Merrifield RE. 133.  1968. Theory of magnetic field effects on the mutual annihilation of triplet excitons. J. Chem. Phys. 48:4318–19 [Google Scholar]
  134. Johnson RC, Merrifield RE. 134.  1970. Effects of magnetic fields on the mutual annihilation of triplet excitons in anthracene crystals. Phys. Rev. B 1:896–902 [Google Scholar]
  135. Suna A. 135.  1970. Kinematics of exciton-exciton annihilation in molecular crystals. Phys. Rev. B 1:1716–39 [Google Scholar]
  136. Klein G. 136.  1978. Kinematics of triplet pairs in anthracene and tetracene crystals. Chem. Phys. Lett. 57:202–6 [Google Scholar]
  137. Hachani L, Benfredj A, Romdhane S, Mejatty M, Monge JL, Bouchriha H. 137.  2008. Fluorescence-detected magnetic resonance in organic systems: a pair-density matrix formalism approach. Phys. Rev. B 77:035212 [Google Scholar]
  138. Zimmerman PM, Zhang Z, Musgrave CB. 138.  2010. Singlet fission in pentacene through multi-exciton quantum states. Nat. Chem. 2:648–52 [Google Scholar]
  139. Zimmerman PM, Bell F, Casanova D, Head-Gordon M. 139.  2011. Mechanism for singlet fission in pentacene and tetracene: from singlet exciton to two triplets. J. Am. Chem. Soc. 133:19944–52 [Google Scholar]
  140. Greyson EC, Stepp BR, Chen X, Schwerin AF, Paci I. 140.  et al. 2010. Singlet exciton fission for solar cell applications: energy aspects of interchromophore coupling. J. Phys. Chem. B 114:14223–32 [Google Scholar]
  141. Greyson EC, Vura-Weis J, Michl J, Ratner MA. 141.  2010. Maximizing singlet fission in organic dimers: theoretical investigations of triplet yield in the regime of localized excitation and fast coherent electron transfer. J. Phys. Chem. B 114:14168–77 [Google Scholar]
  142. Smith MB, Michl J. 142.  2013. Recent advances in singlet fission. Annu. Rev. Phys. Chem. 64:361–86 [Google Scholar]
  143. Beljonne D, Yamagata H, Bredas JL, Spano FC, Olivier Y. 143.  2013. Charge-transfer excitations steer the Davydov splitting and mediate singlet exciton fission in pentacene. Phys. Rev. Lett. 110:226402 [Google Scholar]
  144. Teichen PE, Eaves JD. 144.  2012. A microscopic model of singlet fission. J. Phys. Chem. B 116:11473–81 [Google Scholar]
  145. Berkelbach TC, Hybertsen MS, Reichman DR. 145.  2013. Microscopic theory of singlet exciton fission. I. General formulation. J. Chem. Phys. 138:114102 [Google Scholar]
  146. Berkelbach TC, Hybertsen MS, Reichman DR. 146.  2013. Microscopic theory of singlet exciton fission. II. Application to pentacene dimers and the role of superexchange. J. Chem. Phys. 138:114103 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040513-103654
Loading
/content/journals/10.1146/annurev-physchem-040513-103654
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error