This article provides an overview of some recent advances in the modeling of photoelectron angular distributions in negative-ion photodetachment. Building on the past developments in threshold photodetachment spectroscopy that first tackled the scaling of the partial cross sections with energy, depending on the angular momentum quantum number ℓ, it examines the corresponding formulation of the central potential model and extends it to the more general case of hybrid molecular orbitals. Several conceptual approaches to understanding photoelectron angular distributions are discussed. In one approach, the angular distributions are examined based on the contributions of the symmetry-allowed and partial waves of the photodetached electron. In another related approach, the parent molecular orbitals are described based on their dominant and characters, whereas the continuum electron is described in terms of interference of the corresponding Δℓ =±1 photodetachment channels.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Eland JHD. 1.  1984. Photoelectron Spectroscopy: An Introduction to Ultraviolet Photoelectron Spectroscopy in the Gas Phase London: Butterworths
  2. Ervin KM, Lineberger WC. 2.  1992. Photoelectron spectroscopy of negative ions. Advances in Gas Phase Ion Chemistry NG Adams, LM Babcock 121–66 Greenwich, CT: JAI [Google Scholar]
  3. Chandler DW, Houston PL. 3.  1987. Two-dimensional imaging of state-selected photodissociation products detected by multiphoton ionization. J. Chem. Phys. 87:1445–47 [Google Scholar]
  4. Heck AJR, Chandler DW. 4.  1995. Imaging techniques for the study of chemical-reaction dynamics. Annu. Rev. Phys. Chem. 46:335–72 [Google Scholar]
  5. Houston PL. 5.  1995. Snapshots of chemistry: product imaging of molecular reactions. Acc. Chem. Res. 28:453–60 [Google Scholar]
  6. Ashfold MNR, Nahler NH, Orr-Ewing AJ, Vieuxmaire OPJ, Toomes RL. 6.  et al. 2006. Imaging the dynamics of gas phase reactions. Phys. Chem. Chem. Phys. 8:26–53 [Google Scholar]
  7. Eppink ATJB, Parker DH. 7.  1997. Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 68:3477–84 [Google Scholar]
  8. Cooper J, Zare RN. 8.  1968. Photoelectron angular distributions. Atomic Collision Processes S Geltman, KT Mahanthappa, WE Brittin 317–37 New York: Gordon & Breach [Google Scholar]
  9. Seideman T. 9.  2000. Time-resolved photoelectron angular distributions as a means of studying polyatomic nonadiabatic dynamics. J. Chem. Phys. 113:1677–80 [Google Scholar]
  10. Reid KL. 10.  2003. Photoelectron angular distributions. Annu. Rev. Phys. Chem. 54:397–424 [Google Scholar]
  11. Sanov A, Mabbs R. 11.  2008. Photoelectron imaging of negative ions. Int. Rev. Phys. Chem. 27:53–85 [Google Scholar]
  12. Underwood JG, Reid KL. 12.  2000. Time-resolved photoelectron angular distributions as a probe of intramolecular dynamics: connecting the molecular frame and the laboratory frame. J. Chem. Phys. 113:1067–74 [Google Scholar]
  13. Seideman T. 13.  2002. Time-resolved photoelectron angular distributions: concepts, applications, and directions. Annu. Rev. Phys. Chem. 53:41–65 [Google Scholar]
  14. Oana CM, Krylov AI. 14.  2007. Dyson orbitals for ionization from the ground and electronically excited states within equation-of-motion coupled-cluster formalism: theory, implementation, and examples. J. Chem. Phys. 127:234106 [Google Scholar]
  15. Oana CM, Krylov AI. 15.  2009. Cross sections and photoelectron angular distributions in photodetachment from negative ions using equation-of-motion coupled-cluster Dyson orbitals. J. Chem. Phys. 131:124114 [Google Scholar]
  16. Lawrence EO, Chaffee MA. 16.  1930. On the direction of emission of photoelectrons from potassium vapor by ultraviolet light. Phys. Rev. 36:1099–100 [Google Scholar]
  17. Stolow A, Bragg AE, Neumark DM. 17.  2004. Femtosecond time-resolved photoelectron spectroscopy. Chem. Rev. 104:1719–57 [Google Scholar]
  18. Pinaré JC, Baguenard B, Bordas C, Broyer M. 18.  1998. Photoelectron imaging spectroscopy of small clusters: evidence for non-Boltzmannian kinetic-energy distribution in thermionic emission. Phys. Rev. Lett. 81:2225–28 [Google Scholar]
  19. Baguenard B, Pinaré JC, Bordas C, Broyer M. 19.  2001. Photoelectron imaging spectroscopy of small tungsten clusters: direct observation of thermionic emission. Phys. Rev. A 63:023204 [Google Scholar]
  20. Deyerl HJ, Alconcel LS, Continetti RE. 20.  2001. Photodetachment imaging studies of the electron affinity of CF3. J. Phys. Chem. A 105:552–57 [Google Scholar]
  21. Surber E, Sanov A. 21.  2002. Photoelectron imaging spectroscopy of molecular and cluster anions: CS2 and OCS(H2O)1,2. J. Chem. Phys. 116:5921–24 [Google Scholar]
  22. Davis AV, Wester R, Bragg AE, Neumark DM. 22.  2003. Time-resolved photoelectron imaging of the photodissociation of I2. J. Chem. Phys. 118:999–1002 [Google Scholar]
  23. Peterka DS, Lindinger A, Poisson L, Ahmed M, Neumark DM. 23.  2003. Photoelectron imaging of helium droplets. Phys. Rev. Lett. 91:043401 [Google Scholar]
  24. Surber E, Mabbs R, Sanov A. 24.  2003. Probing the electronic structure of small molecular anions by photoelectron imaging. J. Phys. Chem. A 107:8215–24 [Google Scholar]
  25. Mabbs R, Surber E, Sanov A. 25.  2003. Photoelectron imaging of negative ions: atomic anions to molecular clusters. Analyst 128:765–72 [Google Scholar]
  26. Bragg AE, Wester R, Davis AV, Kammrath A, Neumark DM. 26.  2003. Excited-state detachment dynamics and rotational coherences of C2 via time-resolved photoelectron imaging. Chem. Phys. Lett. 376:767–75 [Google Scholar]
  27. Bragg AE, Verlet JRR, Kammrath A, Neumark DM. 27.  2004. C6 electronic relaxation dynamics probed via time-resolved photoelectron imaging. J. Chem. Phys. 121:3515–26 [Google Scholar]
  28. Verlet JRR, Bragg AE, Kammrath A, Cheshnovsky O, Neumark DM. 28.  2004. Time-resolved relaxation dynamics of Hgn (11 < n < 16, n = 18) clusters following intraband excitation at 1.5 eV. J. Chem. Phys. 121:10015–25 [Google Scholar]
  29. Bowen MS, Continetti RE. 29.  2004. Photodetachment imaging study of the vinoxide anion. J. Phys. Chem. A 108:7827–31 [Google Scholar]
  30. Bragg AE, Verlet JRR, Kammrath A, Cheshnovsky O, Neumark DM. 30.  2005. Time-resolved intraband electronic relaxation dynamics of Hgn clusters (n = 7–13, 15, 18) excited at 1.0 eV. J. Chem. Phys. 122:054314 [Google Scholar]
  31. Rathbone GJ, Sanford T, Andrews D, Lineberger WC. 31.  2005. Photoelectron imaging spectroscopy of Cu(H2O)1,2 anion complexes. Chem. Phys. Lett. 401:570–74 [Google Scholar]
  32. Nee MJ, Osterwalder A, Zhou J, Neumark DM. 32.  2006. Slow electron velocity-map imaging photoelectron spectra of the methoxide anion. J. Chem. Phys. 125:014306 [Google Scholar]
  33. Parsons BF, Sheehan SM, Kautzman KE, Yen TA, Neumark DM. 33.  2006. Photoelectron imaging of I2 at 5.826 eV. J. Chem. Phys. 125:244301 [Google Scholar]
  34. Calvi RMD, Andrews DH, Lineberger WC. 34.  2007. Negative ion photoelectron spectroscopy of copper hydrides. Chem. Phys. Lett. 442:12–16 [Google Scholar]
  35. McCunn LR, Gardenier GH, Guasco TL, Elliott BM, Bopp JC. 35.  et al. 2008. Probing isomer interconversion in anionic water clusters using an Ar-mediated pump-probe approach: combining vibrational predissociation and velocity-map photoelectron imaging spectroscopies. J. Chem. Phys. 128:234311 [Google Scholar]
  36. Xing XP, Wang XB, Wang LS. 36.  2008. Imaging intramolecular Coulomb repulsions in multiply charged anions. Phys. Rev. Lett. 101:083003 [Google Scholar]
  37. Sobhy MA, Castleman AW. 37.  2007. Photoelectron imaging of copper and silver mono- and diamine anions. J. Chem. Phys. 126:154314 [Google Scholar]
  38. Cavanagh SJ, Gibson ST, Gale MN, Dedman CJ, Roberts EH, Lewis BR. 38.  2007. High-resolution velocity-map-imaging photoelectron spectroscopy of the O photodetachment fine-structure transitions. Phys. Rev. A 76:052708 [Google Scholar]
  39. Ichino T, Andrews DH, Rathbone GJ, Misaizu F, Calvi RMD. 39.  et al. 2008. Ion chemistry of 1H-1,2,3-triazole. J. Phys. Chem. B 112:545–57 [Google Scholar]
  40. Elliott BM, McCunn LR, Johnson MA. 40.  2008. Photoelectron imaging study of vibrationally mediated electron autodetachment in the type I isomer of the water hexamer anion. Chem. Phys. Lett. 467:32–36 [Google Scholar]
  41. Adams CL, Schneider H, Ervin KM, Weber JM. 41.  2009. Low-energy photoelectron imaging spectroscopy of nitromethane anions: electron affinity, vibrational features, anisotropies, and the dipole-bound state. J. Chem. Phys. 130:074307 [Google Scholar]
  42. Gupta U, Reveles JU, Melko JJ, Khanna SN, Castleman AW. 42.  2009. Electron delocalization in a non-cyclic all-metal III–V cluster. Chem. Phys. Lett. 480:189–92 [Google Scholar]
  43. Sobhy MA, Reveles JU, Gupta U, Khanna SN, Castleman AW. 43.  2009. Photoelectron imaging and theoretical investigation of bimetallic Bi1−2Ga0−2 and Pb1−4 cluster anions. J. Chem. Phys. 130:054304 [Google Scholar]
  44. Goebbert DJ, Khuseynov D, Sanov A. 44.  2009. Laboratory observation of the valence anion of cyanoacetylene, a possible precursor for negative ions in space. J. Chem. Phys. 131:161102 [Google Scholar]
  45. Mabbs R, Grumbling ER, Pichugin K, Sanov A. 45.  2009. Photoelectron imaging: an experimental window into electronic structure. Chem. Soc. Rev. 38:2169–77 [Google Scholar]
  46. Velarde L, Habteyes T, Glass RS, Sanov A. 46.  2009. Observation and characterization of the CH3S(O)CH and CH3S(O)CH·H2O carbene anions by photoelectron imaging and photofragment spectroscopy. J. Phys. Chem. A 113:3528–34 [Google Scholar]
  47. Van Duzor M, Wei J, Mbaiwa F, Mabbs R. 47.  2009. The effect of intra-cluster photoelectron interactions on the angular distribution in I·CH3I photodetachment. J. Chem. Phys. 131:204306 [Google Scholar]
  48. Goebbert DJ. 48.  2012. Photoelectron imaging of CH. Chem. Phys. Lett. 551:19–25 [Google Scholar]
  49. Gessner O, Lee AMD, Shaffer JP, Reisler H, Levchenko SV. 49.  et al. 2006. Femtosecond multidimensional imaging of a molecular dissociation. Science 311:219–22 [Google Scholar]
  50. Grumbling ER, Mabbs R, Sanov A. 50.  2011. Photoelectron imaging as a quantum chemistry visualization tool. J. Chem. Educ. 88:1515–20 [Google Scholar]
  51. Grumbling E, Sanov A. 51.  2011. Photoelectron angular distributions in negative-ion photodetachment from mixed sp states. J. Chem. Phys. 135:164302 [Google Scholar]
  52. Sanov A, Grumbling ER, Goebbert DJ, Culberson LM. 52.  2013. Photodetachment anisotropy for mixed s-p orbitals: 8/3 and other fractions. J. Chem. Phys. 138:054311 [Google Scholar]
  53. Culberson LM. 53.  2013. Molecular electronic structure via photoelectron imaging spectroscopy PhD Diss., Univ. Ariz., Tucson
  54. Culberson LM, Blackstone CC, Sanov A. 54.  2013. Photoelectron angular distributions of pyridinide: a benchmark application of the mixed s-p model to a truly polyatomic anion. J. Phys. Chem. A 11711760–65
  55. Culberson LM, Blackstone CC, Wysocki R, Sanov A. 55.  2014. Selective deprotonation of oxazole and photoelectron imaging of the oxazolide anion. Phys. Chem. Chem. Phys. 16527–32
  56. Koopmans T. 56.  1934. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1:104–13 [Google Scholar]
  57. Reed KJ, Zimmerman AH, Andersen HC, Brauman JI. 57.  1976. Cross sections for photodetachment of electrons from negative ions near threshold. J. Chem. Phys. 64:1368–75 [Google Scholar]
  58. Landau LD, Lifshitz EM. 58.  1977. Quantum Mechanics: Nonrelativistic Theory Oxford: Pergamon
  59. Cohen-Tannoudji C, Diu B, Laloë F. 59.  1977. Quantum Mechanics New York: Wiley
  60. Wigner EP. 60.  1948. On the behavior of cross sections near thresholds. Phys. Rev. 73:1002–9 [Google Scholar]
  61. Lineberger WC, Hotop H, Patterson TA. 61.  1976. Photodetachment threshold processes. Electron and Photon Interactions with Atoms H Kleinpoppen, MRC McDowell 125–32 New York: Plenum [Google Scholar]
  62. Mead RD, Lykke KR, Lineberger WC. 62.  1984. Photodetachment threshold laws. Electronic and Atomic Collisions J Eichler, IV Hertel, N Stolterfoht 721–30 Amsterdam: Elsevier [Google Scholar]
  63. Dill D, Dehmer JL. 63.  1974. Electron-molecule scattering and molecular photoionization using multiple-scattering method. J. Chem. Phys. 61:692–99 [Google Scholar]
  64. Dill D. 64.  1976. Fixed-molecule photoelectron angular distributions. J. Chem. Phys. 65:1130–33 [Google Scholar]
  65. Dixit SN, McKoy V. 65.  1985. Theory of resonantly enhanced multiphoton processes in molecules. J. Chem. Phys. 82:3546–53 [Google Scholar]
  66. Dehmer JL, Dill D. 66.  1978. Photo-ion angular distributions in dissociative photo-ionization of H2 at 304 Å. Phys. Rev. A 18:164–71 [Google Scholar]
  67. Cooper J, Zare RN. 67.  1968. Angular distributions in atomic anion photodetachment. J. Chem. Phys. 48:942–43 [Google Scholar]
  68. Park H, Zare RN. 68.  1996. Molecular-orbital decomposition of the ionization continuum for a diatomic molecule by angle- and energy-resolved photoelectron spectroscopy 1. Formalism. J. Chem. Phys. 104:4554–67 [Google Scholar]
  69. Lin P, Lucchese RR. 69.  2001. Studies of angular distributions and cross sections for photodetachment from the oxygen molecular anion. J. Chem. Phys. 114:9350–60 [Google Scholar]
  70. Dribinski V, Ossadtchi A, Mandelshtam VA, Reisler H. 70.  2002. Reconstruction of Abel-transformable images: the Gaussian basis-set expansion Abel transform method. Rev. Sci. Instrum. 73:2634–42 [Google Scholar]
  71. Grumbling E, Sanov A. 71.  2011. Partial-wave balance and charge-transfer-to-solvent in H(NH3)n and NH2(NH3)n (n = 0–5) via anion photoelectron imaging. J. Chem. Phys. 135:164301 [Google Scholar]
  72. Wang LS, Xing XP, Wang XB. 72.  2009. Photoelectron imaging of multiply charged anions: effects of intramolecular Coulomb repulsion and photoelectron kinetic energies on photoelectron angular distributions. J. Chem. Phys. 130:074301 [Google Scholar]
  73. Akin FA, Schirra LK, Sanov A. 73.  2006. Photoelectron imaging study of the effect of monohydration on O2 photodetachment. J. Phys. Chem. A 110:8031–36 [Google Scholar]
  74. Velarde L, Habteyes T, Grumbling ER, Pichugin K, Sanov A. 74.  2007. Solvent resonance effect on the anisotropy of NO(N2O)n cluster anion photodetachment. J. Chem. Phys. 127:084302 [Google Scholar]
  75. Goebbert DJ, Pichugin K, Sanov A. 75.  2009. Low-lying electronic states of CH3NO2 via photoelectron imaging of the nitromethane anion. J. Chem. Phys. 131:164308 [Google Scholar]
  76. Cooper J, Zare RN. 76.  1968. Erratum: angular distributions in atomic anion photodetachment. J. Chem. Phys. 49:4252 [Google Scholar]
  77. Bethe HA, Salpeter EE. 77.  1957. Quantum Mechanics of One- and Two-Electron Atoms Berlin: Springer-Verlag368
  78. Hanstorp D, Bengtsson C, Larson DJ. 78.  1989. Angular distributions in photodetachment from O. Phys. Rev. A 40:670–75 [Google Scholar]
  79. Smith JR, Kim JB, Lineberger WC. 79.  1997. High-resolution threshold photodetachment spectroscopy of OH. Phys. Rev. A 55:2036–43 [Google Scholar]
  80. Kim JB, Wenthold PG, Lineberger WC. 80.  1998. Photoelectron spectroscopy of OH(N2O)n=1−5. J. Chem. Phys. 108:830–37 [Google Scholar]
  81. Brandon WD, Lee DH, Hanstorp D, Pegg DJ. 81.  1998. Photodetachment of the C ion. J. Phys. B 31:751–60 [Google Scholar]
  82. Mabbs R, Surber E, Sanov A. 82.  2005. Photoelectron anisotropy and channel branching ratios in the detachment of solvated iodide cluster anions. J. Chem. Phys. 122:054308 [Google Scholar]
  83. Aravind G, Gupta AK, Krishnamurthy M, Krishnakumar E. 83.  2007. Spectral dependence of the asymmetry parameter in the photodetachment from As. Phys. Rev. A 75:042714 [Google Scholar]
  84. Aravind G, Ram NB, Gupta AK, Krishnakumar E. 84.  2009. Probing the influence of channel coupling on the photoelectron angular distribution for the photodetachment from Cu. Phys. Rev. A 79:043411 [Google Scholar]
  85. Mbaiwa F, Wei J, Van Duzor M, Mabbs R. 85.  2010. Threshold effects in I·CH3CN and I·H2O cluster anion detachment: the angular distribution as an indicator of electronic autodetachment. J. Chem. Phys. 132:134304 [Google Scholar]
  86. Mabbs R, Mbaiwa F, Wei J, Van Duzor M, Gibson ST. 86.  et al. 2010. Observation of vibration-dependent electron anisotropy in O2 photodetachment. Phys. Rev. A 82:011401 [Google Scholar]
  87. Van Duzor M, Mbaiwa F, Wei J, Singh T, Mabbs R. 87.  et al. 2010. Vibronic coupling in the superoxide anion: the vibrational dependence of the photoelectron angular distribution. J. Chem. Phys. 133:174311 [Google Scholar]
  88. Sobhy MA, Casalenuovo K, Reveles JU, Gupta U, Khanna SN, Castleman AW. 88.  2010. Photoelectron imaging and density-functional investigation of bismuth and lead anions solvated in ammonia clusters. J. Phys. Chem. A 114:11353–63 [Google Scholar]
  89. Grumbling ER, Pichugin K, Velarde L, Sanov A. 89.  2010. Further evidence for resonant photoelectron-solvent scattering in nitrous oxide cluster anions. J. Phys. Chem. A 114:1367–73 [Google Scholar]
  90. Reichle R, Helm H, Kiyan IY. 90.  2003. Detailed comparison of theory and experiment of strong-field photodetachment of the negative hydrogen ion. Phys. Rev. A 68:063404 [Google Scholar]
  91. Hall JL, Siegel MW. 91.  1968. Angular dependence of laser photodetachment of negative ions of carbon, oxygen, and hydrogen. J. Chem. Phys. 48:943–45 [Google Scholar]
  92. Breyer F, Frey P, Hotop H. 92.  1978. High-resolution photoelectron spectrometry of negative-ions: fine-structure transitions in O and S photodetachment. Z. Phys. A 286:133–38 [Google Scholar]
  93. Slater JC. 93.  1930. Atomic shielding constants. Phys. Rev. 36:57–64 [Google Scholar]
  94. Clementi E, Raimondi DL. 94.  1963. Atomic screening constants from SCF functions. J. Chem. Phys. 38:2686–89 [Google Scholar]
  95. Scheer M, Bilodeau RC, Brodie CA, Haugen HK. 95.  1998. Systematic study of the stable states of C, Si, Ge, and Sn via infrared laser spectroscopy. Phys. Rev. A 58:2844–56 [Google Scholar]
  96. Pegg DJ, Tang CY, Dellwo J, Alton GD. 96.  1993. Angular distribution of electrons photodetached from the excited negative ion of carbon. J. Phys. B 26:L789–92 [Google Scholar]
  97. Buckingham AD, Orr BJ, Sichel JM. 97.  1970. Angular distribution and intensity in molecular photoelectron spectroscopy 1. General theory for diatomic molecules. Philos. Trans. R. Soc. A 268:147–57 [Google Scholar]
  98. Grumbling ER. 98.  2010. Electronic structure, intermolecular interactions and electron emission dynamics via anion photoelectron imaging PhD Diss., Univ. Ariz., Tucson 257
  99. Ortiz JV. 99.  2004. Brueckner orbitals, Dyson orbitals, and correlation potentials. Int. J. Quantum Chem. 100:1131–35 [Google Scholar]
  100. Schafman BS, Wenthold PG. 100.  2007. Regioselectivity of pyridine deprotonation in the gas phase. J. Org. Chem. 72:1645–51 [Google Scholar]
  101. Wren S, Vogelhuber KM, Garver JM, Kato S, Sheps L. 101.  et al. 2012. C-H bond strengths and acidities in aromatic systems: effects of nitrogen incorporation in mono-, di-, and triazines. J. Am. Chem. Soc. 134:6584–95 [Google Scholar]
  102. Shao Y, Molnar LF, Jung Y, Kussmann J, Ochsenfeld C. 102.  et al. 2006. Advances in methods and algorithms in a modern quantum chemistry program package. Phys. Chem. Chem. Phys. 8:3172–91 [Google Scholar]
  103. Krylov AI. 103.  2008. Equation-of-motion coupled-cluster methods for open-shell and electronically excited species: the hitchhiker's guide to Fock space. Annu. Rev. Phys. Chem. 59:433–62 [Google Scholar]
  104. Culberson LM. 104.  2013. Molecular electronic structure via photoelectron imaging spectroscopy PhD Diss., Univ. Ariz., Tucson
  105. Reichle R, Helm H, Kiyan IY. 105.  2001. Photodetachment of H in a strong infrared laser field. Phys. Rev. Lett. 87:243001 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error