The charge with the invitation to write this autobiographical article was to describe what led me to a career in science and to choose the specific topics and scientific directions I have pursued. This is thus a very personal story and by no means a scientific review of the work that is mentioned. As will be clear, this journey was not an orderly, well-thought-out plan, but just “happened,” one step after the other.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Lineberger WC. 1.  2010. Autobiography of W. Carl Lineberger. J. Phys. Chem. A 114:1227–29 [Google Scholar]
  2. Miller WH. 2.  1965. New equation for lower bounds to eigenvalues with application to the helium atom. J. Chem. Phys. 42:4305–6 [Google Scholar]
  3. Ford KW, Wheeler JA. 3.  1959. Semiclassical description of scattering. Ann. Phys. 7:259–86 [Google Scholar]
  4. Ford KW, Wheeler JA. 4.  1959. Application of semiclassical scattering analysis. Ann. Phys. 7:287–322 [Google Scholar]
  5. Bernstein RB. 5.  1966. Quantum effects in elastic molecular scattering. Adv. Chem. Phys. 10:75–134 [Google Scholar]
  6. Bunker DL, Blais NC. 6.  1962. Monte Carlo calculations. II. The reactions of alkali atoms with methyl iodide. J. Chem. Phys. 37:2713–20 [Google Scholar]
  7. Miller WH. 7.  1969. Coupled equations and the minimum principle for collisions of an atom and a diatomic molecule, including rearrangements. J. Chem. Phys. 50:407–18 [Google Scholar]
  8. Miller WH. 8.  1972. Theory of Penning ionization. J. Chem. Phys. 52:3563–72 [Google Scholar]
  9. Miller WH, Slocomb CA, Schaefer HF. 9.  1972. Molecular autoionization lifetimes and cross sections for Penning ionization: numerical results for He*(1s2s3S) + H(1s2S). J. Chem. Phys. 56:1347–58 [Google Scholar]
  10. Pechukas P. 10.  1969. Time-dependent semiclassical scattering theory. I. Potential scattering. Phys. Rev. 181:166–74 [Google Scholar]
  11. Goldstein H. 11.  1950. Classical Mechanics Reading, MA: Addison-Wesley [Google Scholar]
  12. Miller WH. 12.  1974. Classical-limit quantum mechanics and the theory of molecular collisions. Adv. Chem. Phys. 25:69–177 [Google Scholar]
  13. Miller WH. 13.  1975. The classical S-matrix in molecular collisions. Adv. Chem. Phys. 30:77–136 [Google Scholar]
  14. Miller WH. 14.  1970. Semiclassical theory of atom-diatom collisions: path integrals and the classical S matrix. J. Chem. Phys. 53:1949–59 [Google Scholar]
  15. Miller WH. 15.  1970. The classical S matrix: numerical application to inelastic collisions. J. Chem. Phys. 53:3578–87 [Google Scholar]
  16. Miller WH. 16.  1971. Classical S matrix for rotational excitation; quenching of quantum effects in molecular collisions. J. Chem. Phys. 54:5386–97 [Google Scholar]
  17. Miller WH. 17.  1970. The classical S-matrix: a more detailed study of classically forbidden transitions in inelastic collisions. Chem. Phys. Lett. 7:431–35 [Google Scholar]
  18. David MJ, Heller EJ. 18.  1981. Quantum dynamical tunneling in bound states. J. Chem. Phys. 75:246–54 [Google Scholar]
  19. Rankin CC, Miller WH. 19.  1971. Classical S matrix for linear reactive collisions of H+Cl2. J. Chem. Phys. 55:3150–56 [Google Scholar]
  20. Marcus RA. 20.  1971. Theory of semiclassical transition probabilities (S matrix) for inelastic and reactive collisions. J. Chem. Phys. 54:3965–79 [Google Scholar]
  21. Pechukas P, McLafferty JJ. 21.  1973. On transition-state theory and the classical mechanics of collinear collisions. J. Chem. Phys. 58:1622–25 [Google Scholar]
  22. Chapman S, Hornstein SM, Miller WH. 22.  1975. Accuracy of transition state theory for the threshold of chemical reactions with activation energy: collinear and three-dimensional H+H2. J. Am. Chem. Soc. 97:892–94 [Google Scholar]
  23. Miller WH. 23.  1974. Quantum mechanical transition state theory and a new semiclassical model for reaction rate constants. J. Chem. Phys. 61:1823–34 [Google Scholar]
  24. Miller WH, Schwartz SD, Tromp JW. 24.  1983. Quantum mechanical rate constants for bimolecular reactions. J. Chem. Phys. 79:4889–98 [Google Scholar]
  25. Seideman T, Miller WH. 25.  1992. Quantum mechanical reaction probabilities via a discrete variable representation-absorbing boundary condition Green's function. J. Chem. Phys. 97:2499–514 [Google Scholar]
  26. Manthe U, Miller WH. 26.  1993. The cumulative reaction probability as eigenvalue problem. J. Chem. Phys. 99:3411–19 [Google Scholar]
  27. Miller WH. 27.  1971. Classical path approximation for the Boltzmann density matrix. J. Chem. Phys. 55:3146–56 [Google Scholar]
  28. Miller WH. 28.  1973. Improved classical path approximation for the Boltzmann density matrix. J. Chem. Phys. 58:1664–67 [Google Scholar]
  29. Miller WH. 29.  1975. Semiclassical limit of quantum mechanical transition state theory for nonseparable systems. J. Chem. Phys. 62:1899–906 [Google Scholar]
  30. Richardson JO, Althorpe SC, Wales DJ. 30.  2011. Instanton calculations of tunneling splittings for water dimmer and trimer. J. Chem. Phys. 135:124109 [Google Scholar]
  31. Eastes W, Marcus RA. 31.  1974. Semiclassical calculation of bound states of a multidimensional system. J. Chem. Phys. 61:4301–6 [Google Scholar]
  32. Miller WH. 32.  1977. Semi-classical theory for non-separable systems: construction of “good” action-angle variables for reaction rate constants. Faraday Discuss. Chem. Soc. 62:40–46 [Google Scholar]
  33. Chapman S, Garrett BC, Miller WH. 33.  1976. Semiclassical eigenvalues for nonseparable systems: nonperturbative solution of the Hamilton-Jacobi equation in action-angle variables. J. Chem. Phys. 64:502–9 [Google Scholar]
  34. Willets A, Gaw JF, Green WH, Handy NC. 34.  1990. SPECTRO Theoretical Spectroscopy Package Cambridge Univ., Cambridge, UK [Google Scholar]
  35. Miller WH, Hernandez R, Handy NC, Jayatilaka D, Willetts A. 35.  1990. Ab initio calculation of anharmonic constants for a transition state, with application to semiclassical transition state tunneling probabilities. Chem. Phys. Lett. 172:62–68 [Google Scholar]
  36. Barker JR, Nguyen TL, Stanton JF. 36.  2012. Semiclassical isotope effects for Cl+CH4 ↔ HCl + CH3 calculated using ab initio semiclassical transition state theory. J. Phys. Chem. A 116:6408–19 [Google Scholar]
  37. Miller WH, McCurdy CW. 37.  1978. Classical trajectory model for electronically nonadiabatic collision phenomena: a classical model for electronic degrees of freedom. J. Chem. Phys. 69:5163–73 [Google Scholar]
  38. Meyer HD, Miller WH. 38.  1979. A classical analog for electronic degrees of freedom in nonadiabatic collision processes. J. Chem. Phys. 70:3214–23 [Google Scholar]
  39. Meyer HD, Miller WH. 39.  1979. Classical models for electronic degrees of freedom: derivation via spin analogy and application to F* + H2 → F + H2. J. Chem. Phys. 71:2156–69 [Google Scholar]
  40. Orel AE, Ali DP, Miller WH. 40.  1981. Classical model for electronically non-adiabatic collision processes: resonance effects in electronic-vibrational energy transfer. Chem. Phys. Lett. 79:137–41 [Google Scholar]
  41. Stock G, Miller WH. 41.  1992. A classical model for time- and frequency-resolved spectroscopy of nonadiabatic excited state dynamics. Chem. Phys. Lett. 197:396–404 [Google Scholar]
  42. Stock G, Miller WH. 42.  1993. Classical formulation of the spectroscopy of nonadiabatic excited state dynamics. J. Chem. Phys. 99:1545–55 [Google Scholar]
  43. Stock G, Thoss M. 43.  1997. Semiclassical description of nonadiabatic quantum dynamics. Phys. Rev. Lett. 78:578–81 [Google Scholar]
  44. Thoss M, Stock G. 44.  1999. Mapping approach to the semiclassical description of nonadiabatic quantum dynamics. Phys. Rev. A 59:64–79 [Google Scholar]
  45. Marcus RA. 45.  1968. Analytical mechanics of chemical reactions. III. Natural collision coordinates. J. Chem. Phys. 49:2610–16 [Google Scholar]
  46. Miller WH, Handy NC, Adams JE. 46.  1980. Reaction path Hamiltonian for polyatomic molecules. J. Chem. Phys. 72:99–112 [Google Scholar]
  47. Miller WH. 47.  1981. Reaction path Hamiltonian for polyatomic systems: further developments and applications. Potential Energy Surfaces and Dynamical Calculations DG Truhlar 265–86 New York: Plenum [Google Scholar]
  48. Schatz GC, Kuppermann A. 48.  1976. Quantum mechanical reactive scattering for three-dimensional atom plus diatom systems. I. Theory. J. Chem. Phys. 65:4642–67 [Google Scholar]
  49. Schatz GC, Kuppermann A. 49.  1976. Quantum mechanical reactive scattering for three-dimensional atom plus diatom systems. II. Accurate cross sections for H + H2. J. Chem. Phys. 65:4668–92 [Google Scholar]
  50. Zhang JZH, Chu SI, Miller WH. 50.  1988. Quantum scattering via the S-matrix version of the Kohn variational principle. J. Chem. Phys. 88:6233–39 [Google Scholar]
  51. Zhang JZH, Miller WH. 51.  1988. Quantum reactive scattering via the S-matrix version of the Kohn variational principle: integral cross sections for H + H2(v1 = j1 = 0) → H2(v2 = 1, j2 = 1, 3) + H in the energy range Etotal = 0.9–1.4 eV. Chem. Phys. Lett. 153:465–70 [Google Scholar]
  52. Zhang JZH, Miller WH. 52.  1989. Differential cross section (angular distribution) for the reaction H + H2(v = j = 0) → H2(v′, ODD j′) + H in the energy range 0.90–1.35 eV. Chem. Phys. Lett. 159:130–33 [Google Scholar]
  53. Zhang JZH, Miller WH. 53.  1989. Quantum reactive scattering via the S-matrix version of the Kohn variational principle: differential and integral cross sections for D + H2 → HD +H. J. Chem. Phys. 91:1528–47 [Google Scholar]
  54. Zhang JZH, Miller WH. 54.  1990. Photodissociation and continuum resonance Raman cross sections, and general Franck-Condon intensities, from S-matrix Kohn scattering calculations, with application to the photoelectron spectrum of H2F + hν → H2 + F, HF + H + e. J. Chem. Phys. 92:1811–18 [Google Scholar]
  55. Heller EJ. 55.  1977. Generalized theory of semiclassical amplitudes. J. Chem. Phys. 66:5777–85 [Google Scholar]
  56. Herman MF, Kluk E. 56.  1984. A semiclassical justification for the use of non-spreading wavepackets in dynamics calculations. Chem. Phys. 91:27–34 [Google Scholar]
  57. Kay KG. 57.  1994. Integral expressions for the semiclassical time-dependent propagator. J. Chem. Phys. 100:4377–92 [Google Scholar]
  58. Kay KG. 58.  1994. Numerical study of semiclassical initial value methods for dynamics. J. Chem. Phys. 100:4432–45 [Google Scholar]
  59. Kay KG. 59.  1994. Semiclassical propagation for multidimensional systems by an initial value method. J. Chem. Phys. 101:2250–60 [Google Scholar]
  60. Sun X, Miller WH. 60.  1997. Mixed semiclassical-classical approaches to the dynamics of complex molecular systems. J. Chem. Phys. 106:916–27 [Google Scholar]
  61. Sun X, Wang H, Miller WH. 61.  1998. On the semiclassical description of quantum coherence in thermal rate constants. J. Chem. Phys. 109:4190–200 [Google Scholar]
  62. Makri N, Thompson K. 62.  1998. Semiclassical influence functionals for quantum systems in anharmonic environments. Chem. Phys. Lett. 291:101–9 [Google Scholar]
  63. Miller WH. 63.  1998. Quantum and semiclassical theory of chemical reaction rates. Faraday Discuss. Chem. Soc. 110:1–21 [Google Scholar]
  64. Sun X, Miller WH. 64.  1999. Forward-backward initial value representation for semiclassical time correlation functions. J. Chem. Phys. 110:6635–44 [Google Scholar]
  65. Tao G, Miller WH. 65.  2011. Time-dependent importance sampling in semiclassical initial value representation calculations for time correlation functions. J. Chem. Phys. 135:024104 [Google Scholar]
  66. Miller WH. 66.  2009. Electronically nonadiabatic dynamics via semiclassical initial value methods. J. Phys. Chem. A 113:1405–15 [Google Scholar]
  67. Miller WH. 67.  2012. Perspective: quantum or classical coherence?. J. Chem. Phys. 136:210901 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error