1932

Abstract

The charge with the invitation to write this autobiographical article was to describe what led me to a career in science and to choose the specific topics and scientific directions I have pursued. This is thus a very personal story and by no means a scientific review of the work that is mentioned. As will be clear, this journey was not an orderly, well-thought-out plan, but just “happened,” one step after the other.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040513-103720
2014-04-01
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/physchem/65/1/annurev-physchem-040513-103720.html?itemId=/content/journals/10.1146/annurev-physchem-040513-103720&mimeType=html&fmt=ahah

Literature Cited

  1. Lineberger WC. 1.  2010. Autobiography of W. Carl Lineberger. J. Phys. Chem. A 114:1227–29 [Google Scholar]
  2. Miller WH. 2.  1965. New equation for lower bounds to eigenvalues with application to the helium atom. J. Chem. Phys. 42:4305–6 [Google Scholar]
  3. Ford KW, Wheeler JA. 3.  1959. Semiclassical description of scattering. Ann. Phys. 7:259–86 [Google Scholar]
  4. Ford KW, Wheeler JA. 4.  1959. Application of semiclassical scattering analysis. Ann. Phys. 7:287–322 [Google Scholar]
  5. Bernstein RB. 5.  1966. Quantum effects in elastic molecular scattering. Adv. Chem. Phys. 10:75–134 [Google Scholar]
  6. Bunker DL, Blais NC. 6.  1962. Monte Carlo calculations. II. The reactions of alkali atoms with methyl iodide. J. Chem. Phys. 37:2713–20 [Google Scholar]
  7. Miller WH. 7.  1969. Coupled equations and the minimum principle for collisions of an atom and a diatomic molecule, including rearrangements. J. Chem. Phys. 50:407–18 [Google Scholar]
  8. Miller WH. 8.  1972. Theory of Penning ionization. J. Chem. Phys. 52:3563–72 [Google Scholar]
  9. Miller WH, Slocomb CA, Schaefer HF. 9.  1972. Molecular autoionization lifetimes and cross sections for Penning ionization: numerical results for He*(1s2s3S) + H(1s2S). J. Chem. Phys. 56:1347–58 [Google Scholar]
  10. Pechukas P. 10.  1969. Time-dependent semiclassical scattering theory. I. Potential scattering. Phys. Rev. 181:166–74 [Google Scholar]
  11. Goldstein H. 11.  1950. Classical Mechanics Reading, MA: Addison-Wesley [Google Scholar]
  12. Miller WH. 12.  1974. Classical-limit quantum mechanics and the theory of molecular collisions. Adv. Chem. Phys. 25:69–177 [Google Scholar]
  13. Miller WH. 13.  1975. The classical S-matrix in molecular collisions. Adv. Chem. Phys. 30:77–136 [Google Scholar]
  14. Miller WH. 14.  1970. Semiclassical theory of atom-diatom collisions: path integrals and the classical S matrix. J. Chem. Phys. 53:1949–59 [Google Scholar]
  15. Miller WH. 15.  1970. The classical S matrix: numerical application to inelastic collisions. J. Chem. Phys. 53:3578–87 [Google Scholar]
  16. Miller WH. 16.  1971. Classical S matrix for rotational excitation; quenching of quantum effects in molecular collisions. J. Chem. Phys. 54:5386–97 [Google Scholar]
  17. Miller WH. 17.  1970. The classical S-matrix: a more detailed study of classically forbidden transitions in inelastic collisions. Chem. Phys. Lett. 7:431–35 [Google Scholar]
  18. David MJ, Heller EJ. 18.  1981. Quantum dynamical tunneling in bound states. J. Chem. Phys. 75:246–54 [Google Scholar]
  19. Rankin CC, Miller WH. 19.  1971. Classical S matrix for linear reactive collisions of H+Cl2. J. Chem. Phys. 55:3150–56 [Google Scholar]
  20. Marcus RA. 20.  1971. Theory of semiclassical transition probabilities (S matrix) for inelastic and reactive collisions. J. Chem. Phys. 54:3965–79 [Google Scholar]
  21. Pechukas P, McLafferty JJ. 21.  1973. On transition-state theory and the classical mechanics of collinear collisions. J. Chem. Phys. 58:1622–25 [Google Scholar]
  22. Chapman S, Hornstein SM, Miller WH. 22.  1975. Accuracy of transition state theory for the threshold of chemical reactions with activation energy: collinear and three-dimensional H+H2. J. Am. Chem. Soc. 97:892–94 [Google Scholar]
  23. Miller WH. 23.  1974. Quantum mechanical transition state theory and a new semiclassical model for reaction rate constants. J. Chem. Phys. 61:1823–34 [Google Scholar]
  24. Miller WH, Schwartz SD, Tromp JW. 24.  1983. Quantum mechanical rate constants for bimolecular reactions. J. Chem. Phys. 79:4889–98 [Google Scholar]
  25. Seideman T, Miller WH. 25.  1992. Quantum mechanical reaction probabilities via a discrete variable representation-absorbing boundary condition Green's function. J. Chem. Phys. 97:2499–514 [Google Scholar]
  26. Manthe U, Miller WH. 26.  1993. The cumulative reaction probability as eigenvalue problem. J. Chem. Phys. 99:3411–19 [Google Scholar]
  27. Miller WH. 27.  1971. Classical path approximation for the Boltzmann density matrix. J. Chem. Phys. 55:3146–56 [Google Scholar]
  28. Miller WH. 28.  1973. Improved classical path approximation for the Boltzmann density matrix. J. Chem. Phys. 58:1664–67 [Google Scholar]
  29. Miller WH. 29.  1975. Semiclassical limit of quantum mechanical transition state theory for nonseparable systems. J. Chem. Phys. 62:1899–906 [Google Scholar]
  30. Richardson JO, Althorpe SC, Wales DJ. 30.  2011. Instanton calculations of tunneling splittings for water dimmer and trimer. J. Chem. Phys. 135:124109 [Google Scholar]
  31. Eastes W, Marcus RA. 31.  1974. Semiclassical calculation of bound states of a multidimensional system. J. Chem. Phys. 61:4301–6 [Google Scholar]
  32. Miller WH. 32.  1977. Semi-classical theory for non-separable systems: construction of “good” action-angle variables for reaction rate constants. Faraday Discuss. Chem. Soc. 62:40–46 [Google Scholar]
  33. Chapman S, Garrett BC, Miller WH. 33.  1976. Semiclassical eigenvalues for nonseparable systems: nonperturbative solution of the Hamilton-Jacobi equation in action-angle variables. J. Chem. Phys. 64:502–9 [Google Scholar]
  34. Willets A, Gaw JF, Green WH, Handy NC. 34.  1990. SPECTRO Theoretical Spectroscopy Package Cambridge Univ., Cambridge, UK [Google Scholar]
  35. Miller WH, Hernandez R, Handy NC, Jayatilaka D, Willetts A. 35.  1990. Ab initio calculation of anharmonic constants for a transition state, with application to semiclassical transition state tunneling probabilities. Chem. Phys. Lett. 172:62–68 [Google Scholar]
  36. Barker JR, Nguyen TL, Stanton JF. 36.  2012. Semiclassical isotope effects for Cl+CH4 ↔ HCl + CH3 calculated using ab initio semiclassical transition state theory. J. Phys. Chem. A 116:6408–19 [Google Scholar]
  37. Miller WH, McCurdy CW. 37.  1978. Classical trajectory model for electronically nonadiabatic collision phenomena: a classical model for electronic degrees of freedom. J. Chem. Phys. 69:5163–73 [Google Scholar]
  38. Meyer HD, Miller WH. 38.  1979. A classical analog for electronic degrees of freedom in nonadiabatic collision processes. J. Chem. Phys. 70:3214–23 [Google Scholar]
  39. Meyer HD, Miller WH. 39.  1979. Classical models for electronic degrees of freedom: derivation via spin analogy and application to F* + H2 → F + H2. J. Chem. Phys. 71:2156–69 [Google Scholar]
  40. Orel AE, Ali DP, Miller WH. 40.  1981. Classical model for electronically non-adiabatic collision processes: resonance effects in electronic-vibrational energy transfer. Chem. Phys. Lett. 79:137–41 [Google Scholar]
  41. Stock G, Miller WH. 41.  1992. A classical model for time- and frequency-resolved spectroscopy of nonadiabatic excited state dynamics. Chem. Phys. Lett. 197:396–404 [Google Scholar]
  42. Stock G, Miller WH. 42.  1993. Classical formulation of the spectroscopy of nonadiabatic excited state dynamics. J. Chem. Phys. 99:1545–55 [Google Scholar]
  43. Stock G, Thoss M. 43.  1997. Semiclassical description of nonadiabatic quantum dynamics. Phys. Rev. Lett. 78:578–81 [Google Scholar]
  44. Thoss M, Stock G. 44.  1999. Mapping approach to the semiclassical description of nonadiabatic quantum dynamics. Phys. Rev. A 59:64–79 [Google Scholar]
  45. Marcus RA. 45.  1968. Analytical mechanics of chemical reactions. III. Natural collision coordinates. J. Chem. Phys. 49:2610–16 [Google Scholar]
  46. Miller WH, Handy NC, Adams JE. 46.  1980. Reaction path Hamiltonian for polyatomic molecules. J. Chem. Phys. 72:99–112 [Google Scholar]
  47. Miller WH. 47.  1981. Reaction path Hamiltonian for polyatomic systems: further developments and applications. Potential Energy Surfaces and Dynamical Calculations DG Truhlar 265–86 New York: Plenum [Google Scholar]
  48. Schatz GC, Kuppermann A. 48.  1976. Quantum mechanical reactive scattering for three-dimensional atom plus diatom systems. I. Theory. J. Chem. Phys. 65:4642–67 [Google Scholar]
  49. Schatz GC, Kuppermann A. 49.  1976. Quantum mechanical reactive scattering for three-dimensional atom plus diatom systems. II. Accurate cross sections for H + H2. J. Chem. Phys. 65:4668–92 [Google Scholar]
  50. Zhang JZH, Chu SI, Miller WH. 50.  1988. Quantum scattering via the S-matrix version of the Kohn variational principle. J. Chem. Phys. 88:6233–39 [Google Scholar]
  51. Zhang JZH, Miller WH. 51.  1988. Quantum reactive scattering via the S-matrix version of the Kohn variational principle: integral cross sections for H + H2(v1 = j1 = 0) → H2(v2 = 1, j2 = 1, 3) + H in the energy range Etotal = 0.9–1.4 eV. Chem. Phys. Lett. 153:465–70 [Google Scholar]
  52. Zhang JZH, Miller WH. 52.  1989. Differential cross section (angular distribution) for the reaction H + H2(v = j = 0) → H2(v′, ODD j′) + H in the energy range 0.90–1.35 eV. Chem. Phys. Lett. 159:130–33 [Google Scholar]
  53. Zhang JZH, Miller WH. 53.  1989. Quantum reactive scattering via the S-matrix version of the Kohn variational principle: differential and integral cross sections for D + H2 → HD +H. J. Chem. Phys. 91:1528–47 [Google Scholar]
  54. Zhang JZH, Miller WH. 54.  1990. Photodissociation and continuum resonance Raman cross sections, and general Franck-Condon intensities, from S-matrix Kohn scattering calculations, with application to the photoelectron spectrum of H2F + hν → H2 + F, HF + H + e. J. Chem. Phys. 92:1811–18 [Google Scholar]
  55. Heller EJ. 55.  1977. Generalized theory of semiclassical amplitudes. J. Chem. Phys. 66:5777–85 [Google Scholar]
  56. Herman MF, Kluk E. 56.  1984. A semiclassical justification for the use of non-spreading wavepackets in dynamics calculations. Chem. Phys. 91:27–34 [Google Scholar]
  57. Kay KG. 57.  1994. Integral expressions for the semiclassical time-dependent propagator. J. Chem. Phys. 100:4377–92 [Google Scholar]
  58. Kay KG. 58.  1994. Numerical study of semiclassical initial value methods for dynamics. J. Chem. Phys. 100:4432–45 [Google Scholar]
  59. Kay KG. 59.  1994. Semiclassical propagation for multidimensional systems by an initial value method. J. Chem. Phys. 101:2250–60 [Google Scholar]
  60. Sun X, Miller WH. 60.  1997. Mixed semiclassical-classical approaches to the dynamics of complex molecular systems. J. Chem. Phys. 106:916–27 [Google Scholar]
  61. Sun X, Wang H, Miller WH. 61.  1998. On the semiclassical description of quantum coherence in thermal rate constants. J. Chem. Phys. 109:4190–200 [Google Scholar]
  62. Makri N, Thompson K. 62.  1998. Semiclassical influence functionals for quantum systems in anharmonic environments. Chem. Phys. Lett. 291:101–9 [Google Scholar]
  63. Miller WH. 63.  1998. Quantum and semiclassical theory of chemical reaction rates. Faraday Discuss. Chem. Soc. 110:1–21 [Google Scholar]
  64. Sun X, Miller WH. 64.  1999. Forward-backward initial value representation for semiclassical time correlation functions. J. Chem. Phys. 110:6635–44 [Google Scholar]
  65. Tao G, Miller WH. 65.  2011. Time-dependent importance sampling in semiclassical initial value representation calculations for time correlation functions. J. Chem. Phys. 135:024104 [Google Scholar]
  66. Miller WH. 66.  2009. Electronically nonadiabatic dynamics via semiclassical initial value methods. J. Phys. Chem. A 113:1405–15 [Google Scholar]
  67. Miller WH. 67.  2012. Perspective: quantum or classical coherence?. J. Chem. Phys. 136:210901 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040513-103720
Loading
/content/journals/10.1146/annurev-physchem-040513-103720
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error