Sunlight can be used to drive chemical reactions to produce fuels that store energy in chemical bonds. These fuels, such as hydrogen from splitting water, have much larger energy density than do electrical storage devices. The efficient conversion of clean, sustainable solar energy using photoelectrochemical and photocatalytic systems requires precise control over the thermodynamics, kinetics, and structural aspects of materials and molecules. Generation, thermalization, trapping, interfacial transfer, and recombination of photoexcited charge carriers often occur on femtosecond to picosecond timescales. These short timescales limit the transport of photoexcited carriers to nanometer-scale distances, but nanostructures with high surface-to-volume ratios can enable both significant light absorption and high quantum efficiency. This review highlights the importance of understanding ultrafast carrier dynamics for the generation of solar fuels, including case studies on colloidal nanostructures, nanostructured photoelectrodes, and photoelectrodes sensitized with molecular chromophores and catalysts.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. 1.  2012. World Energy Statistics Paris: Int. Energy Agency http://www.iea.org/publications/freepublications/publication/name,31287,en.html [Google Scholar]
  2. Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Kozinsky B. 2.  et al. 2012. A critical review of Li/air batteries. J. Electrochem. Soc. 159:R1–30 [Google Scholar]
  3. Pasta M, Wessells CD, Huggins RA, Cui Y. 3.  2012. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. Commun. 3:1149 [Google Scholar]
  4. Pan H, Hu Y-S, Chen L. 4.  2013. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6:2338–60 [Google Scholar]
  5. Boudries R. 5.  2013. Analysis of solar hydrogen production in Algeria: case of an electrolyzer-concentrating photovoltaic system. Int. J. Hydrog. Energy 38:11507–18 [Google Scholar]
  6. Ivy J. 6.  2004. Summary of electrolytic hydrogen production: milestone completion report. NREL/MP-560-36734, US Natl. Renew. Energy Lab., Golden, CO [Google Scholar]
  7. Young KJ, Martini LA, Milot RL, Snoeberger RC, Batista VS. 7.  et al. 2012. Light-driven water oxidation for solar fuels. 2562503–20
  8. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi QX. 8.  et al. 2010. Solar water splitting cells. Chem. Rev. 110:6446–73Presents an excellent review of chemistry and physics of photodriven water splitting. [Google Scholar]
  9. Wasielewski MR. 9.  2009. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. Acc. Chem. Res. 42:1910–21 [Google Scholar]
  10. Nocera DG. 10.  2012. The artificial leaf. Acc. Chem. Res. 45:767–76 [Google Scholar]
  11. Swierk JR, Mallouk TE. 11.  2013. Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells. Chem. Soc. Rev. 42:2357–87Provides a comprehensive review of catalytic water oxidation. [Google Scholar]
  12. Magnuson A, Anderlund M, Johansson O, Lindblad P, Lomoth R. 12.  et al. 2009. Biomimetic and microbial approaches to solar fuel generation. Acc. Chem. Res. 42:1899–909 [Google Scholar]
  13. Gust D, Moore TA, Moore AL. 13.  2009. Solar fuels via artificial photosynthesis. Acc. Chem. Res. 42:1890–98 [Google Scholar]
  14. Maeda K, Domen K. 14.  2010. Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1:2655–61 [Google Scholar]
  15. Andreiadis ES, Chavarot-Kerlidou M, Fontecave M, Artero V. 15.  2011. Artificial photosynthesis: from molecular catalysts for light-driven water splitting to photoelectrochemical cells. Photochem. Photobiol. 87:946–64 [Google Scholar]
  16. Lubitz W, Reijerse EJ, Messinger J. 16.  2008. Solar water-splitting into H2 and O2: design principles of photosystem II and hydrogenases. Energy Environ. Sci. 1:15–31 [Google Scholar]
  17. van de Krol R, Liang Y, Schoonman J. 17.  2008. Solar hydrogen production with nanostructured metal oxides. J. Mater. Chem. 18:2311–20 [Google Scholar]
  18. Alstrum-Acevedo JH, Brennaman MK, Meyer TJ. 18.  2005. Chemical approaches to artificial photosynthesis. 2. Inorg. Chem. 44:6802–27 [Google Scholar]
  19. Tilley SD, Cornuz M, Sivula K, Gratzel M. 19.  2010. Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. Angew. Chem. Int. Ed. Engl. 49:6405–8 [Google Scholar]
  20. Fujishima A, Honda K. 20.  1972. Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38First report of photoelectrochemical water splitting, using bulk TiO2. [Google Scholar]
  21. Nozik AJ. 21.  1978. Photoelectrochemistry: applications to solar energy conversion. Annu. Rev. Phys. Chem. 29:189–222 [Google Scholar]
  22. Chen ZB, Jaramillo TF, Deutsch TG, Kleiman-Shwarsctein A, Forman AJ. 22.  et al. 2010. Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols. J. Mater. Res. 25:3–16Defines common efficiencies and provides a flowchart to guide experiments in materials development for PEC hydrogen. [Google Scholar]
  23. Hill R, Bendall F. 23.  1960. Function of the two cytochrome components in chloroplasts: a working hypothesis. Nature 186:136–37 [Google Scholar]
  24. Nozik AJ. 24.  2001. Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Annu. Rev. Phys. Chem. 52:193–231 [Google Scholar]
  25. Sheehan SW, Noh H, Brudvig GW, Cao H, Schmuttenmaer CA. 25.  2013. Plasmonic enhancement of dye-sensitized solar cells using core-shell-shell nanostructures. J. Phys. Chem. C 117:927–34 [Google Scholar]
  26. Linic S, Christopher P, Ingram DB. 26.  2011. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10:911–21 [Google Scholar]
  27. Thomann I, Pinaud BA, Chen ZB, Clemens BM, Jaramillo TF, Brongersma ML. 27.  2011. Plasmon enhanced solar-to-fuel energy conversion. Nano Lett. 11:3440–46 [Google Scholar]
  28. Kanan MW, Surendranath Y, Nocera DG. 28.  2009. Cobalt-phosphate oxygen-evolving compound. Chem. Soc. Rev. 38:109–14 [Google Scholar]
  29. Sivula K, Le Formal F, Gratzel M. 29.  2011. Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4:432–49Provides a comprehensive review covering all aspects of water splitting with hematite. [Google Scholar]
  30. Kronawitter CX, Vayssieres L, Shen SH, Guo LJ, Wheeler DA. 30.  et al. 2011. A perspective on solar-driven water splitting with all-oxide hetero-nanostructures. Energy Environ. Sci. 4:3889–99 [Google Scholar]
  31. Mayer MT, Lin YJ, Yuan GB, Wang DW. 31.  2013. Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite. Acc. Chem. Res. 46:1558–66 [Google Scholar]
  32. Dittrich T, Belaidi A, Ennaoui A. 32.  2011. Concepts of inorganic solid-state nanostructured solar cells. Sol. Energy Mater. Sol. Cells 95:1527–36 [Google Scholar]
  33. Hodes G, Cahen D. 33.  2012. All-solid-state, semiconductor-sensitized nanoporous solar cells. Acc. Chem. Res. 45:705–13 [Google Scholar]
  34. Asahi T, Furube A, Masuhara H. 34.  1997. Direct measurement of picosecond interfacial electron transfer from photoexcited TiO2 powder to an adsorbed molecule in the opaque suspension. Chem. Phys. Lett. 275:234–38 [Google Scholar]
  35. Tang J, Cowan AJ, Durrant JR, Klug DR. 35.  2011. Mechanism of O2 production from water splitting: nature of charge carriers in nitrogen doped nanocrystalline TiO2 films and factors limiting O2 production. J. Phys. Chem. C 115:3143–50 [Google Scholar]
  36. Tang J, Durrant JR, Klug DR. 36.  2008. Mechanism of photocatalytic water splitting in TiO2: reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. J. Am. Chem. Soc. 130:13885–91 [Google Scholar]
  37. Kanan MW, Nocera DG. 37.  2008. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321:1072–75 [Google Scholar]
  38. Lin H, Zhang Y, Wang G, Li J-B. 38.  2012. Cobalt-based layered double hydroxides as oxygen evolving electrocatalysts in neutral electrolyte. Front. Mater. Sci. 6:142–48 [Google Scholar]
  39. Surendranath Y, Dincă M, Nocera DG. 39.  2009. Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. J. Am. Chem. Soc. 131:2615–20 [Google Scholar]
  40. Yamakata A, Ishibashi T, Onishi H. 40.  2001. Water- and oxygen-induced decay kinetics of photogenerated electrons in TiO2 and Pt/TiO2: a time-resolved infrared absorption study. J. Phys. Chem. B 105:7258–62 [Google Scholar]
  41. Service RF. 41.  2008. New catalyst marks major step in the march toward hydrogen fuel. Science 321:620 [Google Scholar]
  42. Smith RDL, Prévot MS, Fagan RD, Zhang Z, Sedach PA. 42.  et al. 2013. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 340:60–63 [Google Scholar]
  43. Turner J. 43.  2008. Oxygen catalysis: the other half of the equation. Nat. Mater. 7:770–71 [Google Scholar]
  44. Osterloh FE, Parkinson BA. 44.  2011. Recent developments in solar water-splitting photocatalysis. MRS Bull. 36:17–22 [Google Scholar]
  45. Ardo S, Meyer GJ. 45.  2009. Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chem. Soc. Rev. 38:115–64 [Google Scholar]
  46. Moore GF, Hambourger M, Gervaldo M, Poluektov OG, Rajh T. 46.  et al. 2008. A bioinspired construct that mimics the proton coupled electron transfer between P680•+ and the TyrZ-His190 pair of photosystem II. J. Am. Chem. Soc. 130:10466–67 [Google Scholar]
  47. Concepcion JJ, House RL, Papanikolas JM, Meyer TJ. 47.  2012. Chemical approaches to artificial photosynthesis. Proc. Natl. Acad. Sci. USA 109:15560–64 [Google Scholar]
  48. Hoertz PG, Kim Y-I, Youngblood WJ, Mallouk TE. 48.  2007. Bidentate dicarboxylate capping groups and photosensitizers control the size of IrO2 nanoparticle catalysts for water oxidation. J. Phys. Chem. B 111:6845–56 [Google Scholar]
  49. Henry W, Coates CG, Brady C, Ronayne KL, Matousek P. 49.  et al. 2008. The early picosecond photophysics of Ru(II) polypyridyl complexes: a tale of two timescales. J. Phys. Chem. A 112:4537–44 [Google Scholar]
  50. Baxter JB, Guglietta GW. 50.  2011. Terahertz spectroscopy. Anal. Chem. 83:4342–68 [Google Scholar]
  51. Schmuttenmaer CA. 51.  2004. Exploring dynamics in the far-infrared with terahertz spectroscopy. Chem. Rev. 104:1759–79 [Google Scholar]
  52. Katz JE, Zhang X, Attenkofer K, Chapman KW, Frandsen C. 52.  et al. 2012. Electron small polarons and their mobility in iron (oxyhydr)oxide nanoparticles. Science 337:1200–3 [Google Scholar]
  53. Warman JM, de Haas MP, Pichat P, Koster TPM, van der Zouwen-Assink EA. 53.  et al. 1991. Electronic processes in semiconductor materials studied by nanosecond time-resolved microwave conductivity—III. Al2O3, MgO and TiO2 powders. Int. J. Rad. Appl. Instrum. C 37:433–42 [Google Scholar]
  54. Savenije TJ, Huijser A, Vermeulen MJW, Katoh R. 54.  2008. Charge carrier dynamics in TiO2 nanoparticles at various temperatures. Chem. Phys. Lett. 461:93–96 [Google Scholar]
  55. Grinolds MS, Lobastov VA, Weissenrieder J, Zewail AH. 55.  2006. Four-dimensional ultrafast electron microscopy of phase transitions. Proc. Natl. Acad. Sci. USA 103:18427–31 [Google Scholar]
  56. King WE, Campbell GH, Frank A, Reed B, Schmerge JF. 56.  et al. 2005. Ultrafast electron microscopy in materials science, biology, and chemistry. J. Appl. Phys. 97:111101 [Google Scholar]
  57. Furube A, Asahi T, Masuhara H, Yamashita H, Anpo M. 57.  2001. Direct observation of a picosecond charge separation process in photoexcited platinum-loaded TiO2 particles by femtosecond diffuse reflectance spectroscopy. Chem. Phys. Lett. 336:424–30 [Google Scholar]
  58. Lisowski M, Loukakos PA, Bovensiepen U, Stähler J, Gahl C, Wolf M. 58.  2004. Ultra-fast dynamics of electron thermalization, cooling and transport effects in Ru(001). Appl. Phys. A 78:165–76 [Google Scholar]
  59. Gundlach L, Ernstorfer R, Willig F. 59.  2006. Escape dynamics of photoexcited electrons at catechol:TiO2(110). Phys. Rev. B 74:035324 [Google Scholar]
  60. Felekyan S, Kuhnemuth R, Kudryavtsev V, Sandhagen C, Becker W, Seidel CAM. 60.  2005. Full correlation from picoseconds to seconds by time-resolved and time-correlated single photon detection. Rev. Sci. Instrum. 76:083104 [Google Scholar]
  61. Stolow A, Bragg AE, Neumark DM. 61.  2004. Femtosecond time-resolved photoelectron spectroscopy. Chem. Rev. 104:1719–57 [Google Scholar]
  62. Morishita T, Hibara A, Sawada T, Tsuyumoto I. 62.  1999. Ultrafast charge transfer at TiO2/SCN (aq) interfaces investigated by femtosecond transient reflecting grating method. J. Phys. Chem. B 103:5984–87 [Google Scholar]
  63. Shen Q, Ayuzawa Y, Katayama K, Sawada T, Toyoda T. 63.  2010. Separation of ultrafast photoexcited electron and hole dynamics in CdSe quantum dots adsorbed onto nanostructured TiO2 films. Appl. Phys. Lett. 97:263113 [Google Scholar]
  64. Gundlach L, Piotrowiak P. 64.  2008. Femtosecond Kerr-gated wide-field fluorescence microscopy. Opt. Lett. 33:992–94 [Google Scholar]
  65. van Doorslaer S, Jeschke G. 65.  2005. Dynamics by EPR: picosecond to microsecond time scales. Fluxional Organometallic and Coordination Compounds, ed. M Gielen, R Willem, B Wrackmeyer 219–42 New York: Wiley [Google Scholar]
  66. Wächtler M, Guthmuller J, González L, Dietzek B. 66.  2012. Analysis and characterization of coordination compounds by resonance Raman spectroscopy. Coord. Chem. Rev. 256:1479–508 [Google Scholar]
  67. Fischer SA, Isborn CM, Prezhdo OV. 67.  2011. Excited states and optical absorption of small semiconducting clusters: dopants, defects and charging. Chem. Sci. 2:400–6 [Google Scholar]
  68. Rego LGC, Batista VS. 68.  2003. Quantum dynamics simulations of interfacial electron transfer in sensitized TiO2 semiconductors. J. Am. Chem. Soc. 125:7989–97 [Google Scholar]
  69. Rajeshwar K. 69.  2007. Hydrogen generation at irradiated oxide semiconductor-solution interfaces. J. Appl. Electrochem. 37:765–87 [Google Scholar]
  70. Kraeutler B, Bard AJ. 70.  1978. Heterogeneous photocatalytic preparation of supported catalysts: photodeposition of platinum on TiO2 powder and other substrates. J. Am. Chem. Soc. 100:4317–18 [Google Scholar]
  71. Abe R, Sayama K, Domen K, Arakawa H. 71.  2001. A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3/I shuttle redox mediator. Chem. Phys. Lett. 344:339–44 [Google Scholar]
  72. Tamaki Y, Furube A, Murai M, Hara K, Katoh R, Tachiya M. 72.  2007. Dynamics of efficient electron-hole separation in TiO2 nanoparticles revealed by femtosecond transient absorption spectroscopy under the weak-excitation condition. Phys. Chem. Chem. Phys. 9:1453–60 [Google Scholar]
  73. Kamat PV. 73.  2012. Manipulation of charge transfer across semiconductor interface: a criterion that cannot be ignored in photocatalyst design. J. Phys. Chem. Lett. 3:663–72 [Google Scholar]
  74. O'Connor T, Panov MS, Mereshchenko A, Tarnovsky AN, Lorek R. 74.  et al. 2012. The effect of the charge-separating interface on exciton dynamics in photocatalytic colloidal heteronanocrystals. ACS Nano 6:8156–65 [Google Scholar]
  75. Henderson MA. 75.  2011. A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 66:185–297Presents an exhaustive review of the field of photocatalysis with TiO2, including ultrafast carrier dynamics. [Google Scholar]
  76. Itoh C, Wada A. 76.  2005. Relaxation of photogenerated carriers in the anatase form of crystalline titanium dioxide. Physica Status Solidi C 2:629–32 [Google Scholar]
  77. Kopidakis N, Benkstein KD, van de Lagemaat J, Frank AJ. 77.  2003. Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 107:11307–15 [Google Scholar]
  78. Tamaki Y, Furube A, Katoh R, Murai M, Hara K. 78.  et al. 2006. Trapping dynamics of electrons and holes in a nanocrystalline TiO2 film revealed by femtosecond visible/near-infrared transient absorption spectroscopy. C. R. Chim. 9:268–74 [Google Scholar]
  79. Tamaki Y, Hara K, Katoh R, Tachiya M, Furube A. 79.  2009. Femtosecond visible-to-IR spectroscopy of TiO2 nanocrystalline films: elucidation of the electron mobility before deep trapping. J. Phys. Chem. C 113:11741–46 [Google Scholar]
  80. Katoh R, Murai M, Furube A. 80.  2008. Electron-hole recombination in the bulk of a rutile TiO2 single crystal studied by sub-nanosecond transient absorption spectroscopy. Chem. Phys. Lett. 461:238–41 [Google Scholar]
  81. Bahnemann D, Henglein A, Lilie J, Spanhel L. 81.  1984. Flash photolysis observation of the absorption spectra of trapped positive holes and electrons in colloidal TiO2. J. Phys. Chem. 88:709–11 [Google Scholar]
  82. Koelle U, Moser J, Graetzel M. 82.  1985. Dynamics of interfacial charge-transfer reactions in semiconductor dispersions: reduction of cobaltoceniumdicarboxylate in colloidal TiO2. Inorg. Chem. 24:2253–58 [Google Scholar]
  83. Asbury JB, Hao E, Wang Y, Ghosh HN, Lian T. 83.  2001. Ultrafast electron transfer dynamics from molecular adsorbates to semiconductor nanocrystalline thin films. J. Phys. Chem. B 105:4545–57 [Google Scholar]
  84. Cowan AJ, Leng W, Barnes PRF, Klug DR, Durrant JR. 84.  2013. Charge carrier separation in nanostructured TiO2 photoelectrodes for water splitting. Phys. Chem. Chem. Phys. 15:8772–78 [Google Scholar]
  85. Turner GM, Beard MC, Schmuttenmaer CA. 85.  2002. Carrier localization and cooling in dye-sensitized nanocrystalline titanium dioxide. J. Phys. Chem. B 106:11716–19 [Google Scholar]
  86. Jarosz P, Du P, Schneider J, Lee S-H, McCamant D, Eisenberg R. 86.  2009. Platinum(II) terpyridyl acetylide complexes on platinized TiO2: toward the photogeneration of H2 in aqueous media. Inorg. Chem. 48:9653–63 [Google Scholar]
  87. Zhu HM, Song NH, Lv HJ, Hill CL, Lian TQ. 87.  2012. Near unity quantum yield of light-driven redox mediator reduction and efficient H2 generation using colloidal nanorod heterostructures. J. Am. Chem. Soc. 134:11701–8 [Google Scholar]
  88. Zhu HM, Song NH, Rodríguez-Córdoba W, Lian TQ. 88.  2012. Wave function engineering for efficient extraction of up to nineteen electrons from one CdSe/CdS quasi-type II quantum dot. J. Am. Chem. Soc. 134:4250–57 [Google Scholar]
  89. Mongin D, Shaviv E, Maioli P, Crut A, Banin U. 89.  et al. 2012. Ultrafast photoinduced charge separation in metal-semiconductor nanohybrids. ACS Nano 6:7034–43 [Google Scholar]
  90. Dimitrijevic NM, Vijayan BK, Poluektov OG, Rajh T, Gray KA. 90.  et al. 2011. Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. J. Am. Chem. Soc. 133:3964–71 [Google Scholar]
  91. Anpo M, Takeuchi M. 91.  2003. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J. Catal. 216:505–16 [Google Scholar]
  92. Kayes BM, Atwater HA, Lewis NS. 92.  2005. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 97:114302 [Google Scholar]
  93. Majidi H, Baxter JB. 93.  2011. Electrodeposition of CdSe coatings on ZnO nanowire arrays for extremely thin absorber solar cells. Electrochim. Acta 56:2703–11 [Google Scholar]
  94. Hamann TW. 94.  2012. Splitting water with rust: hematite photoelectrochemistry. Dalton Trans. 41:7830–34 [Google Scholar]
  95. Wheeler DA, Wang GM, Ling YC, Li Y, Zhang JZ. 95.  2012. Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy Environ. Sci. 5:6682–702 [Google Scholar]
  96. Haussener S, Xiang CX, Spurgeon JM, Ardo S, Lewis NS, Weber AZ. 96.  2012. Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems. Energy Environ. Sci. 5:9922–35 [Google Scholar]
  97. Klahr B, Gimenez S, Fabregat-Santiago F, Bisquert J, Hamann TW. 97.  2012. Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes. Energy Environ. Sci. 5:7626–36 [Google Scholar]
  98. Barroso M, Mesa CA, Pendlebury SR, Cowan AJ, Hisatomi T. 98.  et al. 2012. Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting. Proc. Natl. Acad. Sci. USA 109:15640–45 [Google Scholar]
  99. Le Formal F, Tetreault N, Cornuz M, Moehl T, Gratzel M, Sivula K. 99.  2011. Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem. Sci. 2:737–43 [Google Scholar]
  100. Zhong DK, Cornuz M, Sivula K, Graetzel M, Gamelin DR. 100.  2011. Photo-assisted electrodeposition of cobalt-phosphate (Co-Pi) catalyst on hematite photoanodes for solar water oxidation. Energy Environ. Sci. 4:1759–64 [Google Scholar]
  101. Cherepy NJ, Liston DB, Lovejoy JA, Deng HM, Zhang JZ. 101.  1998. Ultrafast studies of photoexcited electron dynamics in γ- and α-Fe2O3 semiconductor nanoparticles. J. Phys. Chem. B 102:770–76 [Google Scholar]
  102. Ling Y, Wang G, Wheeler DA, Zhang JZ, Li Y. 102.  2011. Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett. 11:2119–25 [Google Scholar]
  103. Kennedy JH, Frese KW. 103.  1978. Photooxidation of water at α-Fe2O3 electrodes. J. Electrochem. Soc. 125:709–14 [Google Scholar]
  104. Bjorksten U, Moser J, Gratzel M. 104.  1994. Photoelectrochemical studies on nanocrystalline hematite films. Chem. Mater. 6:858–63 [Google Scholar]
  105. Lindgren T, Wang HL, Beermann N, Vayssieres L, Hagfeldt A, Lindquist SE. 105.  2002. Aqueous photoelectrochemistry of hematite nanorod array. Sol. Energy Mater. Sol. Cells 71:231–43 [Google Scholar]
  106. Morrish R, Rahman M, MacElroy JMD, Wolden CA. 106.  2011. Activation of hematite nanorod arrays for photoelectrochemical water splitting. ChemSusChem 4:474–79 [Google Scholar]
  107. Cesar I, Sivula K, Kay A, Zboril R, Graetzel M. 107.  2009. Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J. Phys. Chem. C 113:772–82 [Google Scholar]
  108. Ma YJ, Zhou F, Lu L, Zhang Z. 108.  2004. Low-temperature transport properties of individual SnO2 nanowires. Solid State Commun. 130:313–16 [Google Scholar]
  109. Huang Z, Lin Y, Xiang X, Rodríguez-Córdoba W, McDonald KJ. 109.  et al. 2012. In situ probe of photocarrier dynamics in water-splitting hematite (α-Fe2O3) electrodes. Energy Environ. Sci. 5:8923–26 [Google Scholar]
  110. Joly AG, Williams JR, Chambers SA, Xiong G, Hess WP, Laman DM. 110.  2006. Carrier dynamics in α-Fe2O3 (0001) thin films and single crystals probed by femtosecond transient absorption and reflectivity. J. Appl. Phys. 99:053521 [Google Scholar]
  111. Pendlebury SR, Cowan AJ, Barroso M, Sivula K, Ye J. 111.  et al. 2012. Correlating long-lived photogenerated hole populations with photocurrent densities in hematite water oxidation photoanodes. Energy Environ. Sci. 5:6304–12 [Google Scholar]
  112. Fan HM, You GJ, Li Y, Zheng Z, Tan HR. 112.  et al. 2009. Shape-controlled synthesis of single-crystalline Fe2O3 hollow nanocrystals and their tunable optical properties. J. Phys. Chem. C 113:9928–35 [Google Scholar]
  113. Fu L, Wu Z, Ai X, Zhang J, Nie Y. 113.  et al. 2004. Time-resolved spectroscopic behavior of Fe2O3 and ZnFe2O4 nanocrystals. J. Chem. Phys. 120:3406–13 [Google Scholar]
  114. Wang G, Ling Y, Wheeler DA, George KE, Horsley K. 114.  et al. 2011. Facile synthesis of highly photoactive α-Fe2O3-based films for water oxidation. Nano Lett. 11:3503–9 [Google Scholar]
  115. Iordanova N, Dupuis M, Rosso KM. 115.  2005. Charge transport in metal oxides: a theoretical study of hematite α-Fe2O3. J. Chem. Phys. 122:144305 [Google Scholar]
  116. Richter C, Schmuttenmaer CA. 116.  2010. Exciton-like trap states limit mobility in TiO2 nanotubes. Nat. Nanotechnol. 5:769–72 [Google Scholar]
  117. Baxter JB, Schmuttenmaer CA. 117.  2006. Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. J. Phys. Chem. B 110:25229–39 [Google Scholar]
  118. Cooper JK, Ling Y, Longo C, Li Y, Zhang JZ. 118.  2012. Effects of hydrogen treatment and air annealing on ultrafast charge carrier dynamics in ZnO nanowires under in situ photoelectrochemical conditions. J. Phys. Chem. C 116:17360–68 [Google Scholar]
  119. House RL, Kirschbrown JR, Mehl BP, Gabriel MM, Puccio JA. 119.  et al. 2011. Characterizing electron-hole plasma dynamics at different points in individual ZnO rods. J. Phys. Chem. C 115:21436–42 [Google Scholar]
  120. Paracchino A, Laporte V, Sivula K, Gratzel M, Thimsen E. 120.  2011. Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 10:456–61 [Google Scholar]
  121. Paracchino A, Brauer JC, Moser J-E, Thimsen E, Graetzel M. 121.  2012. Synthesis and characterization of high-photoactivity electrodeposited Cu2O solar absorber by photoelectrochemistry and ultrafast spectroscopy. J. Phys. Chem. C 116:7341–50 [Google Scholar]
  122. Beard MC, Turner GM, Schmuttenmaer CA. 122.  2002. Terahertz spectroscopy. J. Phys. Chem. B 106:7146–59 [Google Scholar]
  123. Baxter JB, Schmuttenmaer CA. 123.  2008. Time-resolved terahertz spectroscopy and terahertz emission spectroscopy. Terahertz Spectroscopy: Principles and Applications SL Dexheimer 73–118 Boca Raton, FL: CRC [Google Scholar]
  124. O'Regan B, Gratzel M. 124.  1991. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–40 [Google Scholar]
  125. Baxter JB. 125.  2012. Commercialization of dye sensitized solar cells: Present status and future research needs to improve efficiency, stability, and manufacturing. J. Vac. Sci. Technol. A 30:021201 [Google Scholar]
  126. Youngblood WJ, Lee SHA, Kobayashi Y, Hernandez-Pagan EA, Hoertz PG. 126.  et al. 2009. Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J. Am. Chem. Soc. 131:926–27Demonstrates photocatalytic oxygen and hydrogen production using a nanoparticle-sensitizer-catalyst combination. [Google Scholar]
  127. Moore GF, Blakemore JD, Milot RL, Hull JF, Song HE. 127.  et al. 2011. A visible light water-splitting cell with a photoanode formed by codeposition of a high-potential porphyrin and an iridium water-oxidation catalyst. Energy Environ. Sci. 4:2389–92 [Google Scholar]
  128. Lv HJ, Geletii YV, Zhao CC, Vickers JW, Zhu GB. 128.  et al. 2012. Polyoxometalate water oxidation catalysts and the production of green fuel. Chem. Soc. Rev. 41:7572–89 [Google Scholar]
  129. Xiang X, Fielden J, Rodríguez-Córdoba W, Huang ZQ, Zhang NF. 129.  et al. 2013. Electron transfer dynamics in semiconductor-chromophore-polyoxometalate catalyst photoanodes. J. Phys. Chem. C 117:918–26 [Google Scholar]
  130. Prezhdo OV, Duncan WR, Prezhdo VV. 130.  2009. Photoinduced electron dynamics at the chromophore-semiconductor interface: a time-domain ab initio perspective. Prog. Surf. Sci. 84:30–68 [Google Scholar]
  131. James BD, Baum GN, Perez J, Baum KN. 131.  2009. Technoeconomic analysis of photoelectrochemical (PEC) hydrogen production Project Final Rep., US Dep. Energy, Arlington, VA [Google Scholar]
  132. Pinaud BA, Benck JD, Seitz LC, Forman AJ, Chen Z. 132.  et al. 2013. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6:1983–2002 [Google Scholar]
  133. Zhai P, Haussener S, Ager J, Sathre R, Walczak K. 133.  et al. 2013. Net primary energy balance of a solar-driven photoelectrochemical water-splitting device. Energy Environ. Sci. 6:2380–89 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error