1932

Abstract

Over the past decade, and particularly the past five years, a quiet revolution has been building at the border between atomic physics and experimental quantum chemistry. The rapid development of techniques for producing cold and even ultracold molecules without a perturbing rare-gas cluster shell is now enabling the study of chemical reactions and scattering at the quantum scattering limit with only a few partial waves contributing to the incident channel. Moreover, the ability to perform these experiments with nonthermal distributions comprising one or a few specific states enables the observation and even full control of state-to-state collision rates in this computation-friendly regime: This is perhaps the most elementary study possible of scattering and reaction dynamics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040513-103744
2014-04-01
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/physchem/65/1/annurev-physchem-040513-103744.html?itemId=/content/journals/10.1146/annurev-physchem-040513-103744&mimeType=html&fmt=ahah

Literature Cited

  1. Weiner J, Bagnato VS, Zilio S, Julienne PS. 1.  1999. Experiments and theory in cold and ultracold collisions. Rev. Mod. Phys. 71:1–85 [Google Scholar]
  2. Chin C, Grimm R, Julienne P, Tiesinga E. 2.  2010. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82:1225–86 [Google Scholar]
  3. Krems RV. 3.  2005. Molecules near absolute zero and external field control of atomic and molecular dynamics. Int. Rev. Phys. Chem. 24:99–118 [Google Scholar]
  4. Doyle JM, Friedrich B, Krems RV, Masnou-Seeuws F. 4.  2004. Quo vadis, cold molecules?. Eur. Phys. J. D 31:149–64 [Google Scholar]
  5. Krems RV. 5.  2008. Cold controlled chemistry. Phys. Chem. Chem. Phys. 10:4079–92 [Google Scholar]
  6. Ospelkaus S, Ni KK, Wang D, de Miranda MHG, Neyenhuis B. 6.  et al. 2010. Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules. Science 327:853–57 [Google Scholar]
  7. Bohn JL, Cavagnero M, Ticknor C. 7.  2009. Quasi-universal dipolar scattering in cold and ultracold gases. New J. Phys. 11:055039 [Google Scholar]
  8. Idziaszek Z, Julienne PS. 8.  2010. Universal rate constants for reactive collisions of ultracold molecules. Phys. Rev. Lett. 104:113202 [Google Scholar]
  9. Quéméner G, Bohn JL, Petrov A, Kotochigova S. 9.  2011. Universalities in ultracold reactions of alkali-metal polar molecules. Phys. Rev. A 84:062703 [Google Scholar]
  10. Ticknor C. 10.  2008. Collisional control of ground state polar molecules and universal dipolar scattering. Phys. Rev. Lett. 100:133202 [Google Scholar]
  11. Smith IWM. 11.  2008. Low Temperatures and Cold Molecules London: Imperial Coll. Press [Google Scholar]
  12. Krems RV, Stwalley WC, Friedrich B. 12.  2009. Cold Molecules: Theory, Experiment, Applications Boca Raton, FL: CRC [Google Scholar]
  13. Carr LD, DeMille D, Krems RV, Ye J. 13.  2009. Cold and ultracold molecules: science, technology and applications. New J. Phys. 11:055049Provides a good introduction to cold molecules from a physicist's perspective. [Google Scholar]
  14. Friedrich B, Doyle JM. 14.  2009. Why are cold molecules so hot?. ChemPhysChem 10:604–23 [Google Scholar]
  15. Lemeshko M, Krems RV, Doyle JM, Kais S. 15.  2013. Manipulation of molecules with electromagnetic fields. Mol. Phys. 111:1648–82 [Google Scholar]
  16. Bell MT, Softley TP. 16.  2009. Ultracold molecules and ultracold chemistry. Mol. Phys. 107:99–132 [Google Scholar]
  17. Mestdagh J, Gaveau M, Gee C, Sublemontier O, Visticot J. 17.  1997. Cluster isolated chemical reactions. Int. Rev. Phys. Chem. 16:215–47 [Google Scholar]
  18. Castleman AW, Keesee RG. 18.  1986. Clusters: properties and formation. Annu. Rev. Phys. Chem. 37:525–50 [Google Scholar]
  19. Castleman AW, Wei S. 19.  1994. Cluster reactions. Annu. Rev. Phys. Chem. 45:685–719 [Google Scholar]
  20. Toennies JP, Vilesov AF. 20.  1998. Spectroscopy of atoms and molecules in liquid helium. Annu. Rev. Phys. Chem. 49:1–41 [Google Scholar]
  21. Callegari C, Lehmann KK, Schmied R, Scoles G. 21.  2001. Helium nanodroplet isolation rovibrational spectroscopy: methods and recent results. J. Chem. Phys. 115:10090–110 [Google Scholar]
  22. Choi MY, Douberly GE, Falconer TM, Lewis WK, Lindsay CM. 22.  et al. 2006. Infrared spectroscopy of helium nanodroplets: novel methods for physics and chemistry. Int. Rev. Phys. Chem. 25:15–75 [Google Scholar]
  23. Toennies JP. 23.  2007. Molecular low energy collisions: past, present and future. Phys. Scr. 76:C15–20 [Google Scholar]
  24. Even U, Jortner J, Noy D, Lavie N, Cossart-Magos C. 24.  2000. Cooling of large molecules below 1 K and He clusters formation. J. Chem. Phys. 112:8068–71 [Google Scholar]
  25. Hillenkamp M, Keinan S, Even U. 25.  2003. Condensation limited cooling in supersonic expansions. J. Chem. Phys. 118:8699–705 [Google Scholar]
  26. Pentlehner D, Riechers R, Dick B, Slenczka A, Even U. 26.  et al. 2009. Rapidly pulsed helium droplet source. Rev. Sci. Instrum. 80:043302 [Google Scholar]
  27. Chefdeville S, Stoecklin T, Bergeat A, Hickson KM, Naulin C, Costes M. 27.  2012. Appearance of low energy resonances in CO–para-H2 inelastic collisions. Phys. Rev. Lett. 109:023201 [Google Scholar]
  28. Scoles G. 28.  1988. Atomic and Molecular Beam Methods New York: Oxford Univ. Press [Google Scholar]
  29. Rowe BR, Dupeyrat G, Marquette JB, Smith D, Adams NG, Ferguson EE. 29.  1984. The reaction O2+ + CH4 → CH3O2+ + H studied from 20 to 560 K in a supersonic jet and in a SIFT. J. Chem. Phys. 80:241–45 [Google Scholar]
  30. Rowe BR, Dupeyrat G, Marquette JB, Gaucherel P. 30.  1984. Study of the reactions N2+ + 2N2 → N4+ + N2 and O2+ + 2O2 → O4+ + O2 from 20 to 160 K by the CRESU technique. J. Chem. Phys. 80:4915–21 [Google Scholar]
  31. Smith IWM. 31.  2006. Reactions at very low temperatures: gas kinetics at a new frontier. Angew. Chem. Int. Ed. Engl. 45:2842–61 [Google Scholar]
  32. Daranlot J, Jorfi M, Xie C, Bergeat A, Costes M. 32.  et al. 2011. Revealing atom-radical reactivity at low temperature through the N + OH reaction. Science 334:1538–41 [Google Scholar]
  33. Rellergert WG, Sullivan ST, Schowalter SJ, Kotochigova S, Chen K, Hudson ER. 33.  2013. Evidence for sympathetic vibrational cooling of translationally cold molecules. Nature 495:490–94 [Google Scholar]
  34. Bell MT, Gingell AD, Oldham JM, Softley TP, Willitsch S. 34.  2009. Ion-molecule chemistry at very low temperatures: cold chemical reactions between Coulomb-crystallized ions and velocity-selected neutral molecules. Faraday Discuss. 142:73–91 [Google Scholar]
  35. Okada K, Suganuma T, Furukawa T, Takayanagi T, Wada M, Schuessler HA. 35.  2013. Cold ion–polar-molecule reactions studied with a combined Stark-velocity-filter–ion-trap apparatus. Phys. Rev. A 87:043427 [Google Scholar]
  36. Elioff MS, Valentini JJ, Chandler DW. 36.  2003. Subkelvin cooling NO molecules via “billiard-like” collisions with argon. Science 302:1940–43 [Google Scholar]
  37. Strecker KE, Chandler DW. 37.  2008. Kinematic production of isolated millikelvin molecules. Phys. Rev. A 78:063406 [Google Scholar]
  38. Kay JJ, van de Meerakker SYT, Strecker KE, Chandler DW. 38.  2009. Production of cold ND3 by kinematic cooling. Faraday Discuss 142:143–53 [Google Scholar]
  39. Patterson D, Schnell M, Doyle JM. 39.  2013. Enantiomer-specific detection of chiral molecules via microwave spectroscopy. Nature 497:475–77 [Google Scholar]
  40. Ospelkaus S, Pe'er A, Ni KK, Zirbel JJ, Neyenhuis B. 40.  et al. 2008. Efficient state transfer in an ultracold dense gas of heteronuclear molecules. Nat. Phys. 4:622–26 [Google Scholar]
  41. Ni KK, Ospelkaus S, de Miranda MHG, Pe'er A, Neyenhuis B. 41.  et al. 2008. A high phase-space-density gas of polar molecules. Science 322:231–35 [Google Scholar]
  42. Chotia A, Neyenhuis B, Moses SA, Yan B, Covey JP. 42.  et al. 2012. Long-lived dipolar molecules and Feshbach molecules in a 3D optical lattice. Phys. Rev. Lett. 108:080405 [Google Scholar]
  43. Deiglmayr J, Grochola A, Repp M, Dulieu O, Wester R, Weidemüller M. 43.  2010. Permanent dipole moment of LiCs in the ground state. Phys. Rev. A 82:032503 [Google Scholar]
  44. Repp M, Pires R, Ulmanis J, Heck R, Kuhnle ED. 44.  et al. 2013. Observation of interspecies 6Li-133Cs Feshbach resonances. Phys. Rev. A 87:010701 [Google Scholar]
  45. Tung SK, Parker C, Johansen J, Chin C, Wang Y, Julienne PS. 45.  2013. Ultracold mixtures of atomic 6Li and 133Cs with tunable interactions. Phys. Rev. A 87:010702 [Google Scholar]
  46. Debatin M, Takekoshi T, Rameshan R, Reichsollner L, Ferlaino F. 46.  et al. 2011. Molecular spectroscopy for ground-state transfer of ultracold RbCs molecules. Phys. Chem. Chem. Phys. 13:18926–35 [Google Scholar]
  47. Żuchowski PS, Aldegunde J, Hutson JM. 47.  2010. Ultracold RbSr molecules can be formed by magnetoassociation. Phys. Rev. Lett. 105:153201 [Google Scholar]
  48. Guérout R, Aymar M, Dulieu O. 48.  2010. Ground state of the polar alkali-metal-atom–strontium molecules: potential energy curve and permanent dipole moment. Phys. Rev. A 82:042508 [Google Scholar]
  49. Hara H, Takasu Y, Yamaoka Y, Doyle JM, Takahashi Y. 49.  2011. Quantum degenerate mixtures of alkali and alkaline-earth-like atoms. Phys. Rev. Lett. 106:205304 [Google Scholar]
  50. Brue DA, Hutson JM. 50.  2012. Magnetically tunable Feshbach resonances in ultracold Li-Yb mixtures. Phys. Rev. Lett. 108:043201 [Google Scholar]
  51. Munchow F, Bruni C, Madalinski M, Gorlitz A. 51.  2011. Two-photon photoassociation spectroscopy of heteronuclear YbRb. Phys. Chem. Chem. Phys. 13:18734–37 [Google Scholar]
  52. Ye J, Kimble HJ, Katori H. 52.  2008. Quantum state engineering and precision metrology using state-insensitive light traps. Science 320:1734–38 [Google Scholar]
  53. Patterson D, Doyle JM. 53.  2007. Bright, guided molecular beam with hydrodynamic enhancement. J. Chem. Phys. 126:154307 [Google Scholar]
  54. Willitsch S, Bell MT, Gingell AD, Procter SR, Softley TP. 54.  2008. Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules. Phys. Rev. Lett. 100:043203 [Google Scholar]
  55. Motsch M, van Buuren LD, Sommer C, Zeppenfeld M, Rempe G, Pinkse PWH. 55.  2009. Cold guided beams of water isotopologs. Phys. Rev. A 79:013405 [Google Scholar]
  56. Rangwala SA, Junglen T, Rieger T, Pinkse PWH, Rempe G. 56.  2003. Continuous source of translationally cold dipolar molecules. Phys. Rev. A 67:043406 [Google Scholar]
  57. Rieger T, Junglen T, Rangwala SA, Rempe G, Pinkse PWH, Bulthuis J. 57.  2006. Water vapor at a translational temperature of 1 K. Phys. Rev. A 73:061402 [Google Scholar]
  58. Sommer C, Motsch M, Chervenkov S, van Buuren LD, Zeppenfeld M. 58.  et al. 2010. Velocity-selected molecular pulses produced by an electric guide. Phys. Rev. A 82:013410 [Google Scholar]
  59. Bethlem HL, Berden G, Meijer G. 59.  1999. Decelerating neutral dipolar molecules. Phys. Rev. Lett. 83:1558–61 [Google Scholar]
  60. Bochinski JR, Hudson ER, Lewandowski HJ, Meijer G, Ye J. 60.  2003. Phase space manipulation of cold free radical OH molecules. Phys. Rev. Lett. 91:243001 [Google Scholar]
  61. van de Meerakker SYT, Vanhaecke N, Meijer G. 61.  2006. Stark deceleration and trapping of OH radicals. Annu. Rev. Phys. Chem. 57:159–90 [Google Scholar]
  62. van de Meerakker SYT, Bethlem HL, Vanhaecke N, Meijer G. 62.  2012. Manipulation and control of molecular beams. Chem. Rev. 112:4828–78 [Google Scholar]
  63. Hogan SD, Sprecher D, Andrist M, Vanhaecke N, Merkt F. 63.  2007. Zeeman deceleration of H and D. Phys. Rev. A 76:023412 [Google Scholar]
  64. Hogan SD, Wiederkehr AW, Schmutz H, Merkt F. 64.  2008. Magnetic trapping of hydrogen after multistage Zeeman deceleration. Phys. Rev. Lett. 101:143001 [Google Scholar]
  65. Narevicius E, Libson A, Parthey CG, Chavez I, Narevicius J. 65.  et al. 2008. Stopping supersonic oxygen with a series of pulsed electromagnetic coils: a molecular coilgun. Phys. Rev. A 77:051401 [Google Scholar]
  66. Narevicius E, Raizen MG. 66.  2012. Toward cold chemistry with magnetically decelerated supersonic beams. Chem. Rev. 112:4879–89 [Google Scholar]
  67. van de Meerakker S, Vanhaecke N, van der Loo M, Groenenboom G, Meijer G. 67.  2005. Direct measurement of the radiative lifetime of vibrationally excited OH radicals. Phys. Rev. Lett. 95:013003 [Google Scholar]
  68. Campbell WC, Groenenboom GC, Lu HI, Tsikata E, Doyle JM. 68.  2008. Time-domain measurement of spontaneous vibrational decay of magnetically trapped NH. Phys. Rev. Lett. 100:083003 [Google Scholar]
  69. van de Meerakker SYT, Smeets PHM, Vanhaecke N, Jongma RT, Meijer G. 69.  2005. Deceleration and electrostatic trapping of OH radicals. Phys. Rev. Lett. 94:023004 [Google Scholar]
  70. Sawyer BC, Lev BL, Hudson ER, Stuhl BK, Lara M. 70.  et al. 2007. Magnetoelectrostatic trapping of ground state OH molecules. Phys. Rev. Lett. 98:253002 [Google Scholar]
  71. Kleinert J, Haimberger C, Zabawa PJ, Bigelow NP. 71.  2007. Trapping of ultracold polar molecules with a thin-wire electrostatic trap. Phys. Rev. Lett. 99:143002 [Google Scholar]
  72. Sawyer BC, Stuhl BK, Wang D, Yeo M, Ye J. 72.  2008. Molecular beam collisions with a magnetically trapped target. Phys. Rev. Lett. 101:203203 [Google Scholar]
  73. van de Meerakker SYT, Bethlem HL, Meijer G. 73.  2008. Taming molecular beams. Nat. Phys. 4:595–602 [Google Scholar]
  74. Hogan SD, Motsch M, Merkt F. 74.  2011. Deceleration of supersonic beams using inhomogeneous electric and magnetic fields. Phys. Chem. Chem. Phys. 13:18705–23Comprehensively reviews Stark and Zeeman deceleration. [Google Scholar]
  75. Meek SA, Parsons MF, Heyne G, Platschkowski V, Haak H. 75.  et al. 2011. A traveling wave decelerator for neutral polar molecules. Rev. Sci. Instrum. 82:093108 [Google Scholar]
  76. Quintero-Pérez M, Jansen P, Wall TE, van den Berg JE, Hoekstra S, Bethlem HL. 76.  2013. Static trapping of polar molecules in a traveling wave decelerator. Phys. Rev. Lett. 110:133003 [Google Scholar]
  77. Egorov D, Lahaye T, Schöllkopf W, Friedrich B, Doyle JM. 77.  2002. Buffer-gas cooling of atomic and molecular beams. Phys. Rev. A 66:043401 [Google Scholar]
  78. Hutzler NR, Lu HI, Doyle JM. 78.  2012. The buffer gas beam: an intense, cold, and slow source for atoms and molecules. Chem. Rev. 112:4803–27Presents a detailed review of buffer-gas system design and applications. [Google Scholar]
  79. Patterson D, Rasmussen J, Doyle JM. 79.  2009. Intense atomic and molecular beams via neon buffer-gas cooling. New J. Phys. 11:055018 [Google Scholar]
  80. Sawyer BC, Stuhl BK, Yeo M, Tscherbul TV, Hummon MT. 80.  et al. 2011. Cold heteromolecular dipolar collisions. Phys. Chem. Chem. Phys. 13:19059–66 [Google Scholar]
  81. Weinstein JD, deCarvalho R, Guillet T, Friedrich B, Doyle JM. 81.  1998. Magnetic trapping of calcium monohydride molecules at millikelvin temperatures. Nature 395:148–50 [Google Scholar]
  82. deCarvalho R, Doyle JM, Friedrich B, Guillet T, Kim J. 82.  et al. 1999. Buffer-gas loaded magnetic traps for atoms and molecules: a primer. Eur. Phys. J. D 7:289–309 [Google Scholar]
  83. Lu HI, Rasmussen J, Wright MJ, Patterson D, Doyle JM. 83.  2011. A cold and slow molecular beam. Phys. Chem. Chem. Phys. 13:18986–90 [Google Scholar]
  84. van Buuren LD, Sommer C, Motsch M, Pohle S, Schenk M. 84.  et al. 2009. Electrostatic extraction of cold molecules from a cryogenic reservoir. Phys. Rev. Lett. 102:033001 [Google Scholar]
  85. Sommer C, van Buuren LD, Motsch M, Pohle S, Bayerl J. 85.  et al. 2009. Continuous guided beams of slow and internally cold polar molecules. Faraday Discuss. 142:203–20 [Google Scholar]
  86. Campbell WC, Tsikata E, Lu HI, van Buuren LD, Doyle JM. 86.  2007. Magnetic trapping and Zeeman relaxation of NH (X3Σ). Phys. Rev. Lett. 98:213001 [Google Scholar]
  87. Tsikata E, Campbell WC, Hummon MT, Lu HI, Doyle JM. 87.  2010. Magnetic trapping of NH molecules with 20 s lifetimes. New J. Phys. 12:065028 [Google Scholar]
  88. Stuhl BK, Hummon MT, Yeo M, Quéméner G, Bohn JL, Ye J. 88.  2012. Evaporative cooling of the dipolar hydroxyl radical. Nature 492:396–400 [Google Scholar]
  89. Cornell EA, Wieman CE. 89.  2002. Nobel lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 74:875–93 [Google Scholar]
  90. Ketterle W, van Druten N. 90.  1996. Evaporative cooling of trapped atoms. Adv. At. Mol. Opt. Phys. 37:181–236Provides a full treatment of evaporative cooling as applied to atomic gases. [Google Scholar]
  91. Quéméner G, Julienne PS. 91.  2012. Ultracold molecules under control!. Chem. Rev. 112:4949–5011Presents an in-depth review of ultracold molecular scattering theory and experiments. [Google Scholar]
  92. Lara M, Bohn JL, Potter DE, Soldan P, Hutson JM. 92.  2006. Ultracold Rb-OH collisions and prospects for sympathetic cooling. Phys. Rev. Lett. 97:183201 [Google Scholar]
  93. Żuchowski PS, Hutson JM. 93.  2009. Low-energy collisions of NH3 and ND3 with ultracold Rb atoms. Phys. Rev. A 79:062708 [Google Scholar]
  94. Campbell W, Tscherbul T, Lu H, Tsikata E, Krems R, Doyle J. 94.  2009. Mechanism of collisional spin relaxation in 3Σ molecules. Phys. Rev. Lett. 102:013003 [Google Scholar]
  95. Ni KK, Ospelkaus S, Wang D, Quéméner G, Neyenhuis B. 95.  et al. 2010. Dipolar collisions of polar molecules in the quantum regime. Nature 464:1324–28 [Google Scholar]
  96. Parazzoli LP, Fitch NJ, Żuchowski PS, Hutson JM, Lewandowski HJ. 96.  2011. Large effects of electric fields on atom-molecule collisions at millikelvin temperatures. Phys. Rev. Lett. 106:193201 [Google Scholar]
  97. Ticknor C, Bohn JL. 97.  2005. Influence of magnetic fields on cold collisions of polar molecules. Phys. Rev. A 71:022709 [Google Scholar]
  98. Quéméner G, Bohn JL. 98.  2010. Electric field suppression of ultracold confined chemical reactions. Phys. Rev. A 81:060701 [Google Scholar]
  99. Janssen LMC, Żuchowski PS, van der Avoird A, Groenenboom GC, Hutson. 99.  2011. Cold and ultracold NH-NH collisions in magnetic fields. Phys. Rev. A 83:022713 [Google Scholar]
  100. Suleimanov YV, Tscherbul TV, Krems RV. 100.  2012. Efficient method for quantum calculations of molecule-molecule scattering properties in a magnetic field. J. Chem. Phys. 137:024103 [Google Scholar]
  101. Kay JJ, van de Meerakker SYT, Strecker KE, Chandler DW. 101.  2009. Production of cold ND3 by kinematic cooling. Faraday Discuss. 142:143–53 [Google Scholar]
  102. de Miranda MHG, Chotia A, Neyenhuis B, Wang D, Quéméner G. 102.  et al. 2011. Controlling the quantum stereodynamics of ultracold bimolecular reactions. Nat. Phys. 7:502–7 [Google Scholar]
  103. Stuhl BK, Yeo M, Sawyer BC, Hummon MT, Ye J. 103.  2012. Microwave state transfer and adiabatic dynamics of magnetically trapped polar molecules. Phys. Rev. A 85:033427 [Google Scholar]
  104. Quéméner G, Bohn JL. 104.  2013. Ultracold molecular collisions in combined electric and magnetic fields. Phys. Rev. A 88:012706 [Google Scholar]
  105. Fagnan DE, Wang J, Zhu C, Djuricanin P, Klappauf BG. 105.  et al. 2009. Observation of quantum diffractive collisions using shallow atomic traps. Phys. Rev. A 80:022712 [Google Scholar]
  106. Tscherbul TV, Pavlovic Z, Sadeghpour HR, Côté R, Dalgarno A. 106.  2010. Collisions of trapped molecules with slow beams. Phys. Rev. A 82:022704 [Google Scholar]
  107. Maussang K, Egorov D, Helton JS, Nguyen SV, Doyle JM. 107.  2005. Zeeman relaxation of CaF in low-temperature collisions with helium. Phys. Rev. Lett. 94:123002 [Google Scholar]
  108. Lu MJ, Weinstein JD. 108.  2009. Cold TiO(X3Δ)-He collisions. New J. Phys. 11:055015 [Google Scholar]
  109. Hummon MT, Tscherbul TV, Kłos J, Lu HI, Tsikata E. 109.  et al. 2011. Cold N + NH collisions in a magnetic trap. Phys. Rev. Lett. 106:053201 [Google Scholar]
  110. Singh V, Hardman KS, Tariq N, Lu MJ, Ellis A. 110.  et al. 2012. Chemical reactions of atomic lithium and molecular calcium monohydride at 1 K. Phys. Rev. Lett. 108:203201 [Google Scholar]
  111. Singh V, Hardman KS, Lu MJ, Ellis A, Morrison MJ, Weinstein JD. 111.  2013. Inelastic collisions of CaH with He at cryogenic temperatures. Mol. Phys. 111:1711–15 [Google Scholar]
  112. Stuhl BK, Yeo M, Hummon MT, Ye J. 112.  2013. Electric-field-induced inelastic collisions between magnetically trapped hydroxyl radicals. Mol. Phys. 111:1798–804 [Google Scholar]
  113. Gilijamse JJ, Hoekstra S, van de Meerakker SYT, Groenenboom GC, Meijer G. 113.  2006. Near-threshold inelastic collisions using molecular beams with a tunable velocity. Science 313:1617–20 [Google Scholar]
  114. Kirste M, Scharfenberg L, Kłos J, Lique F, Alexander MH. 114.  et al. 2010. Low-energy inelastic collisions of OH radicals with He atoms and D2 molecules. Phys. Rev. A 82:042717 [Google Scholar]
  115. Scharfenberg L, Kłos J, Dagdigian PJ, Alexander MH, Meijer G, van de Meerakker SYT. 115.  2010. State-to-state inelastic scattering of Stark-decelerated OH radicals with Ar atoms. Phys. Chem. Chem. Phys. 12:10660–70 [Google Scholar]
  116. Scharfenberg L, Gubbels K, Kirste M, Groenenboom G, van der Avoird A. 116.  et al. 2011. Scattering of Stark-decelerated OH radicals with rare-gas atoms. Eur. Phys. J. D 65:189–98 [Google Scholar]
  117. Kirste M, Wang X, Schewe HC, Meijer G, van der Avoird A. 117.  et al. 2012. Quantum-state resolved bimolecular collisions of velocity-controlled OH with NO radicals. Science 338:1060–63 [Google Scholar]
  118. Vanhaecke N, Meier U, Andrist M, Meier BH, Merkt F. 118.  2007. Multistage Zeeman deceleration of hydrogen atoms. Phys. Rev. A 75:031402 [Google Scholar]
  119. Martin DW, Weiser C, Sperlein RF, Bernfeld DL, Siska PE. 119.  1989. Collision energy dependence of product branching in Penning ionization: He(21S, 23S) + H2, D2, and HD. J. Chem. Phys. 90:1564–76 [Google Scholar]
  120. Burdenski S, Feltgen R, Lichterfeld F, Pauly H. 120.  1981. Total and ionization cross sections for He(23S)–Ar and He(21S)–Ar in the thermal energy range. Chem. Phys. Lett. 78:296–300 [Google Scholar]
  121. Henson AB, Gersten S, Shagam Y, Narevicius J, Narevicius E. 121.  2012. Observation of resonances in Penning ionization reactions at sub-Kelvin temperatures in merged beams. Science 338:234–38 [Google Scholar]
  122. Herschbach D. 122.  2009. Molecular collisions, from warm to ultracold. Faraday Discuss. 142:9–23 [Google Scholar]
  123. Alexander MH, Dagdigian PJ. 123.  1985. Collision-induced transitions between molecular hyperfine levels: quantum formalism, propensity rules, and experimental study of CaBr(X2Σ+) + Ar. J. Chem. Phys. 83:2191–200 [Google Scholar]
  124. Tscherbul TV, Kłos J, Rajchel L, Krems RV. 124.  2007. Fine and hyperfine interactions in cold YbF-He collisions in electromagnetic fields. Phys. Rev. A 75:033416 [Google Scholar]
  125. González-Martínez ML, Hutson JM. 125.  2011. Effect of hyperfine interactions on ultracold molecular collisions: NH(3Σ) with Mg(1S) in magnetic fields. Phys. Rev. A 84:052706 [Google Scholar]
  126. Janssen LMC, Żuchowski PS, van der Avoird A, Groenenboom GC, Hutson JM. 126.  2011. Cold and ultracold NH-NH collisions in magnetic fields. Phys. Rev. A 83:022713 [Google Scholar]
  127. Janssen LMC, van der Avoird A, Groenenboom GC. 127.  2013. Quantum reactive scattering of ultracold NH(X3Σ) radicals in a magnetic trap. Phys. Rev. Lett. 110:063201 [Google Scholar]
  128. Cui J, Krems RV. 128.  2013. Elastic and inelastic collisions of 2Σ molecules in a magnetic field. Phys. Rev. A 88:042705 [Google Scholar]
  129. Croft JFE, Wallis AOG, Hutson JM, Julienne PS. 129.  2011. Multichannel quantum defect theory for cold molecular collisions. Phys. Rev. A 84:042703Provides a full description of MQDT as applied to molecular collisions. [Google Scholar]
  130. Idziaszek Z, Quéméner G, Bohn JL, Julienne PS. 130.  2010. Simple quantum model of ultracold polar molecule collisions. Phys. Rev. A 82:020703 [Google Scholar]
  131. Gao B. 131.  2010. Universal model for exoergic bimolecular reactions and inelastic processes. Phys. Rev. Lett. 105:263203 [Google Scholar]
  132. Quéméner G, Bohn JL. 132.  2010. Strong dependence of ultracold chemical rates on electric dipole moments. Phys. Rev. A 81:022702 [Google Scholar]
  133. Bohn JL, Quéméner G. 133.  2013. Dipolar radicals in crossed electric and magnetic fields. Mol. Phys. 111:1931–38 [Google Scholar]
  134. Bhattacharya M, Howard Z, Kleinert M. 134.  2013. Ground-state OH molecule in combined electric and magnetic fields: analytic solution of the effective Hamiltonian. Phys. Rev. A 88:012503 [Google Scholar]
  135. Zeppenfeld M, Englert BGU, Glockner R, Prehn A, Mielenz M. 135.  et al. 2012. Sisyphus cooling of electrically trapped polyatomic molecules. Nature 491:570–73 [Google Scholar]
  136. Żuchowski PS, Hutson JM. 136.  2010. Reactions of ultracold alkali-metal dimers. Phys. Rev. A 81:060703 [Google Scholar]
  137. Meyer ER, Bohn JL. 137.  2011. Chemical pathways in ultracold reactions of SrF molecules. Phys. Rev. A 83:032714 [Google Scholar]
  138. Hänsch T, Schawlow A. 138.  1975. Cooling of gases by laser radiation. Opt. Commun. 13:68–69 [Google Scholar]
  139. Phillips WD. 139.  1998. Nobel lecture: laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70:721–41 [Google Scholar]
  140. Bahns JT, Stwalley WC, Gould PL. 140.  1996. Laser cooling of molecules: a sequential scheme for rotation, translation, and vibration. J. Chem. Phys. 104:9689–97 [Google Scholar]
  141. Stuhl BK, Sawyer BC, Wang D, Ye J. 141.  2008. Magneto-optical trap for polar molecules. Phys. Rev. Lett. 101:243002 [Google Scholar]
  142. Shuman ES, Barry JF, Glenn DR, DeMille D. 142.  2009. Radiative force from optical cycling on a diatomic molecule. Phys. Rev. Lett. 103:223001 [Google Scholar]
  143. Shuman ES, Barry JF, DeMille D. 143.  2010. Laser cooling of a diatomic molecule. Nature 467:820–23 [Google Scholar]
  144. Barry J, Shuman E, Norrgard E, DeMille D. 144.  2012. Laser radiation pressure slowing of a molecular beam. Phys. Rev. Lett. 108:103002 [Google Scholar]
  145. Hummon MT, Yeo M, Stuhl BK, Collopy AL, Xia Y, Ye J. 145.  2013. 2D magneto-optical trapping of diatomic molecules. Phys. Rev. Lett. 110:143001 [Google Scholar]
  146. Zhelyazkova V, Cournol A, Wall TE, Matsushima A, Hudson JJ. 146.  et al. 2013. Laser cooling and slowing of CaF molecules Unpublished manuscript arXiv1308.0421 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040513-103744
Loading
/content/journals/10.1146/annurev-physchem-040513-103744
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error