1932

Abstract

The kinetics of drug binding and unbinding is assuming an increasingly crucial role in the long, costly process of bringing a new medicine to patients. For example, the time a drug spends in contact with its biological target is known as residence time (the inverse of the kinetic constant of the drug-target unbinding, 1/). Recent reports suggest that residence time could predict drug efficacy in vivo, perhaps even more effectively than conventional thermodynamic parameters (free energy, enthalpy, entropy). There are many experimental and computational methods for predicting drug-target residence time at an early stage of drug discovery programs. Here, we review and discuss the methodological approaches to estimating drug binding kinetics and residence time. We first introduce the theoretical background of drug binding kinetics from a physicochemical standpoint. We then analyze the recent literature in the field, starting from the experimental methodologies and applications thereof and moving to theoretical and computational approaches to the kinetics of drug binding and unbinding. We acknowledge the central role of molecular dynamics and related methods, which comprise a great number of the computational methods and applications reviewed here. However, we also consider kinetic Monte Carlo. We conclude with the outlook that drug (un)binding kinetics may soon become a go/no go step in the discovery and development of new medicines.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-042018-052340
2019-06-14
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/physchem/70/1/annurev-physchem-042018-052340.html?itemId=/content/journals/10.1146/annurev-physchem-042018-052340&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Pan AC, Borhani DW, Dror RO, Shaw DE 2013. Molecular determinants of drug-receptor binding kinetics. Drug Discov. Today 18:13–14667–73
    [Google Scholar]
  2. 2.
    Copeland RA, Pompliano DL, Meek TD 2006. Drug-target residence time and its implications for lead optimization. Nat. Rev. Drug Discov. 5:9730–39
    [Google Scholar]
  3. 3.
    Swinney DC 2009. The role of binding kinetics in therapeutically useful drug action. Curr. Opin. Drug Discov. Dev. 12:131–39
    [Google Scholar]
  4. 4.
    Yin N, Pei J, Lai L 2013. A comprehensive analysis of the influence of drug binding kinetics on drug action at molecular and systems levels. Mol. Biosyst. 9:61381–89
    [Google Scholar]
  5. 5.
    Tummino PJ, Copeland RA 2008. Residence time of receptor-ligand complexes and its effect on biological function. Biochemistry 47:205481–92
    [Google Scholar]
  6. 6.
    Lu H, Tonge PJ 2010. Drug-target residence time: critical information for lead optimization. Curr. Opin. Chem. Biol. 14:4467–74
    [Google Scholar]
  7. 7.
    Zhang R, Monsma F 2009. The importance of drug-target residence time. Curr. Opin. Drug Discov. Dev. 12:4488–96
    [Google Scholar]
  8. 8.
    Copeland RA 2016. The drug-target residence time model: a 10-year retrospective. Nat. Rev. Drug Discov. 15:287–95
    [Google Scholar]
  9. 9.
    Schuetz DA, de Witte WEA, Wong YC, Knasmueller B, Richter L et al. 2017. Kinetics for drug discovery: an industry-driven effort to target drug residence time. Drug Discov. Today 22:6896–911
    [Google Scholar]
  10. 10.
    Deganutti G, Moro S 2017. Estimation of kinetic and thermodynamic ligand-binding parameters using computational strategies. Futur. Med. Chem. 9:5507–23
    [Google Scholar]
  11. 11.
    Bruce NJ, Ganotra GK, Kokh DB, Sadiq SK, Wade RC 2018. New approaches for computing ligand–receptor binding kinetics. Curr. Opin. Struct. Biol. 49:1–10
    [Google Scholar]
  12. 12.
    Bernetti M, Cavalli A, Mollica L 2017. Protein–ligand (un) binding kinetics as a new paradigm for drug discovery at the crossroad between experiments and modelling. MedChemComm 8:3534–50
    [Google Scholar]
  13. 13.
    Hänggi P, Talkner P, Borkovec M 1990. Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62:2251
    [Google Scholar]
  14. 14.
    van't Hoff JH 1884. Etudes de Dynamique Chimique Amsterdam: Müller
    [Google Scholar]
  15. 15.
    Arrhenius S 1889. On the reaction rate of the inversion of non-refined sugar upon souring. Z. Phys. Chem. 4:226135501
    [Google Scholar]
  16. 16.
    Farkas L 1927. Keimbildungsgeschwindigkeit in übersättigten Dämpfen. Z. Phys. Chemie 125:1236–42
    [Google Scholar]
  17. 17.
    Lindemann FA, Arrhenius S, Langmuir I, Dhar NR, Perrin J, Lewis WCM 1922. Discussion on “the radiation theory of chemical action. .” Trans. Faraday Soc. 17:598–606
    [Google Scholar]
  18. 18.
    Hinshelwood CN 1926. Kinetics of Chemical Change in Gaseous Systems London: Oxford Univ. Press/Milford
    [Google Scholar]
  19. 19.
    Hinshelwood CN 1926. On the theory of unimolecular reactions. Proc. R. Soc. A 113:763230–33
    [Google Scholar]
  20. 20.
    Eyring H 1935. The activated complex in chemical reactions. J. Chem. Phys. 3:2107–15
    [Google Scholar]
  21. 21.
    Anderson JB 1973. Statistical theories of chemical reactions. Distributions in the transition region. J. Chem. Phys. 58:104684–92
    [Google Scholar]
  22. 22.
    Chandler D 1978. Statistical mechanics of isomerization dynamics in liquids and the transition state approximation. J. Chem. Phys. 68:62959–70
    [Google Scholar]
  23. 23.
    Risken H, Eberly JH 1985. The Fokker-Planck equation, methods of solution and applications. J. Opt. Soc. Am. B 2:508
    [Google Scholar]
  24. 24.
    Kawasaki K 1973. Simple derivations of generalized linear and nonlinear Langevin equations. J. Phys. A Math. Nucl. Gen. 6:91289
    [Google Scholar]
  25. 25.
    Grabert H, Hänggi P, Talkner P 1980. Microdynamics and nonlinear stochastic processes of gross variables. J. Stat. Phys. 22:5537–52
    [Google Scholar]
  26. 26.
    Kramers HA 1940. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7:4284–304
    [Google Scholar]
  27. 27.
    Tiwary P, Berne BJ 2016. Kramers turnover: from energy diffusion to spatial diffusion using metadynamics. J. Chem. Phys. 144:13134103
    [Google Scholar]
  28. 28.
    Weinan E, Vanden-Eijnden E 2006. Towards a theory of transition paths. J. Stat. Phys. 123:3503
    [Google Scholar]
  29. 29.
    Dellago C, Bolhuis PG, Geissler PL 2006. Transition path sampling methods. Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology, Vol. 1 Springer, ed. M Ferrario, G Ciccotti, K Binder 349–91 Berlin: Springer
    [Google Scholar]
  30. 30.
    Escobedo FA, Borrero EE, Araque JC 2009. Transition path sampling and forward flux sampling. Applications to biological systems. J. Phys. Condens. Matter 21:33333101
    [Google Scholar]
  31. 31.
    Hulme EC, Trevethick MA 2010. Ligand binding assays at equilibrium: validation and interpretation. Br. J. Pharmacol. 161:61219–37
    [Google Scholar]
  32. 32.
    Cusack KP, Wang Y, Hoemann MZ, Marjanovic J, Heym RG, Vasudevan A 2015. Design strategies to address kinetics of drug binding and residence time. Bioorg. Med. Chem. Lett. 25:102019–27
    [Google Scholar]
  33. 33.
    Guo D, Hillger JM, Ijzerman AP, Heitman LH 2014. Drug-target residence time—A case for G protein-coupled receptors. Med. Res. Rev. 34:4856–92
    [Google Scholar]
  34. 34.
    Motulsky HJ, Mahan LC 1984. The kinetics of competitive radioligand binding predicted by the law of mass action. Mol. Pharmacol. 25:1–9
    [Google Scholar]
  35. 35.
    Frost JJ, Wagner HN 1984. Kinetics of binding to opiate receptors in vivo predicted from in vitro parameters. Brain Res 305:11–11
    [Google Scholar]
  36. 36.
    Malany S, Hernandez LM, Smith WF, Crowe PD, Hoare SRJ 2009. Analytical method for simultaneously measuring ex vivo drug receptor occupancy and dissociation rate: application to (R)-dimethindene occupancy of central histamine H1 receptors. J. Recept. Signal Transduct. Res. 29:284–93
    [Google Scholar]
  37. 37.
    Guo D, van Dorp EJH, Mulder-Krieger T, van Veldhoven JPD, Brussee J et al. 2013. Dual-point competition association assay: a fast and high-throughput kinetic screening method for assessing ligand-receptor binding kinetics. J. Biomol. Screen. 18:3309–20
    [Google Scholar]
  38. 38.
    Meyer-Almes FJ 2015. Kinetic binding assays for the analysis of protein-ligand interactions. Drug Discov. Today Technol. 17:1–8
    [Google Scholar]
  39. 39.
    May LT, Self TJ, Briddon SJ, Hill SJ 2010. The effect of allosteric modulators on the kinetics of agonist-G protein-coupled receptor interactions in single living cells. Mol. Pharmacol. 78:3511–23
    [Google Scholar]
  40. 40.
    May LT, Bridge LJ, Stoddart LA, Briddon SJ, Hill SJ 2011. Allosteric interactions across native adenosine-A3 receptor homodimers: quantification using single-cell ligand-binding kinetics. FASEB J 25:103465–76
    [Google Scholar]
  41. 41.
    Gherbi K, May LT, Baker JG, Briddon SJ, Hill SJ 2015. Negative cooperativity across Β1-adrenoceptor homodimers provides insights into the nature of the secondary low-affinity CGP 12177 Β1-adrenoceptor binding conformation. FASEB J 29:72859–71
    [Google Scholar]
  42. 42.
    Bruno A, Lembo F, Novellino E, Stornaiuolo M, Marinelli L 2015. Beyond radio-displacement techniques for identification of CB1 ligands: the first application of a fluorescence-quenching assay. Sci. Rep. 4:13757
    [Google Scholar]
  43. 43.
    Veiksina S, Kopanchuk S, Rinken A 2014. Budded baculoviruses as a tool for a homogeneous fluorescence anisotropy-based assay of ligand binding to G protein-coupled receptors: the case of melanocortin 4 receptors. Biochim. Biophys. Acta—Biomembr. 1838:1, Part B372–81
    [Google Scholar]
  44. 44.
    Kral AM, Ozerova N, Close J, Jung J, Chenard M et al. 2014. Divergent kinetics differentiate the mechanism of action of two HDAC inhibitors. Biochemistry 53:4725–34
    [Google Scholar]
  45. 45.
    Göhler A, Büchner C, André S, Doose S, Kaltner H, Gabius H-J 2011. Sensing ligand binding to a clinically relevant lectin by tryptophan fluorescence anisotropy. Analyst 136:245270–76
    [Google Scholar]
  46. 46.
    Deacon M, Singleton D, Szalkai N, Pasieczny R, Peacock C et al. 2007. Early evaluation of compound QT prolongation effects: a predictive 384-well fluorescence polarization binding assay for measuring HERG blockade. J. Pharmacol. Toxicol. Methods 55:3238–47
    [Google Scholar]
  47. 47.
    Meyners C, Baud MGJ, Fuchter MJ, Meyer-Almes F-J 2014. Kinetic method for the large-scale analysis of the binding mechanism of histone deacetylase inhibitors. Anal. Biochem. 460:39–46
    [Google Scholar]
  48. 48.
    Ilien B, Franchet C, Bernard P, Morisset S, Weill CO et al. 2003. Fluorescence resonance energy transfer to probe human M1 muscarinic receptor structure and drug binding properties. J. Neurochem. 85:3768–78
    [Google Scholar]
  49. 49.
    Schiele F, Ayaz P, Fernández-Montalván A 2015. A universal homogeneous assay for high-throughput determination of binding kinetics. Anal. Biochem. 468:42–49
    [Google Scholar]
  50. 50.
    Mason JL, Spais C, Husten J, Prouty E, Albom MS et al. 2012. Comparison of LanthaScreen Eu kinase binding assay and surface plasmon resonance method in elucidating the binding kinetics of focal adhesion kinase inhibitors. Assay Drug Dev. Technol. 10:5468–75
    [Google Scholar]
  51. 51.
    Kim B, Tarchevskaya SS, Eggel A, Vogel M, Jardetzky TS 2012. A time-resolved fluorescence resonance energy transfer assay suitable for high-throughput screening for inhibitors of immunoglobulin E-receptor interactions. Anal. Biochem. 431:284–89
    [Google Scholar]
  52. 52.
    Iwata H, Imamura S, Hori A, Hixon MS, Kimura H, Miki H 2011. Biochemical characterization of a novel type-II VEGFR2 kinase inhibitor: comparison of binding to non-phosphorylated and phosphorylated VEGFR2. Bioorg. Med. Chem. 19:185342–51
    [Google Scholar]
  53. 53.
    Stoddart LA, Johnstone EKM, Wheal AJ, Goulding J, Robers MB et al. 2015. Application of BRET to monitor ligand binding to GPCRs. Nat. Methods 12:7661–63
    [Google Scholar]
  54. 54.
    Christiansen E, Hudson BD, Hansen AH, Milligan G, Ulven T 2016. Development and characterization of a potent free fatty acid receptor 1 (FFA1) fluorescent tracer. J. Med. Chem. 59:104849–58
    [Google Scholar]
  55. 55.
    Robers MB, Dart ML, Woodroofe CC, Zimprich CA, Kirkland TA et al. 2015. Target engagement and drug residence time can be observed in living cells with BRET. Nat. Commun. 6:10091
    [Google Scholar]
  56. 56.
    Núñez S, Venhorst J, Kruse CG 2012. Target–drug interactions: first principles and their application to drug discovery. Drug Discov. Today 17:1–210–22
    [Google Scholar]
  57. 57.
    Cooper MA 2002. Optical biosensors in drug discovery. Nat. Rev. Drug Discov. 1:7515–28
    [Google Scholar]
  58. 58.
    Früh V, Ijzerman AP, Siegal G 2011. How to catch a membrane protein in action: a review of functional membrane protein immobilization strategies and their applications. Chem. Rev. 111:2640–56
    [Google Scholar]
  59. 59.
    Huber W 2005. A new strategy for improved secondary screening and lead optimization using high-resolution SPR characterization of compound-target interactions. J. Mol. Recognit. 18:4273–81
    [Google Scholar]
  60. 60.
    Markgren PO, Schaal W, Hamalainen M, Karlen A, Hallberg A et al. 2002. Relationships between structure and interaction kinetics for HIV-1 protease inhibitors. J. Med. Chem. 45:255430–39
    [Google Scholar]
  61. 61.
    Stenlund P, Frostell-Karlsson Å, Karlsson OP 2006. Studies of small molecule interactions with protein phosphatases using biosensor technology. Anal. Biochem. 353:2217–25
    [Google Scholar]
  62. 62.
    Nordin H, Jungnelius M, Karlsson R, Karlsson OP 2005. Kinetic studies of small molecule interactions with protein kinases using biosensor technology. Anal. Biochem. 340:2359–68
    [Google Scholar]
  63. 63.
    Navratilova I, Dioszegi M, Myszka DG 2006. Analyzing ligand and small molecule binding activity of solubilized GPCRs using biosensor technology. Anal. Biochem. 355:1132–39
    [Google Scholar]
  64. 64.
    Aristotelous T, Ahn S, Shukla AK, Gawron S, Sassano MF et al. 2013. Discovery of β2 adrenergic receptor ligands using biosensor fragment screening of tagged wild-type receptor. ACS Med. Chem. Lett. 4:101005–10
    [Google Scholar]
  65. 65.
    Rich RL, Errey J, Marshall F, Myszka DG 2011. Biacore analysis with stabilized G-protein-coupled receptors. Anal. Biochem. 409:2267–72
    [Google Scholar]
  66. 66.
    Congreve M, Andrews SP, Doré AS, Hollenstein K, Hurrell E et al. 2012. Discovery of 1,2,4-triazine derivatives as adenosine A2A antagonists using structure based drug design. J. Med. Chem. 55:51898–903
    [Google Scholar]
  67. 67.
    Bayburt TH, Sligar SG 2010. Membrane protein assembly into nanodiscs. FEBS Lett 584:91721–27
    [Google Scholar]
  68. 68.
    Segala E, Errey JC, Fiez-Vandal C, Zhukov A, Cooke RM 2015. Biosensor-based affinities and binding kinetics of small molecule antagonists to the adenosine A2A receptor reconstituted in HDL like particles. FEBS Lett 589:131399–405
    [Google Scholar]
  69. 69.
    Bocquet N, Kohler J, Hug MN, Kusznir EA, Rufer AC et al. 2015. Real-time monitoring of binding events on a thermostabilized human A2A receptor embedded in a lipid bilayer by surface plasmon resonance. Biochim. Biophys. Acta—Biomembr. 1848:51224–33
    [Google Scholar]
  70. 70.
    Gronewold TMA, Baumgartner A, Hierer J, Sierra S, Blind M et al. 2009. Kinetic binding analysis of aptamers targeting HIV-1 proteins by a combination of a microbalance array and mass spectrometry (MAMS). J. Proteome Res. 8:73568–77
    [Google Scholar]
  71. 71.
    Burnouf D, Ennifar E, Guedich S, Puffer B, Hoffmann G et al. 2012. KinITC: a new method for obtaining joint thermodynamic and kinetic data by isothermal titration calorimetry. J. Am. Chem. Soc. 134:1559–65
    [Google Scholar]
  72. 72.
    Li D, Chen L, Wang R, Liu R, Ge G 2017. Synergetic determination of thermodynamic and kinetic signatures using isothermal titration calorimetry: a full-curve-fitting approach. Anal. Chem. 89:137130–38
    [Google Scholar]
  73. 73.
    Vauquelin G, Huber W, Swinney DC 2015. Experimental methods to determine binding kinetics. Thermodynamics and Kinetics of Drug Binding G Keserü, DC Swinney 169–89 Weinheim, Ger: Wiley-VCH
    [Google Scholar]
  74. 74.
    Acker MG, Auld DS 2014. Considerations for the design and reporting of enzyme assays in high-throughput screening applications. Perspect. Sci. 1:156–73
    [Google Scholar]
  75. 75.
    Copeland RA, Basavapathruni A, Moyer M, Scott MP 2011. Impact of enzyme concentration and residence time on apparent activity recovery in jump dilution analysis. Anal. Biochem. 416:2206–10
    [Google Scholar]
  76. 76.
    Callan OH, So OY, Swinney DC 1996. The kinetic factors that determine the affinity and selectivity for slow binding inhibition of human prostaglandin H synthase 1 and 2 by indomethacin and flurbiprofen. J. Biol. Chem. 271:73548–54
    [Google Scholar]
  77. 77.
    De Vivo M, Masetti M, Bottegoni G, Cavalli A 2016. Role of molecular dynamics and related methods in drug discovery. J. Med. Chem. 59:94035–61
    [Google Scholar]
  78. 78.
    Basconi JE, Shirts MR 2013. Effects of temperature control algorithms on transport properties and kinetics in molecular dynamics simulations. J. Chem. Theory Comput. 9:72887–99
    [Google Scholar]
  79. 79.
    Bolhuis PG, Christoph D 2010. Trajectory‐based rare event simulations. Reviews in Computational Chemistry KB Lipkowitz 111–210 New York: Wiley
    [Google Scholar]
  80. 80.
    Gioia D, Bertazzo M, Recanatini M, Cavalli A 2017. Dynamic docking: a paradigm shift in computational drug discovery. Molecules 22:111–21
    [Google Scholar]
  81. 81.
    De Vivo M, Cavalli A 2017. Recent advances in dynamic docking for drug discovery. WIREs Comput. Mol. Sci. 7:6e1320
    [Google Scholar]
  82. 82.
    Shan Y, Kim ET, Eastwood MP, Dror RO, Seeliger MA, Shaw DE 2011. How does a drug molecule find its target binding site?. J. Am. Chem. Soc. 133:249181–83
    [Google Scholar]
  83. 83.
    Dror RO, Pan AC, Arlow DH, Borhani DW, Maragakis P et al. 2011. Pathway and mechanism of drug binding to G-protein-coupled receptors. PNAS 108:3213118–23
    [Google Scholar]
  84. 84.
    Decherchi S, Berteotti A, Bottegoni G, Rocchia W, Cavalli A 2015. The ligand binding mechanism to purine nucleoside phosphorylase elucidated via molecular dynamics and machine learning. Nat. Commun. 6:6155
    [Google Scholar]
  85. 85.
    Halle B, Persson F 2013. Analysis of protein dynamics simulations by a stochastic point process approach. J. Chem. Theory Comput. 9:62838–48
    [Google Scholar]
  86. 86.
    Huang D, Caflisch A 2011. The free energy landscape of small molecule unbinding. PLOS Comput. Biol. 7:2e1002002
    [Google Scholar]
  87. 87.
    Pande VS, Beauchamp K, Bowman GR 2010. Everything you wanted to know about markov state models but were afraid to ask. Methods 52:199–105
    [Google Scholar]
  88. 88.
    Prinz JH, Wu H, Sarich M, Keller B, Senne M et al. 2011. Markov models of molecular kinetics: generation and validation. J. Chem. Phys. 134:17174105
    [Google Scholar]
  89. 89.
    Bowman GR 2014. An overview and practical guide to building Markov state models. An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation GR Bowman, VS Pande, F Noe 7–22 Dordrecht, Neth: Springer
    [Google Scholar]
  90. 90.
    Pan AC, Roux B 2008. Building Markov state models along pathways to determine free energies and rates of transitions. J. Chem. Phys. 129:664107
    [Google Scholar]
  91. 91.
    Guillain F, Thusius D 1970. Use of proflavine as an indicator in temperature-jump studies of the binding of a competitive inhibitor to trypsin. J. Am. Chem. Soc. 92:185534–36
    [Google Scholar]
  92. 92.
    Buch I, Giorgino T, De Fabritiis G 2011. Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. PNAS 108:2510184–89
    [Google Scholar]
  93. 93.
    Plattner N, Noé F 2015. Protein conformational plasticity and complex ligand-binding kinetics explored by atomistic simulations and Markov models. Nat. Commun. 6:7653
    [Google Scholar]
  94. 94.
    Doerr S, De Fabritiis G 2014. On-the-fly learning and sampling of ligand binding by high-throughput molecular simulations. J. Chem. Theory Comput. 10:52064–69
    [Google Scholar]
  95. 95.
    Singhal N, Pande VS 2005. Error analysis and efficient sampling in Markovian state models for molecular dynamics. J. Chem. Phys. 123:20204909
    [Google Scholar]
  96. 96.
    Hinrichs NS, Pande VS 2007. Calculation of the distribution of eigenvalues and eigenvectors in Markovian state models for molecular dynamics. J. Chem. Phys. 126:24244101
    [Google Scholar]
  97. 97.
    Weber JK, Pande VS 2011. Characterization and rapid sampling of protein folding Markov state model topologies. J. Chem. Theory Comput. 7:103405–11
    [Google Scholar]
  98. 98.
    Cérou F, Guyader A, Lelièvre T, Pommier D 2011. A multiple replica approach to simulate reactive trajectories. J. Chem. Phys. 134:554108
    [Google Scholar]
  99. 99.
    Teo I, Mayne CG, Schulten K, Lelièvre T 2016. Adaptive multilevel splitting method for molecular dynamics calculation of benzamidine-trypsin dissociation time. J. Chem. Theory Comput. 12:62983–89
    [Google Scholar]
  100. 100.
    Dickson A, Brooks CL III 2014. WExplore: hierarchical exploration of high-dimensional spaces using the weighted ensemble algorithm. J. Phys. Chem. B 118:133532–42
    [Google Scholar]
  101. 101.
    Dickson A, Lotz SD 2016. Ligand release pathways obtained with WExplore: residence times and mechanisms. J. Phys. Chem. B 120:245377–85
    [Google Scholar]
  102. 102.
    Dickson A, Lotz SD 2017. Multiple ligand unbinding pathways and ligand-induced destabilization revealed by WExplore. Biophys. J. 112:4620–29
    [Google Scholar]
  103. 103.
    Lotz SD, Dickson A 2018. Unbiased molecular dynamics of 11 min timescale drug unbinding reveals transition state stabilizing interactions. J. Am. Chem. Soc. 140:2618–28
    [Google Scholar]
  104. 104.
    Dixon T, Lotz SD, Dickson A 2018. Predicting ligand binding affinity using on- and off-rates for the SAMPL6 SAMPLing challenge. J. Comput. Aided. Mol. Des. 32:101001–12
    [Google Scholar]
  105. 105.
    Zhou H-X 2010. Rate theories for biologists. Q. Rev. Biophys. 43:2219–93
    [Google Scholar]
  106. 106.
    Ermak DL, McCammon JA 1978. Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 69:41352–60
    [Google Scholar]
  107. 107.
    Decherchi S, Masetti M, Vyalov I, Rocchia W 2015. Implicit solvent methods for free energy estimation. Eur. J. Med. Chem. 91:27–42
    [Google Scholar]
  108. 108.
    Sung JC, Van Wynsberghe AW, Amaro RE, Li WW, McCammon JA 2010. Role of secondary sialic acid binding sites in influenza N1 neuraminidase. J. Am. Chem. Soc. 132:92883–85
    [Google Scholar]
  109. 109.
    Northrup SH, Allison SA, McCammon JA 1984. Brownian dynamics simulation of diffusion‐influenced bimolecular reactions. J. Chem. Phys. 80:41517–24
    [Google Scholar]
  110. 110.
    Vijaykumar A, Bolhuis PG, ten Wolde PR 2016. The intrinsic rate constants in diffusion-influenced reactions. Faraday Discuss 195:421–41
    [Google Scholar]
  111. 111.
    Smoluchowski MV 1916. Drei Vortrage uber Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen. Phys. Z. 17:557–85
    [Google Scholar]
  112. 112.
    Steinhauser MO 2008. Multiscale Modeling of Fluids and Solids: Theory and Applications Berlin: Springer-Verlag
    [Google Scholar]
  113. 113.
    Amaro RE, Mulholland AJ 2018. Multiscale methods in drug design bridge chemical and biological complexity in the search for cures. Nat. Rev. Chem. 2:148
    [Google Scholar]
  114. 114.
    Votapka LW, Amaro RE 2015. Multiscale estimation of binding kinetics using Brownian dynamics, molecular dynamics and milestoning. PLOS Comput. Biol. 11:10e1004381
    [Google Scholar]
  115. 115.
    Masetti M, Berti C, Ocello R, Di Martino GP, Recanatini M et al. 2016. Multiscale simulations of a two-pore potassium channel. J. Chem. Theory Comput. 12:125681–87
    [Google Scholar]
  116. 116.
    Zeller F, Luitz MP, Bomblies R, Zacharias M 2017. Multiscale simulation of receptor-drug association kinetics: application to neuraminidase inhibitors. J. Chem. Theory Comput. 13:105097–105
    [Google Scholar]
  117. 117.
    Votapka LW, Jagger BR, Heyneman AL, Amaro RE 2017. SEEKR: simulation enabled estimation of kinetic rates, a computational tool to estimate molecular kinetics and its application to trypsin-benzamidine binding. J. Phys. Chem. B 121:153597–606
    [Google Scholar]
  118. 118.
    Vanden-Eijnden E, Venturoli M, Ciccotti G, Elber R 2008. On the assumptions underlying milestoning. J. Chem. Phys. 129:17174102
    [Google Scholar]
  119. 119.
    Faradjian AK, Elber R 2004. Computing time scales from reaction coordinates by milestoning. J. Chem. Phys. 120:2310880–89
    [Google Scholar]
  120. 120.
    Jagger BR, Lee CT, Amaro RE 2018. Quantitative ranking of ligand binding kinetics with a multiscale milestoning simulation approach. J. Phys. Chem. Lett. 9:174941–48
    [Google Scholar]
  121. 121.
    Haldar S, Comitani F, Saladino G, Woods C, van der Kamp MW et al. 2018. A multiscale simulation approach to modeling drug-protein binding kinetics. J. Chem. Theory Comput. 14:116093–101
    [Google Scholar]
  122. 122.
    Juraszek J, Saladino G, van Erp TS, Gervasio FL 2013. Efficient numerical reconstruction of protein folding kinetics with partial path sampling and pathlike variables. Phys. Rev. Lett. 110:10108106
    [Google Scholar]
  123. 123.
    Woods CJ, Manby FR, Mulholland AJ 2008. An efficient method for the calculation of quantum mechanics/molecular mechanics free energies. J. Chem. Phys. 128:114109
    [Google Scholar]
  124. 124.
    Masetti M, Rocchia W 2014. Molecular mechanics and dynamics: numerical tools to sample the configuration space. Front. Biosci. 19:578–604
    [Google Scholar]
  125. 125.
    Abrams C, Bussi G 2013. Enhanced sampling in molecular dynamics using metadynamics, replica-exchange, and temperature-acceleration. Entropy 16:1163–99
    [Google Scholar]
  126. 126.
    Bui JM, Henchman RH, McCammon JA 2003. The dynamics of ligand barrier crossing inside the acetylcholinesterase gorge. Biophys. J. 85:42267–72
    [Google Scholar]
  127. 127.
    Torrie GM, Valleau JP 1977. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 23:2187–99
    [Google Scholar]
  128. 128.
    Northrup SH, Pear MR, Lee CY, McCammon JA, Karplus M 1982. Dynamical theory of activated processes in globular proteins. PNAS 79:134035–39
    [Google Scholar]
  129. 129.
    Allnér O, Nilsson L, Villa A 2012. Magnesium ion-water coordination and exchange in biomolecular simulations. J. Chem. Theory Comput. 8:41493–502
    [Google Scholar]
  130. 130.
    Masetti M, Musiani F, Bernetti M, Falchi F, Cavalli A et al. 2017. Development of a multisite model for Ni(II) ion in solution from thermodynamic and kinetic data. J. Comput. Chem. 38:211834–43
    [Google Scholar]
  131. 131.
    Marinelli F, Pietrucci F, Laio A, Piana S 2009. A kinetic model of Trp-cage folding from multiple biased molecular dynamics simulations. PLOS Comput. Biol. 5:8e1000452
    [Google Scholar]
  132. 132.
    Voter AF 2007. Introduction to the kinetic Monte Carlo method. Radiation Effects in Solids KE Sickafus, EA Kotomin, BP Uberuaga 1–23 Dordrecht, Neth: Springer
    [Google Scholar]
  133. 133.
    Bortz AB, Kalos MH, Lebowitz JL 1975. A new algorithm for Monte Carlo simulation of Ising spin systems. J. Comput. Phys. 17:110–18
    [Google Scholar]
  134. 134.
    Pietrucci F, Marinelli F, Carloni P, Laio A 2009. Substrate binding mechanism of HIV-1 protease from explicit-solvent atomistic simulations. J. Am. Chem. Soc. 131:3311811–18
    [Google Scholar]
  135. 135.
    Piana S, Laio A 2007. A bias-exchange approach to protein folding. J. Phys. Chem. B 111:174553–59
    [Google Scholar]
  136. 136.
    Branduardi D, Gervasio FL, Parrinello M 2007. From A to B in free energy space. J. Chem. Phys. 126:554103
    [Google Scholar]
  137. 137.
    Dellago C, Bolhuis PG 2004. Activation energies from transition path sampling simulations. Mol. Simul. 30:11–12795–99
    [Google Scholar]
  138. 138.
    Morando MA, Saladino G, D'Amelio N, Pucheta-Martinez E, Lovera S et al. 2016. Conformational selection and induced fit mechanisms in the binding of an anticancer drug to the C-Src kinase. Sci. Rep. 6:24439
    [Google Scholar]
  139. 139.
    Tiwary P, Parrinello M 2013. From metadynamics to dynamics. Phys. Rev. Lett. 111:23230602
    [Google Scholar]
  140. 140.
    Tiwary P, Limongelli V, Salvalaglio M, Parrinello M 2015. Kinetics of protein-ligand unbinding: predicting pathways, rates, and rate-limiting steps. PNAS 112:5E386–91
    [Google Scholar]
  141. 141.
    Casasnovas R, Limongelli V, Tiwary P, Carloni P, Parrinello M 2017. Unbinding kinetics of a P38 MAP kinase type II inhibitor from metadynamics simulations. J. Am. Chem. Soc. 139:134780–88
    [Google Scholar]
  142. 142.
    Callegari D, Lodola A, Pala D, Rivara S, Mor M et al. 2017. Metadynamics simulations distinguish short-and long-residence-time inhibitors of cyclin-dependent kinase 8. J. Chem. Inf. Model. 57:2159–69
    [Google Scholar]
  143. 143.
    Mollica L, Decherchi S, Zia SR, Gaspari R, Cavalli A, Rocchia W 2015. Kinetics of protein-ligand unbinding via smoothed potential molecular dynamics simulations. Sci. Rep. 5:11539
    [Google Scholar]
  144. 144.
    Mark AE, van Gunsteren WF, Berendsen HJC 1991. Calculation of relative free energy via indirect pathways. J. Chem. Phys. 94:53808–16
    [Google Scholar]
  145. 145.
    Sinko W, Miao Y, de Oliveira CAF, McCammon JA 2013. Population based reweighting of scaled molecular dynamics. J. Phys. Chem. B 117:4212759–68
    [Google Scholar]
  146. 146.
    Tsujishita H, Moriguchi I, Hirono S 1993. Potential-scaled molecular dynamics and potential annealing: effective conformational search techniques for biomolecules. J. Phys. Chem. 97:174416–20
    [Google Scholar]
  147. 147.
    Mollica L, Theret I, Antoine M, Perron-Sierra F, Charton Y et al. 2016. Molecular dynamics simulations and kinetic measurements to estimate and predict protein-ligand residence times. J. Med. Chem. 59:157167–76
    [Google Scholar]
  148. 148.
    Decherchi S, Bottegoni G, Spitaleri A, Rocchia W, Cavalli A 2018. BiKi life sciences: a new suite for molecular dynamics and related methods in drug discovery. J. Chem. Inf. Model. 58:2219–24
    [Google Scholar]
  149. 149.
    Lüdemann SK, Lounnas V, Wade RC 2000. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms. J. Mol. Biol. 303:5797–811
    [Google Scholar]
  150. 150.
    Kokh DB, Amaral M, Bomke J, Grädler U, Musil D et al. 2018. Estimation of drug-target residence times by τ-random acceleration molecular dynamics simulations. J. Chem. Theory Comput. 14:73859–69
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-042018-052340
Loading
/content/journals/10.1146/annurev-physchem-042018-052340
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error