1932

Abstract

Organic devices are attracting considerable attention as prostheses for the recovery of retinal light sensitivity lost to retinal degenerative disease. The biotic/abiotic interface created when light-sensitive polymers and living tissues are placed in contact allows excitation of a response in blind laboratory rats exposed to visual stimuli. Although polymer retinal prostheses have proved to be efficient, their working mechanism is far from being fully understood. In this review article, we discuss the results of the studies conducted on these kinds of polymer devices and compare them with the data found in the literature for inorganic retinal prostheses, where the working mechanisms are better comprehended. This comparison, which tries to set some reference values and figures of merit, is intended for use as a starting point to determine the direction for further investigation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-042018-052445
2019-06-14
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/physchem/70/1/annurev-physchem-042018-052445.html?itemId=/content/journals/10.1146/annurev-physchem-042018-052445&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Vaidya A, Borgonovi E, Taylor RS, Sahel J-A, Rizzo S et al. 2014. The cost-effectiveness of the Argus II retinal prosthesis in retinitis pigmentosa patients. BMC Ophthalmol 14:49
    [Google Scholar]
  2. 2.
    Rizzo S, Belting C, Cinelli L, Allegrini L, Genovesi-Ebert F et al. 2014. The Argus II retinal prosthesis: 12-month outcomes from a single-study center. Am. J. Ophthalmol. 157:1282–90
    [Google Scholar]
  3. 3.
    Lorach H, Goetz G, Smith R, Lei X, Mandel Y et al. 2015. Photovoltaic restoration of sight with high visual acuity. Nat. Med. 21:476–82
    [Google Scholar]
  4. 4.
    Lorach H, Goetz G, Mandel Y, Lei X, Kamins TI et al. 2015. Performance of photovoltaic arrays in-vivo and characteristics of prosthetic vision in animals with retinal degeneration. Vis. Res. 111:142–48
    [Google Scholar]
  5. 5.
    Goetz G, Smith R, Lei X, Galambos L, Kamins T et al. 2015. Contrast sensitivity with a subretinal prosthesis and implications for efficient delivery of visual information. Investig. Ophthalmol. Vis. Sci. 56:7186
    [Google Scholar]
  6. 6.
    Park JH, Shim S, Jeong J, Kim SJ 2017. A multi-photodiode array-based retinal implant IC with on/off stimulation strategy to improve spatial resolution. J. Semicond. Technol. Sci. 17:35–41
    [Google Scholar]
  7. 7.
    Yue L, Weiland JD, Roska B, Humayun MS 2016. Retinal stimulation strategies to restore vision: fundamentals and systems. Prog. Retin. Eye Res. 53:21–47
    [Google Scholar]
  8. 8.
    Weiland JD, Walston ST, Humayun MS 2016. Electrical stimulation of the retina to produce artificial vision. Annu. Rev. Vis. Sci. 2:273–94
    [Google Scholar]
  9. 9.
    Lin T-C, Chang H-M, Hsu C-C, Hung K-H, Chen Y-T et al. 2015. Retinal prostheses in degenerative retinal diseases. J. Chin. Med. Assoc. 78:501–5
    [Google Scholar]
  10. 10.
    Ayton LN, Blamey PJ, Guymer RH, Luu CD, Nayagam DAX et al. 2014. First-in-human trial of a novel suprachoroidal retinal prosthesis. PLOS ONE 9:e115239
    [Google Scholar]
  11. 11.
    Benfenati F, Lanzani G 2018. New technologies for developing second generation retinal prostheses. Lab Anim 47:71–75
    [Google Scholar]
  12. 12.
    Mathieson K, Loudin J, Goetx G, Huie P, Wang L et al. 2012. Photovoltaic retinal prosthesis with high pixel density. Nat. Photonics 6:391–97
    [Google Scholar]
  13. 13.
    Maya-Vetencourt JF, Ghezzi D, Antognazza MR, Colombo E, Mete M et al. 2017. A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness. Nat. Mater. 16:681–89
    [Google Scholar]
  14. 14.
    Martino N, Ghezzi D, Benfenati F, Lanzani G, Antognazza MR 2013. Organic semiconductors for artificial vision. J. Mater. Chem. B 1:3768
    [Google Scholar]
  15. 15.
    Ghezzi D, Antognazza MR, Maccarone R, Bellani S, Lanzarini E et al. 2013. A polymer optoelectronic interface restores light sensitivity in blind rat retinas. Nat. Photonics 7:400–6
    [Google Scholar]
  16. 16.
    Antognazza MR, Di Paolo M, Ghezzi D, Mete M, Di Marco S et al. 2016. Characterization of a polymer-based, fully organic prosthesis for implantation into the subretinal space of the rat. Adv. Healthc. Mater. 5:2271–82
    [Google Scholar]
  17. 17.
    Rand D, Jakešová M, Lubin G, Vėbraitė I, David-Pur M et al. 2018. Direct electrical neurostimulation with organic pigment photocapacitors. Adv. Mater. 30:1707292
    [Google Scholar]
  18. 18.
    Ferlauto L, Airaghi Leccardi MJI, Chenais NAL, Gilliéron SCA, Vagni P et al. 2018. Design and validation of a foldable and photovoltaic wide-field epiretinal prosthesis. Nat. Commun. 9:992
    [Google Scholar]
  19. 19.
    Dang MT, Hirsch L, Wantz G 2011. P3HT:PCBM, best seller in polymer photovoltaic research. Adv. Mater. 23:3597–602
    [Google Scholar]
  20. 20.
    Holliday S, Ashraf RS, Wadsworth A, Baran D, Yousaf SA et al. 2016. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat. Commun. 7:11585
    [Google Scholar]
  21. 21.
    Martino N, Feyen P, Porro M, Bossio C, Zucchetti E et al. 2015. Photothermal cellular stimulation in functional bio-polymer interfaces. Sci. Rep. 5:8911
    [Google Scholar]
  22. 22.
    Lodola F, Martino N, Tullii G, Lanzani G, Antognazza MR 2017. Conjugated polymers mediate effective activation of the Mammalian Ion Channel Transient Receptor Potential Vanilloid 1. Sci. Rep. 7:8477
    [Google Scholar]
  23. 23.
    Benfenati V, Martino N, Antognazza MR, Pistone A, Toffanin S et al. 2014. Photostimulation of whole-cell conductance in primary rat neocortical astrocytes mediated by organic semiconducting thin films. Adv. Healthc. Mater. 3:392–99
    [Google Scholar]
  24. 24.
    Kolb H, Nelson R, Fernandez E, Jones B 2012. Webvision: The Organization of the Retina and Visual System Salt Lake City: Univ. Utah Health Sci. Cent https://webvision.med.utah.edu/
  25. 25.
    Fazzi D, Caironi M 2015. Multi-length-scale relationships between the polymer molecular structure and charge transport: the case of poly-naphthalene diimide bithiophene. Phys. Chem. Chem. Phys. 17:8573–90
    [Google Scholar]
  26. 26.
    Choi HH, Rodionov YI, Paterson AF, Panidi J, Saranin D et al. 2018. Accurate extraction of charge carrier mobility in 4-probe field-effect transistors. Adv. Funct. Mater. 28:1707105
    [Google Scholar]
  27. 27.
    Köhler A, Bässler H 2015. Electronic Processes in Organic Semiconductors: An Introduction Weinheim, Ger.: Wiley-VCH
  28. 28.
    Österbacka R, An CP, Jiang XM, Vardeny ZV 2000. Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals. Science 287:839
    [Google Scholar]
  29. 29.
    Korovyanko OJ, Österbacka R, Jiang XM, Vardeny ZV, Janssen RAJ 2001. Photoexcitation dynamics in regioregular and regiorandom polythiophene films. Phys. Rev. B 64:235122
    [Google Scholar]
  30. 30.
    Lanzani G 2012. The Photophysics Behind Photovoltaics and Photonics Weinheim, Ger.: Wiley-VCH
  31. 31.
    Bowmaker JK, Dartnall HJA 1980. Visual pigments of rods and cones in a human retina. J. Physiol. 298:501–11
    [Google Scholar]
  32. 32.
    Tullii G, Desii A, Bossio C, Bellani S, Colombo M et al. 2017. Bimodal functioning of a mesoporous, light sensitive polymer/electrolyte interface. Org. Electron. 46:88–98
    [Google Scholar]
  33. 33.
    Schafferhans J, Baumann A, Wagenpfahl A, Deibel C, Dyakonov V 2010. Oxygen doping of P3HT:PCBM blends: influence on trap states, charge carrier mobility and solar cell performance. Org. Electron. 11:1693–700
    [Google Scholar]
  34. 34.
    Guerrero A, Boix PP, Marchesi LF, Ripolles-Sanchis T, Pereira EC, Garcia-Belmonte G 2012. Oxygen doping-induced photogeneration loss in P3HT:PCBM solar cells. Sol. Energy Mater. Sol. Cells 100:185–91
    [Google Scholar]
  35. 35.
    Bellani S, Fazzi D, Bruno P, Giussani E, Canesi EV et al. 2014. Reversible P3HT/oxygen charge transfer complex identification in thin films exposed to direct contact with water. J. Phys. Chem. C 118:6291–99
    [Google Scholar]
  36. 36.
    Rowland DCL, Aquilina T, Klein A, Hakimi O, Alexis-Mouthuy P et al. 2016. A comparative evaluation of the effect of polymer chemistry and fiber orientation on mesenchymal stem cell differentiation. J. Biomed. Mater. Res. A 104:2843–53
    [Google Scholar]
  37. 37.
    Liu X, Liu R, Cao B, Ye K, Li S et al. 2016. Subcellular cell geometry on micropillars regulates stem cell differentiation. Biomaterials 111:27–39
    [Google Scholar]
  38. 38.
    Hsiao Y-S, Liao Y-H, Chen H-L, Chen P, Chen F-C 2016. Organic photovoltaics and bioelectrodes providing electrical stimulation for PC12 cell differentiation and neurite outgrowth. ACS Appl. Mater. Interfaces 8:9275–84
    [Google Scholar]
  39. 39.
    Bonetti S, Pistone A, Brucale M, Karges S, Favaretto L et al. 2015. A lysinated thiophene-based semiconductor as a multifunctional neural bioorganic interface. Adv. Healthc. Mater. 4:1190–202
    [Google Scholar]
  40. 40.
    Abdullaeva OS, Schulz M, Balzer F, Parisi J, Lützen A et al. 2016. Photoelectrical stimulation of neuronal cells by an organic semiconductor–electrolyte interface. Langmuir 32:8533–42
    [Google Scholar]
  41. 41.
    Ghezzi D, Antognazza MR, Dal Maschio M, Lanzarini E, Benfenati F, Lanzani G 2011. A hybrid bioorganic interface for neuronal photoactivation. Nat. Commun. 2:166
    [Google Scholar]
  42. 42.
    Gautam V, Rand D, Hanein Y, Narayan KS 2014. A polymer optoelectronic interface provides visual cues to a blind retina. Adv. Mater. 26:1751–56
    [Google Scholar]
  43. 43.
    Hodgkin AL, Katz B 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. 108:37–77
    [Google Scholar]
  44. 44.
    Feyen P, Colombo E, Endeman D, Nova M, Laudato L et al. 2016. Light-evoked hyperpolarization and silencing of neurons by conjugated polymers. Sci. Rep. 6:22718
    [Google Scholar]
  45. 45.
    Shapiro MG, Homma K, Villarreal S, Richter C-P, Bezanilla F 2012. Infrared light excites cells by changing their electrical capacitance. Nat. Commun. 3:736
    [Google Scholar]
  46. 46.
    Holl MMB 2008. Cell plasma membranes and phase transitions. Phase Transitions in Cell Biology GH Pollack, W-C Chin 171–81 Dordrecht, Neth.: Springer
    [Google Scholar]
  47. 47.
    Chapman D 1975. Phase transitions and fluidity characteristics of lipids and cell membranes. Q. Rev. Biophys. 8:185
    [Google Scholar]
  48. 48.
    Ryu S, Liu B, Qin F 2003. Low pH potentiates both capsaicin binding and channel gating of VR1 receptors. J. Gen. Physiol. 122:45–61
    [Google Scholar]
  49. 49.
    Hui K, Liu B, Qin F 2003. Capsaicin activation of the pain receptor, VR1: multiple open states from both partial and full binding. Biophys. J. 84:2957–68
    [Google Scholar]
  50. 50.
    Reeh PW, Kress M 2001. Molecular physiology of proton transduction in nociceptors. Curr. Opin. Pharmacol. 1:45–51
    [Google Scholar]
  51. 51.
    Ferroni S, Marchini C, Nobile M, Rapisarda C 1997. Characterization of an inwardly rectifying chloride conductance expressed by cultured rat cortical astrocytes. Glia 21:217–27
    [Google Scholar]
  52. 52.
    Sharma A, Mathijssen SGJ, Kemerink M, de Leeuw DM, Bobbert PA 2009. Proton migration mechanism for the instability of organic field-effect transistors. Appl. Phys. Lett. 95:253305
    [Google Scholar]
  53. 53.
    Fedida D, Zhang S, Kwan DCH, Eduljee C, Kehl SJ 2005. Synergistic inhibition of the maximum conductance of Kv1.5 channels by extracellular K+ reduction and acidification. Cell Biochem. Biophys. 43:231–42
    [Google Scholar]
  54. 54.
    Cohen A, Ben-Abu Y, Hen S, Zilberberg N 2008. A novel mechanism for human K2P2.1 channel gating. Facilitation of C-type gating by protonation of extracellular histidine residues. J. Biol. Chem. 283:19448–55
    [Google Scholar]
  55. 55.
    Mosconi E, Salvatori P, Saba MI, Mattoni A, Bellani S et al. 2016. Surface polarization drives photoinduced charge separation at the P3HT/water interface. ACS Energy Lett 1:454–63
    [Google Scholar]
  56. 56.
    Bruni F, Pedrini J, Bossio C, Santiago-Gonzalez B, Meinardi F et al. 2017. Two-color emitting colloidal nanocrystals as single-particle ratiometric probes of intracellular pH. Adv. Funct. Mater. 27:1605533
    [Google Scholar]
  57. 57.
    Zeng W-Z, Liu D-S, Liu L, She L, Wu L-J, Xu T-L 2015. Activation of acid-sensing ion channels by localized proton transient reveals their role in proton signaling. Sci. Rep. 5:14125
    [Google Scholar]
  58. 58.
    Di Maria F, Lodola F, Zucchetti E, Benfenati F, Lanzani G 2018. The evolution of artificial light actuators in living systems: from planar to nanostructured interfaces. Chem. Soc. Rev. 47:4757–80
    [Google Scholar]
  59. 59.
    Zucchetti E, Zangoli M, Bargigia I, Bossio C, Di Maria F et al. 2017. Poly(3-hexylthiophene) nanoparticles for biophotonics: study of the mutual interaction with living cells. J. Mater. Chem. B 5:565–74
    [Google Scholar]
  60. 60.
    Zangoli M, Di Maria F, Zucchetti E, Bossio C, Antognazza MR et al. 2017. Engineering thiophene-based nanoparticles to induce phototransduction in live cells under illumination. Nanoscale 9:9202–9
    [Google Scholar]
  61. 61.
    Tortiglione C, Antognazza MR, Tino A, Bossio C, Marchesano V et al. 2017. Semiconducting polymers are light nanotransducers in eyeless animals. Sci. Adv. 3:e1601699
    [Google Scholar]
  62. 62.
    Yang J, Choi J, Bang D, Kim E, Lim E-K et al. 2011. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells. Angew. Chem. Int. Ed. 50:441–44
    [Google Scholar]
  63. 63.
    O'Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL 2004. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209:171–76
    [Google Scholar]
  64. 64.
    Lyu Y, Fang Y, Miao Q, Zhen X, Ding D, Pu K 2016. Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy. ACS Nano 10:4472–81
    [Google Scholar]
  65. 65.
    Zharov VP, Mercer KE, Galitovskaya EN, Smeltzer MS 2006. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys. J. 90:619–27
    [Google Scholar]
  66. 66.
    Jaque D, Martínez Maestro L, del Rosal B, Haro-Gonzalez P, Benayas A et al. 2014. Nanoparticles for photothermal therapies. Nanoscale 6:9494–530
    [Google Scholar]
  67. 67.
    Merrill DR, Bikson M, Jefferys JGR 2005. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods 141:171–98
    [Google Scholar]
  68. 68.
    Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A et al. 2011. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc. R. Soc. B 278:1489–97
    [Google Scholar]
  69. 69.
    Sekirnjak C, Hottowy P, Sher A, Dabrowski W, Litke AM, Chichilnisky EJ 2006. Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays. J. Neurophysiol. 95:3311–27
    [Google Scholar]
  70. 70.
    Fromherz P 2005. The neuron-semiconductor interface. Bioelectron: Theory and Application I Willner, E Katz 339–93 Weinheim, Ger.: Wiley-VCH
    [Google Scholar]
  71. 71.
    Gekeler F, Kobuch K, Schwahn HN, Stett A, Shinoda K, Zrenner E 2004. Subretinal electrical stimulation of the rabbit retina with acutely implanted electrode arrays. Graefes Arch. Clin. Exp. Ophthalmol. 242:587–96
    [Google Scholar]
  72. 72.
    Fromherz P 2002. Electrical interfacing of nerve cells and semiconductor chips. ChemPhysChem 3:276–84
    [Google Scholar]
  73. 73.
    Chow AY, Chow VY 1997. Subretinal electrical stimulation of the rabbit retina. Neurosci. Lett. 225:13–16
    [Google Scholar]
  74. 74.
    Zrenner E 2013. Fighting blindness with microelectronics. Sci. Transl. Med. 5:210ps16
    [Google Scholar]
  75. 75.
    Wilke R, Gabel V-P, Sachs H, Bartz Schmidt K-U, Gekeler F et al. 2011. Spatial resolution and perception of patterns mediated by a subretinal 16-electrode array in patients blinded by hereditary retinal dystrophies. Investig. Ophthalmol. Vis. Sci. 52:5995
    [Google Scholar]
  76. 76.
    Rivnay J, Wang H, Fenno L, Deisseroth K, Malliaras GG 2017. Next-generation probes, particles, and proteins for neural interfacing. Sci. Adv. 3:e1601649
    [Google Scholar]
  77. 77.
    Lilly JC, Hughes JR, Alvord EC, Galkin TW 1955. Brief, noninjurious electric waveform for stimulation of the brain. Science 121:468–69
    [Google Scholar]
  78. 78.
    Vassanelli S, Fromherz P 1999. Transistor probes local potassium conductances in the adhesion region of cultured rat hippocampal neurons. J. Neurosci. 19:6767–73
    [Google Scholar]
  79. 79.
    Schoen I, Fromherz P 2007. The mechanism of extracellular stimulation of nerve cells on an electrolyte-oxide-semiconductor capacitor. Biophys. J. 92:1096–111
    [Google Scholar]
  80. 80.
    Fromherz P, Stett A 1995. Silicon-neuron junction: capacitive stimulation of an individual neuron on a silicon chip. Phys. Rev. Lett. 75:1670–73
    [Google Scholar]
  81. 81.
    Eickenscheidt M, Jenkner M, Thewes R, Fromherz P, Zeck G 2012. Electrical stimulation of retinal neurons in epiretinal and subretinal configuration using a multicapacitor array. J. Neurophysiol. 107:2742–55
    [Google Scholar]
  82. 82.
    Lounasvuori MM, Holt KB 2017. Acid deprotonation driven by cation migration at biased graphene nanoflake electrodes. Chem. Commun. 53:2351–54
    [Google Scholar]
  83. 83.
    Tombaugh GC, Somjen GG 1996. Effects of extracellular pH on voltage-gated Na+, K+ and Ca2+ currents in isolated rat CA1 neurons. J. Physiol. 493:719–32
    [Google Scholar]
  84. 84.
    Doering CJ, McRory JE 2007. Effects of extracellular pH on neuronal calcium channel activation. Neuroscience 146:1032–43
    [Google Scholar]
  85. 85.
    Bray GE, Ying Z, Baillie LD, Zhai R, Mulligan SJ, Verge VMK 2013. Extracellular pH and neuronal depolarization serve as dynamic switches to rapidly mobilize trkA to the membrane of adult sensory neurons. J. Neurosci. 33:8202–15
    [Google Scholar]
  86. 86.
    Sinning A, Hübner CA 2013. Minireview: pH and synaptic transmission. FEBS Lett 587:1923–28
    [Google Scholar]
  87. 87.
    Chen Z-L, Huang R-Q 2014. Extracellular pH modulates GABAergic neurotransmission in rat hypothalamus. Neuroscience 271:64–76
    [Google Scholar]
  88. 88.
    Suppes G, Ballard E, Holdcroft S 2013. Aqueous photocathode activity of regioregular poly(3-hexylthiophene). Polym. Chem. 4:5345
    [Google Scholar]
  89. 89.
    Floresyona D, Goubard F, Aubert P-H, Lampre I, Mathurin J et al. 2017. Highly active poly(3-hexylthiophene) nanostructures for photocatalysis under solar light. Appl. Catal. B 209:23–32
    [Google Scholar]
  90. 90.
    Manceau M, Rivaton A, Gardette J-L 2008. Involvement of singlet oxygen in the solid-state photochemistry of P3HT. Macromol. Rapid Commun. 29:1823–27
    [Google Scholar]
  91. 91.
    Muktha B, Madras G, Guru Row TN, Scherf U, Patil S 2007. Conjugated polymers for photocatalysis. J. Phys. Chem. B 111:7994–98
    [Google Scholar]
  92. 92.
    Abdou MSA, Holdcroft S 1995. Solid-state photochemistry of π-conjugated poly(3-alkylthiophenes). Can. J. Chem. 73:1893–901
    [Google Scholar]
  93. 93.
    Chen L, Mizukado J, Suzuki Y, Kutsuna S, Aoyama Y et al. 2014. An ESR study on superoxide radical anion generation and its involvement in the photooxidative degradation of poly-3-hexylthiophene in chlorobenzene solution. Chem. Phys. Lett. 605–6:98–102
    [Google Scholar]
  94. 94.
    Seemann A, Sauermann T, Lungenschmied C, Armbruster O, Bauer S et al. 2011. Reversible and irreversible degradation of organic solar cell performance by oxygen. Sol. Energy 85:1238–49
    [Google Scholar]
  95. 95.
    Hintz H, Peisert H, Egelhaaf H-J, Chassé T 2011. Reversible and irreversible light-induced p-doping of P3HT by oxygen studied by photoelectron spectroscopy (XPS/UPS). J. Phys. Chem. C 115:13373–76
    [Google Scholar]
  96. 96.
    Manceau M, Rivaton A, Gardette J-L, Guillerez S, Lemaître N 2009. The mechanism of photo- and thermooxidation of poly(3-hexylthiophene) (P3HT) reconsidered. Polym. Degrad. Stab. 94:898–907
    [Google Scholar]
  97. 97.
    Chen L, Yamane S, Mizukado J, Suzuki Y, Kutsuna S et al. 2015. ESR study of singlet oxygen generation and its behavior during the photo-oxidation of P3HT in solution. Chem. Phys. Lett. 624:87–92
    [Google Scholar]
  98. 98.
    Aoyama Y, Yamanari T, Murakami TN, Nagamori T, Marumoto K et al. 2015. Initial photooxidation mechanism leading to reactive radical formation of polythiophene derivatives. Polym. J. 47:26–30
    [Google Scholar]
  99. 99.
    Gryszel M, Sytnyk M, Jakešová M, Romanazzi G, Gabrielsson R et al. 2018. General observation of photocatalytic oxygen reduction to hydrogen peroxide by organic semiconductor thin films and colloidal crystals. ACS Appl. Mater. Interfaces 10:13253–57
    [Google Scholar]
  100. 100.
    Watanabe M 2017. Dye-sensitized photocatalyst for effective water splitting catalyst. Sci. Technol. Adv. Mater. 18:705–23
    [Google Scholar]
  101. 101.
    Fumagalli F, Bellani S, Schreier M, Leonardi S, Rojas HC et al. 2016. Hybrid organic–inorganic H2-evolving photocathodes: understanding the route towards high performance organic photoelectrochemical water splitting. J. Mater. Chem. A 4:2178–87
    [Google Scholar]
  102. 102.
    Bellani S, Ghadirzadeh A, Meda L, Savoini A, Tacca A et al. 2015. Hybrid organic/inorganic nanostructures for highly sensitive photoelectrochemical detection of dissolved oxygen in aqueous media. Adv. Funct. Mater. 25:4531–38
    [Google Scholar]
  103. 103.
    Devasagayam T, Tilak J, Boloor K, Sane KS, Ghaskadbi SS 2004. Free radicals and antioxidants in human health: current status and future prospects. J. Assoc. Phys. India 52:794–804
    [Google Scholar]
  104. 104.
    Wolff SP, Gamer A, Dean RT 1986. Free radicals, lipids and protein degradation. Trends Biochem. Sci. 11:27–31
    [Google Scholar]
  105. 105.
    Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J 2004. Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell. Biochem. 266:37–56
    [Google Scholar]
  106. 106.
    Halliwell B, Gutteridge JMC 2015. Free Radicals in Biology and Medicine Oxford, UK: Oxford Univ. Press 5th ed..
  107. 107.
    Halliwell B, Gutteridge JMC 1985. Oxygen radicals and the nervous system. Trends Neurosci 8:22–26
    [Google Scholar]
  108. 108.
    Halliwell B, Gutteridge JMC 1984. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219:1–14
    [Google Scholar]
  109. 109.
    Dugan LL, Choi DW 1994. Excitotoxicity, free radicals, and cell membrane changes. Ann. Neurol. 35:S17–21
    [Google Scholar]
  110. 110.
    Barrington P 1988. Abnormal electrical activity induced by free radical generating systems in isolated cardiocytes. J. Mol. Cell. Cardiol. 20:1163–78
    [Google Scholar]
  111. 111.
    Schipper HM 2004. Redox neurology: visions of an emerging subspecialty. Ann. NY Acad. Sci. 1012:342–55
    [Google Scholar]
  112. 112.
    Lander HM 1997. An essential role for free radicals and derived species in signal transduction. FASEB J 11:118–24
    [Google Scholar]
  113. 113.
    Dröge W 2002. Free radicals in the physiological control of cell function. Physiol. Rev. 82:47–95
    [Google Scholar]
  114. 114.
    Afanas'ev IB 2007. Signaling functions of free radicals superoxide & nitric oxide under physiological & pathological conditions. Mol. Biotechnol. 37:2–4
    [Google Scholar]
  115. 115.
    Sies H 2017. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol 11:613–19
    [Google Scholar]
  116. 116.
    Heinämäki AA, Muhonen ASH, Piha RS 1986. Taurine and other free amino acids in the retina, vitreous, lens, irisciliary body, and cornea of the rat eye. Neurochem. Res. 11:535–42
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-042018-052445
Loading
/content/journals/10.1146/annurev-physchem-042018-052445
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error