1932

Abstract

This article reviews thermal properties of semiconductor and emergent plasmonic nanomaterials, focusing on mechanisms through which hot carriers and phonons are produced and dissipated as well as the related impacts on optoelectronic properties. Elevated equilibrium temperatures, of particular relevance for implementation of nanomaterials in devices, affect absorptive and radiative transitions as well as emission efficiency that can present reversible and irreversible changes with temperature. In noble metal or doped semiconductor/insulator nanomaterials, hot carriers and lattice heating can substantially influence localized surface plasmon resonances and yield large ultrafast changes in transmission or strongly oscillatory coherences. Transient optical and diffraction characterizations enable nonequilibrium investigations of phonon dynamics and cooling such as lattice expansion and crystal phase stability. Timescales of nanoparticle thermalization with surroundings and transport of heat within films of such materials are also discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-042018-052639
2019-06-14
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/physchem/70/1/annurev-physchem-042018-052639.html?itemId=/content/journals/10.1146/annurev-physchem-042018-052639&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kovalenko MV, Manna L, Cabot A, Hens Z, Talapin DV et al. 2015. Prospects of nanoscience with nanocrystals. ACS Nano 9:1012–57
    [Google Scholar]
  2. 2.
    Pietryga JM, Park YS, Lim J, Fidler AF, Bae WK et al. 2016. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 116:10513–622
    [Google Scholar]
  3. 3.
    Hartland GV 2011. Optical studies of dynamics in noble metal nanostructures. Chem. Rev. 111:3858–87
    [Google Scholar]
  4. 4.
    Luther JM, Jain PK, Ewers T, Alivisatos AP 2011. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 10:361–66
    [Google Scholar]
  5. 5.
    Guler U, Boltasseva A, Shalaev VM 2014. Refractory plasmonics. Science 344:263–64
    [Google Scholar]
  6. 6.
    Boles MA, Ling D, Hyeon T, Talapin DV 2016. The surface science of nanocrystals. Nat. Mater. 15:364–64
    [Google Scholar]
  7. 7.
    Ridley BA 1999. All-inorganic field effect transistors fabricated by printing. Science 286:746–49
    [Google Scholar]
  8. 8.
    Gur I, Fromer NA, Geier ML, Alivisatos AP 2005. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310:462–65
    [Google Scholar]
  9. 9.
    Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV 2010. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110:389–458
    [Google Scholar]
  10. 10.
    Coe-Sullivan S, Liu W, Allen P, Steckel JS 2012. Quantum dots for LED downconversion in display applications. ECS J. Solid State Sci. Technol. 2:R3026–30
    [Google Scholar]
  11. 11.
    Caldwell MA, Raoux S, Wang RY, Philip Wong HS, Milliron DJ 2010. Synthesis and size-dependent crystallization of colloidal germanium telluride nanoparticles. J. Mater. Chem. 20:1285–91
    [Google Scholar]
  12. 12.
    Goldstein AN, Echer CM, Alivisatos AP 1992. Melting in semiconductor nanocrystals. Science 256:1425–27
    [Google Scholar]
  13. 13.
    Rivest JB, Fong L-K, Jain PK, Toney MF, Alivisatos AP 2011. Size dependence of a temperature-induced solid-solid phase transition in copper(I) sulfide. J. Phys. Chem. Lett. 2:2402–6
    [Google Scholar]
  14. 14.
    Dolzhnikov DS, Zhang H, Jang J, Son JS, Panthani MG et al. 2015. Composition-matched molecular “solders” for semiconductors. Science 347:425–28
    [Google Scholar]
  15. 15.
    Benisty H, Sotomayor-Torrès CM, Weisbuch C 1991. Intrinsic mechanism for the poor luminescence properties of quantum-box systems. Phys. Rev. B 44:10945–48
    [Google Scholar]
  16. 16.
    Bozyigit D, Yazdani N, Yarema M, Yarema O, Lin WMM et al. 2016. Soft surfaces of nanomaterials enable strong phonon interactions. Nature 531:618–22
    [Google Scholar]
  17. 17.
    Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A et al. 2003. Nanoscale thermal transport. J. Appl. Phys. 93:793–818
    [Google Scholar]
  18. 18.
    Ong W, Rupich SM, Talapin DV, Mcgaughey AJH, Malen JA 2013. Surface chemistry mediates thermal transport in three-dimensional nanocrystal arrays. Nat. Mater. 12:410–15
    [Google Scholar]
  19. 19.
    Vineis CJ, Shakouri A, Majumdar A, Kanatzidis MG 2010. Nanostructured thermoelectrics: big efficiency gains from small features. Adv. Mater. 22:3970–80
    [Google Scholar]
  20. 20.
    Kim W, Zide J, Gossard A, Klenov D, Stemmer S et al. 2006. Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96:045901
    [Google Scholar]
  21. 21.
    Hartland GV 2002. Coherent vibrational motion in metal particles: determination of the vibrational amplitude and excitation mechanism. J. Chem. Phys. 116:8048–55
    [Google Scholar]
  22. 22.
    Ahn BY, Duoss EB, Motala MJ, Guo X, Park S-I et al. 2009. Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323:1590–93
    [Google Scholar]
  23. 23.
    Ivanova O, Williams C, Campbell T 2013. Additive manufacturing (AM) and nanotechnology: promises and challenges. Rapid Prototyp. J. 19:353–64
    [Google Scholar]
  24. 24.
    Huang XH, El-Sayed IH, Qian W, El-Sayed MA 2006. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128:2115–20
    [Google Scholar]
  25. 25.
    Guo P, Schaller RD, Ketterson JB, Chang RPH 2016. Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude. Nat. Photon. 10:267–73
    [Google Scholar]
  26. 26.
    Kirschner MS, Ding W, Li Y, Chapman CT, Lei A et al. 2018. Phonon-driven oscillatory plasmonic excitonic nanomaterials. Nano Lett 18:442–48
    [Google Scholar]
  27. 27.
    Schaller RD, Pietryga JM, Goupalov SV, Petruska MA, Ivanov SA, Klimov VI 2005. Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic non-adiabatic interactions. Phys. Rev. Lett. 95:196401
    [Google Scholar]
  28. 28.
    Lisiecki I, Halté V, Petit C, Pileni MP, Bigot JY 2008. Vibration dynamics of supra-crystals of cobalt nanocrystals studied with femtosecond laser pulses. Adv. Mater. 20:4176–79
    [Google Scholar]
  29. 29.
    Poyser CL, Czerniuk T, Akimov A, Diroll BT, Gaulding EA et al. 2016. Coherent acoustic phonons in colloidal semiconductor nanocrystal superlattices. ACS Nano 10:1163–69
    [Google Scholar]
  30. 30.
    Ruello P, Ayouch A, Vaudel G, Pezeril T, Delorme N et al. 2015. Ultrafast acousto-plasmonics in gold nanoparticle superlattices. Phys. Rev. B 92:174304
    [Google Scholar]
  31. 31.
    Achermann M, Bartko AP, Hollingsworth JA, Klimov VI 2005. Intraband carrier relaxation in semiconductor quantum rods: competition between phonon-assisted cooling and Auger heating. Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies507–9 Baltimore, MD: Opt. Soc. Am.
    [Google Scholar]
  32. 32.
    Guyot-Sionnest P, Wehrenberg B, Yu D 2005. Intraband relaxation in CdSe nanocrystals and the strong influence of the surface ligands. J. Chem. Phys. 123:074709
    [Google Scholar]
  33. 33.
    Wehrenberg BL, Wang C, Guyot-Sionnest P 2002. Interband and intraband optical studies of PbSe colloidal quantum dots. J. Phys. Chem. B 106:10634–40
    [Google Scholar]
  34. 34.
    Hannah DC, Dunn NJ, Ithurria S, Talapin DV, Chen LX et al. 2011. Observation of size-dependent thermalization in CdSe nanocrystals using time-resolved photoluminescence spectroscopy. Phys. Rev. Lett. 107:13–16
    [Google Scholar]
  35. 35.
    Peterson MD, Cass LC, Harris RD, Edme K, Sung K, Weiss EA 2014. The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots. Annu. Rev. Phys. Chem. 65:317–39
    [Google Scholar]
  36. 36.
    Achermann M, Bartko AP, Hollingsworth JA, Klimov VI 2006. The effect of Auger heating on intraband carrier relaxation in semiconductor quantum rods. Nat. Phys. 2:557–61
    [Google Scholar]
  37. 37.
    Pelton M, Ithurria S, Schaller RD, Dolzhnikov DS, Talapin DV 2012. Carrier cooling in colloidal quantum wells. Nano Lett 12:6158–63
    [Google Scholar]
  38. 38.
    Wittenberg JS, Merkle MG, Alivisatos AP 2009. Wurtzite to rocksalt phase transformation of cadmium selenide nanocrystals via laser-induced shock waves: transition from single to multiple nucleation. Phys. Rev. Lett. 103:125701
    [Google Scholar]
  39. 39.
    Zheng H, Rivest JB, Miller TA, Sadtler B, Lindenberg A et al. 2011. Observation of transient structural-transformation dynamics in a Cu2S nanorod. Science 333:206–9
    [Google Scholar]
  40. 40.
    Sadasivam S, Chan MKY, Darancet P 2017. Theory of thermal relaxation of electrons in semiconductors. Phys. Rev. Lett. 119:136602
    [Google Scholar]
  41. 41.
    Klimov V, McBranch D 1998. Femtosecond 1P-to-1S electron relaxation in strongly confined semiconductor nanocrystals. Phys. Rev. Lett. 80:4028–31
    [Google Scholar]
  42. 42.
    Pandey A, Guyot-Sionnest P 2008. Slow electron cooling in colloidal quantum dots. Science 322:929–32
    [Google Scholar]
  43. 43.
    Klimov V, Haring Bolivar P, Kurz H 1995. Hot-phonon effects in femtosecond luminescence spectra of electron-hole plasmas in CdS. Phys. Rev. B 52:4728–31
    [Google Scholar]
  44. 44.
    Kirschner MS, Hannah DC, Diroll BT, Zhang X, Wagner MJ et al. 2017. Transient melting and recrystallization of semiconductor nanocrystals under multiple electron-hole pair excitation. Nano Lett 17:5315–20
    [Google Scholar]
  45. 45.
    Plech A, Kotaidis V, Grésillon S, Dahmen C, Von Plessen G 2004. Laser-induced heating and melting of gold nanoparticles studied by time-resolved X-ray scattering. Phys. Rev. B 70:195423
    [Google Scholar]
  46. 46.
    Clark JN, Beitra L, Xiong G, Fritz DM, Lemke HT et al. 2015. Imaging transient melting of a nanocrystal using an X-ray laser. PNAS 112:7444–48
    [Google Scholar]
  47. 47.
    Hopkins PE 2013. Thermal transport across solid interfaces with nanoscale imperfections: effects of roughness, disorder, dislocations, and bonding on thermal boundary conductance. ISRN Mech. Eng. 2013:682586
    [Google Scholar]
  48. 48.
    Monachon C, Weber L, Dames C 2016. Thermal boundary conductance: a materials science perspective. Annu. Rev. Mater. Res. 46:433–63
    [Google Scholar]
  49. 49.
    Rowland CE, Liu W, Hannah DC, Chan MKY, Talapin DV, Schaller RD 2014. Thermal stability of colloidal InP nanocrystals: Small inorganic ligands boost high-temperature photoluminescence. ACS Nano 8:977–85
    [Google Scholar]
  50. 50.
    Klimov VI 2007. Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Annu. Rev. Phys. Chem. 58:635–73
    [Google Scholar]
  51. 51.
    Park H, Nie S, Wang X, Clinite R, Cao J 2005. Optical control of coherent lattice motions probed by femtosecond electron diffraction. J. Phys. Chem. B 109:13854–56
    [Google Scholar]
  52. 52.
    Wang X, Rahmani H, Zhou J, Gorfien M, Mendez Plaskus J et al. 2016. Ultrafast lattice dynamics in lead selenide quantum dot induced by laser excitation. Appl. Phys. Lett. 109:153105
    [Google Scholar]
  53. 53.
    Kukura P, McCamant DW, Mathies RA 2007. Femtosecond stimulated Raman spectroscopy. Annu. Rev. Phys. Chem. 58:461–88
    [Google Scholar]
  54. 54.
    McCamant DW, Kukura P, Yoon S, Mathies RA 2004. Femtosecond broadband stimulated Raman spectroscopy: apparatus and methods. Rev. Sci. Instrum. 75:4971–80
    [Google Scholar]
  55. 55.
    Swarnkar A, Marshall AR, Sanehira EM, Chernomordik BD, Moore DT et al. 2016. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354:92–95
    [Google Scholar]
  56. 56.
    Diroll BT, Guo P, Schaller RD 2018. Unique optical properties of methylammonium lead iodide nanocrystals below the bulk tetragonal-orthorhombic phase transition. Nano Lett 18:846–52
    [Google Scholar]
  57. 57.
    Varshni YP 1967. Temperature dependence of the energy gap in semiconductors. Physica 34:149–54
    [Google Scholar]
  58. 58.
    Rowland CE, Schaller RD 2013. Exciton fate in semiconductor nanocrystals at elevated temperatures: Hole trapping outcompetes exciton deactivation. J. Phys. Chem. C 117:17337–43
    [Google Scholar]
  59. 59.
    Zhao Y, Riemersma C, Pietra F, Koole R, De Mello Donegá C, Meijerink A 2012. High-temperature luminescence quenching of colloidal quantum dots. ACS Nano 6:9058–67
    [Google Scholar]
  60. 60.
    Diroll BT, Nedelcu G, Kovalenko MV, Schaller RD 2017. High-temperature photoluminescence of CsPbX3 (X = Cl, Br, I) nanocrystals. Adv. Funct. Mater. 3:1606750
    [Google Scholar]
  61. 61.
    Rowland CE, Fedin I, Diroll BT, Liu Y, Talapin DV, Schaller RD 2018. Elevated temperature photophysical properties and morphological stability of CdSe and CdSe/CdS nanoplatelets. J. Phys. Chem. Lett. 9:286–93
    [Google Scholar]
  62. 62.
    Diroll BT, Murray CB 2014. High-temperature photoluminescence of CdSe/CdS core/shell nanoheterostructures. ACS Nano 8:6466–74
    [Google Scholar]
  63. 63.
    Rowland CE, Hannah DC, Demortière A, Yang J, Cook RE et al. 2014. Silicon nanocrystals at elevated temperatures: retention of photoluminescence and diamond silicon to β-silicon carbide phase transition. ACS Nano 8:9219–23
    [Google Scholar]
  64. 64.
    Orfield NJ, Majumder S, McBride JR, Yik-Ching Koh F, Singh A et al. 2018. Photophysics of thermally-assisted photobleaching in “giant” quantum dots revealed in single nanocrystals. ACS Nano 12:4206–17
    [Google Scholar]
  65. 65.
    Law M, Luther JM, Song Q, Hughes BK, Perkins CL, Nozik AJ 2008. Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines. J. Am. Chem. Soc. 130:5974–85
    [Google Scholar]
  66. 66.
    Panthani MG, Kurley JM, Crisp RW, Dietz TC, Ezzyat T et al. 2014. High efficiency solution processed sintered CdTe nanocrystal solar cells: the role of interfaces. Nano Lett 14:670–75
    [Google Scholar]
  67. 67.
    Goodfellow BW, Patel RN, Panthani MG, Smilgies DM, Korgel BA 2011. Melting and sintering of a body-centered cubic superlattice of PbSe nanocrystals followed by small angle X-ray scattering. J. Phys. Chem. C 115:6397–404
    [Google Scholar]
  68. 68.
    Mukherjee S, Libisch F, Large N, Neumann O, Brown LV et al. 2013. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett 13:240–47
    [Google Scholar]
  69. 69.
    Alam MZ, De Leon I, Boyd RW 2016. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 352:795–97
    [Google Scholar]
  70. 70.
    Bockelmann U, Bastard G 1990. Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases. Phys. Rev. B 42:8947–51
    [Google Scholar]
  71. 71.
    Link S, El-Sayed MA 2003. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem. 54:331–66
    [Google Scholar]
  72. 72.
    Agrawal A, Cho SH, Zandi O, Ghosh S, Johns RW, Milliron DJ 2018. Localized surface plasmon resonance in semiconductor nanocrystals. Chem. Rev. 118:3121–207
    [Google Scholar]
  73. 73.
    Zhao Y, Pan H, Lou Y, Qiu X, Zhu J, Burda C 2009. Plasmonic Cu2-xS nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides. J. Am. Chem. Soc. 131:4253–61
    [Google Scholar]
  74. 74.
    Naik GV, Shalaev VM, Boltasseva A 2013. Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25:3264–94
    [Google Scholar]
  75. 75.
    Boltasseva A, Atwater HA 2011. Low-loss plasmonic metamaterials. Science 331:290–91
    [Google Scholar]
  76. 76.
    Buonsanti R, Milliron DJ 2013. Chemistry of doped colloidal nanocrystals. Chem. Mater. 25:1305–17
    [Google Scholar]
  77. 77.
    Mattox TM, Ye X, Manthiram K, Schuck PJ, Alivisatos AP, Urban JJ 2015. Chemical control of plasmons in metal chalcogenide and metal oxide nanostructures. Adv. Mater. 27:5830–37
    [Google Scholar]
  78. 78.
    Agrawal A, Johns RW, Milliron D 2017. Control of localized surface plasmon resonances in metal oxide nanocrystals. Annu. Rev. Mater. Res. 47:1–31
    [Google Scholar]
  79. 79.
    Buonsanti R, Llordes A, Aloni S, Helms BA, Milliron DJ 2011. Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals. Nano Lett 11:4706–10
    [Google Scholar]
  80. 80.
    Kanehara M, Koike H, Yoshinaga T, Teranishi T 2009. Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region. J. Am. Chem. Soc. 131:17736–37
    [Google Scholar]
  81. 81.
    Gordon TR, Paik T, Klein DR, Naik GV, Caglayan H et al. 2013. Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO). Nano Lett 13:2857–63
    [Google Scholar]
  82. 82.
    Manthiram K, Alivisatos AP 2012. Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. J. Am. Chem. Soc. 134:3995–98
    [Google Scholar]
  83. 83.
    Liu Z, Beaulac R 2017. Nature of the infrared transition of colloidal indium nitride nanocrystals: nonparabolicity effects on the plasmonic behavior of doped semiconductor nanomaterials. Chem. Mater. 29:7507–14
    [Google Scholar]
  84. 84.
    Rowe DJ, Jeong JS, Mkhoyan KA, Kortshagen UR 2013. Phosphorus-doped silicon nanocrystals exhibiting mid-infrared localized surface plasmon resonance. Nano Lett 13:1317–22
    [Google Scholar]
  85. 85.
    Zhang H, Zhang R, Schramke KS, Bedford NM, Hunter K et al. 2017. Doped silicon nanocrystal plasmonics. ACS Photon 4:963–70
    [Google Scholar]
  86. 86.
    Sachet E, Shelton CT, Harris JS, Gaddy BE, Irving DL et al. 2015. Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics. Nat. Mater. 14:414–20
    [Google Scholar]
  87. 87.
    Tice DB, Li SQ, Tagliazucchi M, Buchholz DB, Weiss EA, Chang RPH 2014. Ultrafast modulation of the plasma frequency of vertically aligned indium tin oxide rods. Nano Lett 14:1120–26
    [Google Scholar]
  88. 88.
    Diroll BT, Guo P, Chang RPH, Schaller RD 2016. Large transient optical modulation of epsilon-near-zero colloidal nanocrystals. ACS Nano 10:10099–105
    [Google Scholar]
  89. 89.
    Diroll BT, Schramke KS, Guo P, Kortshagen UR, Schaller RD 2017. Ultrafast silicon photonics with visible to mid-infrared pumping of silicon nanocrystals. Nano Lett 17:6409–14
    [Google Scholar]
  90. 90.
    Kriegel I, Urso C, Viola D, De Trizio L, Scotognella F et al. 2016. Ultrafast photodoping and plasmon dynamics in fluorine-indium codoped cadmium oxide nanocrystals for all-optical signal manipulation at optical communication wavelengths. J. Phys. Chem. Lett. 7:3873–81
    [Google Scholar]
  91. 91.
    Scotognella F, Della Valle G, Srimath Kandada AR, Dorfs D, Zavelani-Rossi M et al. 2011. Plasmon dynamics in colloidal Cu2-xSe nanocrystals. Nano Lett 11:4711–17
    [Google Scholar]
  92. 92.
    Della Valle G, Scotognella F, Kandada ARS, Zavelani-Rossi M, Li H et al. 2013. Ultrafast optical mapping of nonlinear plasmon dynamics in Cu2-xSe nanoparticles. J. Phys. Chem. Lett. 4:3337–44
    [Google Scholar]
  93. 93.
    Kriegel I, Jiang C, Rodríguez-Fernández J, Schaller RD, Talapin DV et al. 2012. Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals. J. Am. Chem. Soc. 134:1583–90
    [Google Scholar]
  94. 94.
    Guo P, Weimer MS, Emery JD, Diroll BT, Chen X et al. 2017. Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching. ACS Nano 11:693–701
    [Google Scholar]
  95. 95.
    Liu M, Hwang HY, Tao H, Strikwerda AC, Fan K et al. 2012. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487:345–48
    [Google Scholar]
  96. 96.
    Kilina SV, Craig CF, Kilin DS, Prezhdo OV 2007. Ab initio time-domain study of phonon-assisted relaxation of charge carriers in a PbSe quantum dot. J. Phys. Chem. C 111:4871–78
    [Google Scholar]
  97. 97.
    Huxter VM, Scholes GD 2010. Acoustic phonon strain induced mixing of the fine structure levels in colloidal CdSe quantum dots observed by a polarization grating technique. J. Chem. Phys. 132:104506
    [Google Scholar]
  98. 98.
    Klimov VI, McBranch DW, Leatherdale CA, Bawendi MG 1999. Electron and hole relaxation pathways in semiconductor quantum dots. Phys. Rev. B 60:13740–49
    [Google Scholar]
  99. 99.
    Hodak JH, Henglein A, Hartland GV 1999. Size dependent properties of Au particles: coherent excitation and dephasing of acoustic vibrational modes. J. Chem. Phys. 111:8613–21
    [Google Scholar]
  100. 100.
    Sagar DM, Cooney RR, Sewall SL, Dias EA, Barsan MM et al. 2008. Size dependent, state-resolved studies of exciton-phonon couplings in strongly confined semiconductor quantum dots. Phys. Rev. B 77:235321
    [Google Scholar]
  101. 101.
    Mittleman DM, Schoenlein RW, Shiang JJ, Colvin VL, Alivisatos AP, Shank CV 1994. Quantum size dependence of femtosecond electronic dephasing and vibrational dynamics in CdSe nanocrystals. Phys. Rev. B 49:14435–47
    [Google Scholar]
  102. 102.
    Van Dijk MA, Lippitz M, Orrit M 2005. Detection of acoustic oscillations of single gold nanospheres by time-resolved interferometry. Phys. Rev. Lett. 95:267406
    [Google Scholar]
  103. 103.
    Major TA, Crut A, Gao B, Lo SS, Fatti N et al. 2013. Damping of the acoustic vibrations of a suspended gold nanowire in air and water environments. Phys. Chem. Chem. Phys. 15:4169–76
    [Google Scholar]
  104. 104.
    Yu K, Zijlstra P, Sader JE, Xu QH, Orrit M 2013. Damping of acoustic vibrations of immobilized single gold nanorods in different environments. Nano Lett 13:2710–16
    [Google Scholar]
  105. 105.
    Pelton M, Sader JE, Burgin J, Liu M, Guyot-Sionnest P, Gosztola D 2009. Damping of acoustic vibrations in gold nanoparticles. Nat. Nanotechnol. 4:492–95
    [Google Scholar]
  106. 106.
    Krauss TD, Wise FW 1997. Coherent acoustic phonons in a semiconductor quantum dot. Phys. Rev. Lett. 79:5102–5
    [Google Scholar]
  107. 107.
    Guo P, Schaller RD, Ocola LE, Ketterson JB, Chang RPH 2016. Gigahertz acoustic vibrations of elastically anisotropic indium-tin-oxide nanorod arrays. Nano Lett 16:5639–46
    [Google Scholar]
  108. 108.
    Schnitzenbaumer KJ, Dukovic G 2018. Comparison of phonon damping behavior in quantum dots capped with organic and inorganic ligands. Nano Lett 18:3667–74
    [Google Scholar]
  109. 109.
    Clark JN, Beitra L, Xiong G, Higginbotham A, Fritz DM et al. 2013. Ultrafast three-dimensional imaging of lattice dynamics in individual gold nanocrystals. Science 341:56–59
    [Google Scholar]
  110. 110.
    Nguyen SC, Zhang Q, Manthiram K, Ye X, Lomont JP et al. 2016. Study of heat transfer dynamics from gold nanorods to the environment via time-resolved infrared spectroscopy. ACS Nano 10:2144–51
    [Google Scholar]
  111. 111.
    Pelton M, Wang Y, Gosztola D, Sader JE 2011. Mechanical damping of longitudinal acoustic oscillations of metal nanoparticles in solution. J. Phys. Chem. C 115:23732–40
    [Google Scholar]
  112. 112.
    Zijlstra P, Tchebotareva AL, Chon JWM, Gu M, Orrit M 2008. Acoustic oscillations and elastic moduli of single gold nanorods. Nano Lett 8:3493–97
    [Google Scholar]
  113. 113.
    Chaste J, Eichler A, Moser J, Ceballos G, Rurali R, Bachtold A 2012. A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7:301–4
    [Google Scholar]
  114. 114.
    Dacosta Fernandes B, Spuch-Calvar M, Baida H, Tréguer-Delapierre M, Oberlé J et al. 2013. Acoustic vibrations of Au nano-bipyramids and their modification under Ag deposition: a perspective for the development of nanobalances. ACS Nano 7:7630–39
    [Google Scholar]
  115. 115.
    Dietze DR, Mathies RA 2016. Femtosecond stimulated Raman spectroscopy. ChemPhysChem 17:1224–51
    [Google Scholar]
  116. 116.
    Dang NC, Bolme CA, Moore DS, McGrane SD 2011. Femtosecond stimulated Raman scattering picosecond molecular thermometry in condensed phases. Phys. Rev. Lett. 107:043001
    [Google Scholar]
  117. 117.
    Hannah DC, Brown KE, Young RM, Wasielewski MR, Schatz GC et al. 2013. Direct measurement of lattice dynamics and optical phonon excitation in semiconductor nanocrystals using femtosecond stimulated Raman spectroscopy. Phys. Rev. Lett. 111:107401
    [Google Scholar]
  118. 118.
    Harvey SM, Phelan BT, Hannah DC, Brown KE, Young RM et al. 2018. Auger heating and thermal dissipation in zero-dimensional CdSe nanocrystals examined using femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 9:4481–87
    [Google Scholar]
  119. 119.
    Mannebach EM, Li R, Duerloo K-A, Nyby C, Zalden P et al. 2015. Dynamic structural response and deformations of monolayer MoS2 visualized by femtosecond electron diffraction. Nano Lett 15:6889–95
    [Google Scholar]
  120. 120.
    Wittenberg JS, Miller TA, Szilagyi E, Lutker K, Quirin F et al. 2014. Real-time visualization of nanocrystal solid-solid transformation pathways. Nano Lett 14:1995–99
    [Google Scholar]
  121. 121.
    Szilagyi E, Wittenberg JS, Miller TA, Lutker K, Quirin F et al. 2015. Visualization of nanocrystal breathing modes at extreme strains. Nat. Commun. 6:6577
    [Google Scholar]
  122. 122.
    Link S, Burda C, Mohamed MB, Nikoobakht B, El-Sayed MA 1999. Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence. J. Phys. Chem. A 103:1165–70
    [Google Scholar]
  123. 123.
    Link S, Burda C, Nikoobakht B, El-Sayed MA 2000. Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J. Phys. Chem. B 104:6152–63
    [Google Scholar]
  124. 124.
    Eastman JA, Phillpot SR, Choi SUS, Keblinski P 2004. Thermal transport in nanofluids. Annu. Rev. Mater. Res. 34:219–46
    [Google Scholar]
  125. 125.
    Wilson OM, Hu X, Cahill DG, Braun PV 2002. Colloidal metal particles as probes of nanoscale thermal transport in fluids. Phys. Rev. B 66:2243011
    [Google Scholar]
  126. 126.
    Moreels I, Rainò G, Gomes R, Hens Z, Stöferle T, Mahrt RF 2011. Band-edge exciton fine structure of small, nearly spherical colloidal CdSe/ZnS quantum dots. ACS Nano 5:8033–39
    [Google Scholar]
  127. 127.
    Hannah DC, Gezelter JD, Schaller RD, Schatz GC 2015. Reverse non-equilibrium molecular dynamics demonstrate that surface passivation controls thermal transport at semiconductor-solvent interfaces. ACS Nano 9:6278–87
    [Google Scholar]
  128. 128.
    Guo P, Gong J, Sadasivam S, Xia Y, Song T-B et al. 2018. Slow thermal equilibration in methylammonium lead iodide revealed by transient mid-infrared spectroscopy. Nat. Commun. 9:2792
    [Google Scholar]
  129. 129.
    Chang AY, Cho Y-J, Chen K-C, Chen C-W, Kinaci A et al. 2016. Slow organic-to-inorganic sub-lattice thermalization in methylammonium lead halide perovskites observed by ultrafast photoluminescence. Adv. Energy Mater. 6:1600422
    [Google Scholar]
  130. 130.
    Straus DB, Hurtado Parra S, Iotov N, Gebhardt J, Rappe AM et al. 2016. Direct observation of electron-phonon coupling and slow vibrational relaxation in organic-inorganic hybrid perovskites. J. Am. Chem. Soc. 138:13798–801
    [Google Scholar]
  131. 131.
    Lyeo H-KK, Cahill DG 2006. Thermal conductance of interfaces between highly dissimilar materials. Phys. Rev. B 73:144301
    [Google Scholar]
  132. 132.
    Ong WL, Majumdar S, Malen JA, McGaughey AJH 2014. Coupling of organic and inorganic vibrational states and their thermal transport in nanocrystal arrays. J. Phys. Chem. C 118:7288–95
    [Google Scholar]
  133. 133.
    Ko DK, Kang Y, Murray CB 2011. Enhanced thermopower via carrier energy filtering in solution-processable Pt–Sb2Te3 nanocomposites.. Nano Lett 11:2841–44
    [Google Scholar]
  134. 134.
    Ong W-LL, Majumdar S, Malen JA, McGaughey AJH 2014. Coupling of organic and inorganic vibrational states and their thermal transport in nanocrystal arrays. J. Phys. Chem. C 118:7288–95
    [Google Scholar]
  135. 135.
    Koh YK, Singer SL, Kim W, Zide JMO, Lu H et al. 2009. Comparison of the 3ω method and time-domain thermoreflectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors. J. Appl. Phys. 105:054303
    [Google Scholar]
  136. 136.
    Cahill DG 1990. Thermal conductivity measurement from 30 to 750 K: the 3ω method. Rev. Sci. Instrum. 61:802–8
    [Google Scholar]
  137. 137.
    Feser JP, Chan EM, Majumdar A, Segalman RA, Urban JJ 2013. Ultralow thermal conductivity in polycrystalline CdSe thin films with controlled grain size. Nano Lett 13:2122–27
    [Google Scholar]
  138. 138.
    Hannah DC, Ithurria S, Krylova G, Talapin DV, Schatz GC, Schaller RD 2012. Particle-level engineering of thermal conductivity in matrix-embedded semiconductor nanocrystals. Nano Lett 12:5797–801
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-042018-052639
Loading
/content/journals/10.1146/annurev-physchem-042018-052639
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error