1932

Abstract

Surfaces mediate the formation of stable glasses (SGs) upon physical vapor deposition (PVD) for a wide range of glass formers. The thermodynamic and kinetic stability of SGs and their anisotropic packing structures are controlled through the deposition parameters (deposition temperature and rate) as well as the chemical structure and composition of the glass former. The resulting PVD glass properties can therefore be related to the structure and dynamics of the glass surface, which can have oriented packing, enhanced surface diffusion, and a lower glass transition temperature, and can facilitate an enhanced aging rate of the interfacial region. We review our current understanding of the details of this surface-mediated SG formation process and discuss key gaps in our knowledge of glass surface dynamics and their effect on this process.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-042018-052708
2023-04-24
2024-04-13
Loading full text...

Full text loading...

/deliver/fulltext/physchem/74/1/annurev-physchem-042018-052708.html?itemId=/content/journals/10.1146/annurev-physchem-042018-052708&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Birney R, Steinlechner J, Tornasi Z, MacFoy S, Vine D et al. 2018. Amorphous silicon with extremely low absorption: beating thermal noise in gravitational astronomy. Phys. Rev. Lett. 121:191101
    [Google Scholar]
  2. 2.
    Yang L, Vajente G, Fazio M, Ananyeva A, Billingsley G et al. 2021. Enhanced medium-range order in vapor-deposited germania glasses at elevated temperatures. Sci. Adv. 7:37eabh1117
    [Google Scholar]
  3. 3.
    Swallen SF, Kearns KL, Mapes MK, Kim YS, McMahon RJ et al. 2007. Organic glasses with exceptional thermodynamic and kinetic stability. Science 315:5810353–56
    [Google Scholar]
  4. 4.
    Ediger MD. 2017. Highly stable vapor-deposited glasses. J. Chem. Phys. 147:210901
    [Google Scholar]
  5. 5.
    Ediger MD, de Pablo J, Yu L 2019. Anisotropic vapor-deposited glasses: hybrid organic solids. Acc. Chem. Res. 52:2407–14
    [Google Scholar]
  6. 6.
    Bagchi K, Ediger M. 2020. Controlling structure and properties of vapor-deposited glasses of organic semiconductors: recent advances and challenges. J. Phys. Chem. Lett. 11:176935–45
    [Google Scholar]
  7. 7.
    Rodríguez-Tinoco C, Gonzalez-Silveira M, Ramos MA, Rodríguez-Viejo J. 2022. Ultrastable glasses: new perspectives for an old problem. Riv. Nuovo Cim. 45:325–406
    [Google Scholar]
  8. 8.
    Walters DM, Antony L, de Pablo JJ, Ediger M 2017. Influence of molecular shape on the thermal stability and molecular orientation of vapor-deposited organic semiconductors. J. Phys. Chem. Lett. 8:143380–86
    [Google Scholar]
  9. 9.
    Bagchi K, Jackson NE, Gujral A, Huang C, Toney MF et al. 2018. Origin of anisotropic molecular packing in vapor-deposited Alq3 glasses. J. Phys. Chem. Lett. 10:2164–70
    [Google Scholar]
  10. 10.
    Dalal SS, Walters DM, Lyubimov I, de Pablo JJ, Ediger M. 2015. Tunable molecular orientation and elevated thermal stability of vapor-deposited organic semiconductors. PNAS 112:144227–32
    [Google Scholar]
  11. 11.
    Lyubimov I, Antony L, Walters DM, Rodney D, Ediger M, de Pablo JJ 2015. Orientational anisotropy in simulated vapor-deposited molecular glasses. J. Chem. Phys. 143:094502
    [Google Scholar]
  12. 12.
    Singh S, de Pablo JJ. 2011. A molecular view of vapor deposited glasses. J. Chem. Phys. 134:194903
    [Google Scholar]
  13. 13.
    Dalal SS, Fakhraai Z, Ediger MD. 2013. High-throughput ellipsometric characterization of vapor-deposited indomethacin glasses. J. Phys. Chem. B 117:4915415–25
    [Google Scholar]
  14. 14.
    Dawson KJ, Zhu L, Yu L, Ediger M. 2011. Anisotropic structure and transformation kinetics of vapor-deposited indomethacin glasses. J. Phys. Chem. B 115:3455–63
    [Google Scholar]
  15. 15.
    Gujral A, O'Hara KA, Toney MF, Chabinyc ML, Ediger M. 2015. Structural characterization of vapor-deposited glasses of an organic hole transport material with X-ray scattering. Chem. Mater. 27:93341–48
    [Google Scholar]
  16. 16.
    Zhang A, Moore AR, Zhao H, Govind S, Wolf SE et al. 2022. The role of intra-molecular relaxations on the structure and stability of vapor-deposited glasses. J. Chem. Phys. 156:244703
    [Google Scholar]
  17. 17.
    Hodge IM. 1995. Physical aging in polymer glasses. Science 267:52061945–47
    [Google Scholar]
  18. 18.
    Welch RC, Smith JR, Potuzak M, Guo X, Bowden BF et al. 2013. Dynamics of glass relaxation at room temperature. Phys. Rev. Lett. 110:265901
    [Google Scholar]
  19. 19.
    Zhao J, Simon SL, McKenna GB. 2013. Using 20-million-year-old amber to test the super-Arrhenius behaviour of glass-forming systems. Nat. Commun. 4:1783
    [Google Scholar]
  20. 20.
    Luo P, Lu Z, Li Y, Bai H, Wen P, Wang W 2016. Probing the evolution of slow flow dynamics in metallic glasses. Phys. Rev. B 93:104204
    [Google Scholar]
  21. 21.
    Böhmer R, Ngai K, Angell CA, Plazek D. 1993. Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 99:54201–9
    [Google Scholar]
  22. 22.
    Angell CA, Ngai KL, McKenna GB, McMillan PF, Martin SW. 2000. Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys. 88:63113–57
    [Google Scholar]
  23. 23.
    Zhang Y, Fakhraai Z. 2017. Invariant fast diffusion on the surfaces of ultrastable and aged molecular glasses. Phys. Rev. Lett. 118:066101
    [Google Scholar]
  24. 24.
    Kearns KL, Swallen SF, Ediger M, Wu T, Yu L 2007. Influence of substrate temperature on the stability of glasses prepared by vapor deposition. J. Chem. Phys. 127:154702
    [Google Scholar]
  25. 25.
    Kearns KL, Swallen SF, Ediger MD, Wu T, Sun Y, Yu L 2008. Hiking down the energy landscape: progress toward the Kauzmann temperature via vapor deposition. J. Phys. Chem. B 112:164934–42
    [Google Scholar]
  26. 26.
    Whitaker KR, Tylinski M, Ahrenberg M, Schick C, Ediger M. 2015. Kinetic stability and heat capacity of vapor-deposited glasses of o-terphenyl. J. Chem. Phys. 143:084511
    [Google Scholar]
  27. 27.
    Kearns KL, Krzyskowski P, Devereaux Z. 2017. Using deposition rate to increase the thermal and kinetic stability of vapor-deposited hole transport layer glasses via a simple sublimation apparatus. J. Chem. Phys. 146:203328
    [Google Scholar]
  28. 28.
    Rodríguez-Tinoco C, Gonzalez-Silveira M, Ràfols-Ribé J, Lopeandía AF, Rodríguez-Viejo J. 2015. Transformation kinetics of vapor-deposited thin film organic glasses: the role of stability and molecular packing anisotropy. Phys. Chem. Chem. Phys. 17:4631195–201
    [Google Scholar]
  29. 29.
    Liu T, Cheng K, Salami-Ranjbaran E, Gao F, Li C et al. 2015. The effect of chemical structure on the stability of physical vapor deposited glasses of 1,3,5-triarylbenzene. J. Chem. Phys. 143:084506
    [Google Scholar]
  30. 30.
    Kearns KL, Still T, Fytas G, Ediger M. 2010. High-modulus organic glasses prepared by physical vapor deposition. Adv. Mater. 22:139–42
    [Google Scholar]
  31. 31.
    Fakhraai Z, Still T, Fytas G, Ediger M. 2011. Structural variations of an organic glassformer vapor-deposited onto a temperature gradient stage. J. Phys. Chem. Lett. 2:5423–27
    [Google Scholar]
  32. 32.
    Yu HB, Luo Y, Samwer K. 2013. Ultrastable metallic glass. Adv. Mater. 25:415904–8
    [Google Scholar]
  33. 33.
    Sun Q, Miskovic DM, Laws K, Kong H, Geng X, Ferry M. 2020. Transition towards ultrastable metallic glasses in Zr-based thin films. Appl. Surface Sci. 533:147453
    [Google Scholar]
  34. 34.
    Luo P, Zhu F, Lv YM, Lu Z, Shen LQ et al. 2021. Microscopic structural evolution during ultrastable metallic glass formation. ACS Appl. Mater. Interfaces 13:3340098–105
    [Google Scholar]
  35. 35.
    Wolf SE, Fulco S, Zhang A, Zhao H, Walsh PJ et al. 2022. Role of molecular layering in the enhanced mechanical properties of stable glasses. J. Phys. Chem. Lett. 13:153360–68
    [Google Scholar]
  36. 36.
    Rodríguez-Tinoco C, Gonzalez-Silveira M, Ràfols-Ribé J, Garcia G, Rodríguez-Viejo J. 2015. Highly stable glasses of celecoxib: influence on thermo-kinetic properties, microstructure and response towards crystal growth. J. Non-Cryst. Solids 407:256–61
    [Google Scholar]
  37. 37.
    Luo P, Cao C, Zhu F, Lv Y, Liu Y et al. 2018. Ultrastable metallic glasses formed on cold substrates. Nat. Commun. 9:1389
    [Google Scholar]
  38. 38.
    Zhang K, Li Y, Huang Q, Wang B, Zheng X et al. 2017. Ultrastable amorphous Sb2Se3 film. J. Phys. Chem. B 121:348188–94
    [Google Scholar]
  39. 39.
    Luo Q, Zhang Z, Li D, Luo P, Wang W, Shen B 2022. Nanoscale-to-mesoscale heterogeneity and percolating favored clusters govern ultrastability of metallic glasses. Nano Lett. 22:72867–73
    [Google Scholar]
  40. 40.
    Pérez-Castañeda T, Rodríguez-Tinoco C, Rodríguez-Viejo J, Ramos MA. 2014. Suppression of tunneling two-level systems in ultrastable glasses of indomethacin. PNAS 111:3111275–80
    [Google Scholar]
  41. 41.
    Khomenko D, Scalliet C, Berthier L, Reichman DR, Zamponi F. 2020. Depletion of two-level systems in ultrastable computer-generated glasses. Phys. Rev. Lett. 124:225901
    [Google Scholar]
  42. 42.
    Yu H, Tylinski M, Guiseppi-Elie A, Ediger M, Richert R. 2015. Suppression of β relaxation in vapor-deposited ultrastable glasses. Phys. Rev. Lett. 115:185501
    [Google Scholar]
  43. 43.
    Queen D, Liu X, Karel J, Metcalf T, Hellman F. 2013. Excess specific heat in evaporated amorphous silicon. Phys. Rev. Lett. 110:135901
    [Google Scholar]
  44. 44.
    Queen D, Liu X, Karel J, Jacks H, Metcalf T, Hellman F. 2015. Two-level systems in evaporated amorphous silicon. J. Non-Cryst. Solids 426:19–24
    [Google Scholar]
  45. 45.
    Ràfols-Ribé J, Will PA, Hänisch C, Gonzalez-Silveira M, Lenk S et al. 2018. High-performance organic light-emitting diodes comprising ultrastable glass layers. Sci. Adv. 4:5eaar8332
    [Google Scholar]
  46. 46.
    Guo Y, Morozov A, Schneider D, Chung JW, Zhang C et al. 2012. Ultrastable nanostructured polymer glasses. Nat. Mater. 11:4337–43
    [Google Scholar]
  47. 47.
    Yoon H, Koh YP, Simon SL, McKenna GB. 2017. An ultrastable polymeric glass: amorphous fluoropolymer with extreme fictive temperature reduction by vacuum pyrolysis. Macromolecules 50:114562–74
    [Google Scholar]
  48. 48.
    Raegen AN, Yin J, Zhou Q, Forrest JA. 2020. Ultrastable monodisperse polymer glass formed by physical vapour deposition. Nat. Mater. 19:101110–13
    [Google Scholar]
  49. 49.
    Lüttich M, Giordano VM, Le Floch S, Pineda E, Zontone F et al. 2018. Anti-aging in ultrastable metallic glasses. Phys. Rev. Lett. 120:135504
    [Google Scholar]
  50. 50.
    Zhang A, Jin Y, Liu T, Stephens RB, Fakhraai Z. 2020. Polyamorphism of vapor-deposited amorphous selenium in response to light. PNAS 117:3924076–81
    [Google Scholar]
  51. 51.
    Moore AR, Huang G, Wolf S, Walsh PJ, Fakhraai Z, Riggleman RA. 2019. Effects of microstructure formation on the stability of vapor-deposited glasses. PNAS 116:135937–42
    [Google Scholar]
  52. 52.
    Berthier L, Charbonneau P, Flenner E, Zamponi F. 2017. Origin of ultrastability in vapor-deposited glasses. Phys. Rev. Lett. 119:188002
    [Google Scholar]
  53. 53.
    Chua Y, Ahrenberg M, Tylinski M, Ediger M, Schick C. 2015. How much time is needed to form a kinetically stable glass? AC calorimetric study of vapor-deposited glasses of ethylcyclohexane. J. Chem. Phys. 142:054506
    [Google Scholar]
  54. 54.
    Sepúlveda A, Tylinski M, Guiseppi-Elie A, Richert R, Ediger M. 2014. Role of fragility in the formation of highly stable organic glasses. Phys. Rev. Lett. 113:045901
    [Google Scholar]
  55. 55.
    Whitaker KR, Scifo DJ, Ediger M, Ahrenberg M, Schick C. 2013. Highly stable glasses of cis-decalin and cis/trans-decalin mixtures. J. Phys. Chem. B 117:4212724–33
    [Google Scholar]
  56. 56.
    Chua Y, Tylinski M, Tatsumi S, Ediger M, Schick C. 2016. Glass transition and stable glass formation of tetrachloromethane. J. Chem. Phys. 144:244503
    [Google Scholar]
  57. 57.
    Yokoyama D. 2011. Molecular orientation in small-molecule organic light-emitting diodes. J. Mater. Chem. 21:4819187–202
    [Google Scholar]
  58. 58.
    Bishop C, Chen Z, Toney MF, Bock H, Yu L, Ediger M. 2021. Using deposition rate and substrate temperature to manipulate liquid crystal–like order in a vapor-deposited hexagonal columnar glass. J. Phys. Chem. B 125:102761–70
    [Google Scholar]
  59. 59.
    Bishop C, Bagchi K, Toney MF, Ediger MD. 2022. Vapor deposition rate modifies anisotropic glassy structure of an anthracene-based organic semiconductor. J. Chem. Phys. 156:014504
    [Google Scholar]
  60. 60.
    Ràfols-Ribé J, Dettori R, Ferrando-Villalba P, Gonzalez-Silveira M, Abad L et al. 2018. Evidence of thermal transport anisotropy in stable glasses of vapor deposited organic molecules. Phys. Rev. Mater. 2:035603
    [Google Scholar]
  61. 61.
    Liu T, Exarhos AL, Alguire EC, Gao F, Salami-Ranjbaran E et al. 2017. Birefringent stable glass with predominantly isotropic molecular orientation. Phys. Rev. Lett. 119:095502
    [Google Scholar]
  62. 62.
    Kauzmann W. 1948. The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43:2219–56
    [Google Scholar]
  63. 63.
    Berthier L, Biroli G. 2011. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83:2587–645
    [Google Scholar]
  64. 64.
    Parisi G, Zamponi F. 2010. Mean-field theory of hard sphere glasses and jamming. Rev. Mod. Phys. 82:1789–845
    [Google Scholar]
  65. 65.
    Mirigian S, Schweizer KS. 2015. Theory of activated glassy relaxation, mobility gradients, surface diffusion, and vitrification in free standing thin films. J. Chem. Phys. 143:244705
    [Google Scholar]
  66. 66.
    Beasley MS, Bishop C, Kasting BJ, Ediger MD. 2019. Vapor-deposited ethylbenzene glasses approach “ideal glass” density. J. Phys. Chem. Lett. 10:144069–75
    [Google Scholar]
  67. 67.
    Yoon H, McKenna GB. 2018. Testing the paradigm of an ideal glass transition: dynamics of an ultrastable polymeric glass. Sci. Adv. 4:12eaau5423
    [Google Scholar]
  68. 68.
    Bishop C, Thelen JL, Gann E, Toney MF, Yu L et al. 2019. Vapor deposition of a nonmesogen prepares highly structured organic glasses. PNAS 116:4321421–26
    [Google Scholar]
  69. 69.
    Jin Y, Zhang A, Wolf SE, Govind S, Moore AR et al. 2021. Glasses denser than the supercooled liquid. PNAS 118:31e2100738118
    [Google Scholar]
  70. 70.
    Fakhraai Z, Forrest J. 2008. Measuring the surface dynamics of glassy polymers. Science 319:5863600–4
    [Google Scholar]
  71. 71.
    Zhu L, Brian C, Swallen S, Straus P, Ediger M, Yu L 2011. Surface self-diffusion of an organic glass. Phys. Rev. Lett. 106:256103
    [Google Scholar]
  72. 72.
    Cao C, Lu Y, Bai H, Wang W. 2015. High surface mobility and fast surface enhanced crystallization of metallic glass. Appl. Phys. Lett. 107:141606
    [Google Scholar]
  73. 73.
    Tian H, Xu Q, Zhang H, Priestley RD, Zuo B. 2022. Surface dynamics of glasses. Appl. Phys. Rev. 9:011316
    [Google Scholar]
  74. 74.
    Brian CW, Zhu L, Yu L 2014. Effect of bulk aging on surface diffusion of glasses. J. Chem. Phys. 140:054509
    [Google Scholar]
  75. 75.
    Chen Y, Zhu M, Laventure A, Lebel O, Ediger M, Yu L 2017. Influence of hydrogen bonding on the surface diffusion of molecular glasses: comparison of three triazines. J. Phys. Chem. B 121:297221–27
    [Google Scholar]
  76. 76.
    Samanta S, Huang G, Gao G, Zhang Y, Zhang A et al. 2019. Exploring the importance of surface diffusion in stability of vapor-deposited organic glasses. J. Phys. Chem. B 123:184108–17
    [Google Scholar]
  77. 77.
    Wolf SE, Liu T, Govind S, Zhao H, Huang G et al. 2021. Design of a homologous series of molecular glassformers. J. Chem. Phys. 155:224503
    [Google Scholar]
  78. 78.
    Leon-Gutierrez E, Sepúlveda A, Garcia G, Clavaguera-Mora MT, Rodríguez-Viejo J. 2010. Stability of thin film glasses of toluene and ethylbenzene formed by vapor deposition: an in situ nanocalorimetric study. Phys. Chem. Chem. Phys. 12:4414693–98
    [Google Scholar]
  79. 79.
    Leon-Gutierrez E, Sepúlveda A, Garcia G, Clavaguera-Mora MT, Rodríguez-Viejo J. 2016. Correction: Stability of thin film glasses of toluene and ethylbenzene formed by vapor deposition: an in situ nanocalorimetric study. Phys. Chem. Chem. Phys. 18:118244–45
    [Google Scholar]
  80. 80.
    Dawson K, Kopff LA, Zhu L, McMahon RJ, Yu L et al. 2012. Molecular packing in highly stable glasses of vapor-deposited tris-naphthylbenzene isomers. J. Chem. Phys. 136:094505
    [Google Scholar]
  81. 81.
    Laventure A, Gujral A, Lebel O, Pellerin C, Ediger M. 2017. Influence of hydrogen bonding on the kinetic stability of vapor-deposited glasses of triazine derivatives. J. Phys. Chem. B 121:102350–58
    [Google Scholar]
  82. 82.
    Ahrenberg M, Chua Y, Whitaker K, Huth H, Ediger M, Schick C. 2013. In situ investigation of vapor-deposited glasses of toluene and ethylbenzene via alternating current chip nanocalorimetry. J. Chem. Phys. 138:024501
    [Google Scholar]
  83. 83.
    Tylinski M, Chua Y, Beasley M, Schick C, Ediger M. 2016. Vapor-deposited alcohol glasses reveal a wide range of kinetic stability. J. Chem. Phys. 145:174506
    [Google Scholar]
  84. 84.
    Pye JE, Rohald KA, Baker EA, Roth CB. 2010. Physical aging in ultrathin polystyrene films: evidence of a gradient in dynamics at the free surface and its connection to the glass transition temperature reductions. Macromolecules 43:198296–303
    [Google Scholar]
  85. 85.
    Tylinski M, Beasley M, Chua Y, Schick C, Ediger M. 2017. Limited surface mobility inhibits stable glass formation for 2-ethyl-1-hexanol. J. Chem. Phys. 146:203317
    [Google Scholar]
  86. 86.
    Bishop C, Gujral A, Toney MF, Yu L, Ediger MD 2019. Vapor-deposited glass structure determined by deposition rate–substrate temperature superposition principle. J. Phys. Chem. Lett. 10:133536–42
    [Google Scholar]
  87. 87.
    Bishop C, Li Y, Toney MF, Yu L, Ediger M. 2020. Molecular orientation for vapor-deposited organic glasses follows rate–temperature superposition: the case of posaconazole. J. Phys. Chem. B 124:122505–13
    [Google Scholar]
  88. 88.
    Fakhraai Z, Forrest JA. 2005. Probing slow dynamics in supported thin polymer films. Phys. Rev. Lett. 95:025701
    [Google Scholar]
  89. 89.
    Glor EC, Fakhraai Z. 2014. Facilitation of interfacial dynamics in entangled polymer films. J. Chem. Phys. 141:194505
    [Google Scholar]
  90. 90.
    Gabriel JP, Riechers B, Thoms E, Guiseppi-Elie A, Ediger MD, Richert R. 2021. Polyamorphism in vapor-deposited 2-methyltetrahydrofuran: a broadband dielectric relaxation study. J. Chem. Phys. 154:024502
    [Google Scholar]
  91. 91.
    Lo C, Wan JT, Yu K 2001. Geometric anisotropic effects on local field distribution: generalized Clausius–Mossotti relation. Comput. Phys. Commun. 142:1–3453–56
    [Google Scholar]
  92. 92.
    Magnussen O, Ocko B, Regan M, Penanen K, Pershan PS, Deutsch M. 1995. X-ray reflectivity measurements of surface layering in liquid mercury. Phys. Rev. Lett. 74:224444–47
    [Google Scholar]
  93. 93.
    Sloutskin E, Ocko BM, Tamam L, Kuzmenko I, Gog T, Deutsch M. 2005. Surface layering in ionic liquids: an X-ray reflectivity study. J. Am. Chem. Soc. 127:217796–804
    [Google Scholar]
  94. 94.
    Chattopadhyay S, Uysal A, Stripe B, Evmenenko G, Ehrlich S et al. 2009. Structural signal of a dynamic glass transition. Phys. Rev. Lett. 103:175701
    [Google Scholar]
  95. 95.
    Sun G, Saw S, Douglass I, Harrowell P. 2017. Structural origin of enhanced dynamics at the surface of a glassy alloy. Phys. Rev. Lett. 119:245501
    [Google Scholar]
  96. 96.
    Zhang Y, Glor EC, Li M, Liu T, Wahid K et al. 2016. Long-range correlated dynamics in ultra-thin molecular glass films. J. Chem. Phys. 145:114502
    [Google Scholar]
  97. 97.
    Zhang Y, Woods CN, Alvarez M, Jin Y, Riggleman RA, Fakhraai Z. 2018. Effect of substrate interactions on the glass transition and length scale of correlated dynamics in ultra-thin molecular glass films. J. Chem. Phys. 149:184902
    [Google Scholar]
  98. 98.
    Roth CB. 2021. Polymers under nanoconfinement: Where are we now in understanding local property changes?. Chem. Soc. Rev. 50:8050–66
    [Google Scholar]
  99. 99.
    Glor EC, Angrand GV, Fakhraai Z. 2017. Exploring the broadening and the existence of two glass transitions due to competing interfacial effects in thin, supported polymer films. J. Chem. Phys. 146:203330
    [Google Scholar]
  100. 100.
    Kasavan BL, Baglay RR, Roth CB. 2018. Local glass transition temperature Tg(z) profile in polystyrene next to polybutadiene with and without plasticization effects. Macromol. Chem. Phys. 219:31700328
    [Google Scholar]
  101. 101.
    Sepúlveda A, Swallen SF, Ediger MD. 2013. Manipulating the properties of stable organic glasses using kinetic facilitation. J. Chem. Phys. 138:12A517
    [Google Scholar]
  102. 102.
    Léonard S, Harrowell P. 2010. Macroscopic facilitation of glassy relaxation kinetics: ultrastable glass films with frontlike thermal response. J. Chem. Phys. 133:244502
    [Google Scholar]
  103. 103.
    Rodríguez-Tinoco C, Gonzalez-Silveira M, Ràfols-Ribé J, Vila-Costa A, Martinez-Garcia JC, Rodríguez-Viejo J. 2019. Surface–bulk interplay in vapor-deposited glasses: crossover length and the origin of front transformation. Phys. Rev. Lett. 123:155501
    [Google Scholar]
  104. 104.
    Ràfols-Ribé J, Vila-Costa A, Rodríguez-Tinoco C, Lopeandía AF, Rodríguez-Viejo J, Gonzalez-Silveira M. 2018. Kinetic arrest of front transformation to gain access to the bulk glass transition in ultrathin films of vapour-deposited glasses. Phys. Chem. Chem. Phys. 20:4729989–95
    [Google Scholar]
  105. 105.
    Malshe R, Ediger M, Yu L, de Pablo J. 2011. Evolution of glassy gratings with variable aspect ratios under surface diffusion. J. Chem. Phys. 134:194704
    [Google Scholar]
  106. 106.
    Zhang Y, Potter R, Zhang W, Fakhraai Z. 2016. Using tobacco mosaic virus to probe enhanced surface diffusion of molecular glasses. Soft Matter 12:449115–20
    [Google Scholar]
  107. 107.
    Cao C, Yu L, Perepezko J 2020. Surface dynamics measurement on a gold based metallic glass. Appl. Phys. Lett. 116:231601
    [Google Scholar]
  108. 108.
    Chen Y, Zhang W, Yu L 2016. Hydrogen bonding slows down surface diffusion of molecular glasses. J. Phys. Chem. B 120:328007–15
    [Google Scholar]
  109. 109.
    Brian CW, Yu L 2013. Surface self-diffusion of organic glasses. J. Phys. Chem. A 117:5013303–9
    [Google Scholar]
  110. 110.
    Zhang W, Brian CW, Yu L 2015. Fast surface diffusion of amorphous o-terphenyl and its competition with viscous flow in surface evolution. J. Phys. Chem. B 119:155071–78
    [Google Scholar]
  111. 111.
    Ruan S, Zhang W, Sun Y, Ediger M, Yu L 2016. Surface diffusion and surface crystal growth of tris-naphthyl benzene glasses. J. Chem. Phys. 145:064503
    [Google Scholar]
  112. 112.
    Mapes MK, Swallen SF, Ediger M. 2006. Self-diffusion of supercooled o-terphenyl near the glass transition temperature. J. Phys. Chem. B 110:1507–11
    [Google Scholar]
  113. 113.
    Swallen SF, Ediger M. 2011. Self-diffusion of the amorphous pharmaceutical indomethacin near Tg. Soft Matter 7:2110339–44
    [Google Scholar]
  114. 114.
    Swallen SF, Traynor K, McMahon RJ, Ediger M, Mates TE. 2009. Self-diffusion of supercooled tris-naphthylbenzene. J. Phys. Chem. B 113:144600–8
    [Google Scholar]
  115. 115.
    Liu J, Hwu E, Bannow J, Grohganz H, Rades T. 2022. Impact of molecular surface diffusion on the physical stability of co-amorphous systems. Mol. Pharm. 19:41183–90
    [Google Scholar]
  116. 116.
    Ngai K, Capaccioli S. 2021. Reconsidering the relation of the JG β-relaxation to the α-relaxation and surface diffusion in ethylcyclohexane. J. Non-Cryst. Solids X 11:100070
    [Google Scholar]
  117. 117.
    Zhang Y, Fakhraai Z. 2017. Decoupling of surface diffusion and relaxation dynamics of molecular glasses. PNAS 114:194915–19
    [Google Scholar]
  118. 118.
    Qi D, Fakhraai Z, Forrest J. 2008. Substrate and chain size dependence of near surface dynamics of glassy polymers. Phys. Rev. Lett. 101:096101
    [Google Scholar]
  119. 119.
    Teichroeb J, Forrest J. 2003. Direct imaging of nanoparticle embedding to probe viscoelasticity of polymer surfaces. Phys. Rev. Lett. 91:016104
    [Google Scholar]
  120. 120.
    Qi D, Ilton M, Forrest J. 2011. Measuring surface and bulk relaxation in glassy polymers. Eur. Phys. J. E 34:656
    [Google Scholar]
  121. 121.
    Hao Z, Ghanekarade A, Zhu N, Randazzo K, Kawaguchi D et al. 2021. Mobility gradients yield rubbery surfaces on top of polymer glasses. Nature 596:7872372–76
    [Google Scholar]
  122. 122.
    Yang Z, Fujii Y, Lee FK, Lam CH, Tsui OK. 2010. Glass transition dynamics and surface layer mobility in unentangled polystyrene films. Science 328:59861676–79
    [Google Scholar]
  123. 123.
    Chai Y, Salez T, McGraw JD, Benzaquen M, Dalnoki-Veress K et al. 2014. A direct quantitative measure of surface mobility in a glassy polymer. Science 343:6174994–99
    [Google Scholar]
  124. 124.
    Paeng K, Swallen SF, Ediger M. 2011. Direct measurement of molecular motion in freestanding polystyrene thin films. J. Am. Chem. Soc. 133:228444–47
    [Google Scholar]
  125. 125.
    Stevenson JD, Wolynes PG. 2008. On the surface of glasses. J. Chem. Phys. 129:234514
    [Google Scholar]
  126. 126.
    Capaccioli S, Ngai K, Paluch M, Prevosto D. 2012. Mechanism of fast surface self-diffusion of an organic glass. Phys. Rev. E 86:051503
    [Google Scholar]
  127. 127.
    Chatterjee D, Annamareddy A, Ketkaew J, Schroers J, Morgan D, Voyles PM. 2021. Fast surface dynamics on a metallic glass nanowire. ACS Nano 15:711309–16
    [Google Scholar]
  128. 128.
    Ashtekar S, Scott G, Lyding J, Gruebele M. 2010. Direct visualization of two-state dynamics on metallic glass surfaces well below Tg. J. Phys. Chem. Lett. 1:131941–45
    [Google Scholar]
  129. 129.
    Ashtekar S, Lyding J, Gruebele M. 2012. Temperature-dependent two-state dynamics of individual cooperatively rearranging regions on a glass surface. Phys. Rev. Lett. 109:166103
    [Google Scholar]
  130. 130.
    Ashtekar S, Nguyen D, Zhao K, Lyding J, Wang W, Gruebele M 2012. An obligatory glass surface. J. Chem. Phys. 137:141102
    [Google Scholar]
  131. 131.
    Wingert MC, Kwon S, Cai S, Chen R 2016. Fluid-like surface layer and its flow characteristics in glassy nanotubes. Nano Lett. 16:127545–50
    [Google Scholar]
  132. 132.
    Zhang P, Maldonis JJ, Liu Z, Schroers J, Voyles PM. 2018. Spatially heterogeneous dynamics in a metallic glass forming liquid imaged by electron correlation microscopy. Nat. Commun. 9:1129
    [Google Scholar]
  133. 133.
    Cao C, Huang K, Shi J, Zheng D, Wang W et al. 2019. Liquid-like behaviours of metallic glassy nanoparticles at room temperature. Nat. Commun. 10:1966
    [Google Scholar]
  134. 134.
    Zhai Y, Luo P, Z Y 2021. Role of phonon softening induced by anisotropic fluctuations in the enhanced mobility at free glassy surfaces. Phys. Rev. B 103:085424
    [Google Scholar]
  135. 135.
    Keddie JL, Jones RA, Cory RA. 1994. Size-dependent depression of the glass transition temperature in polymer films. Europhys. Lett. 27:159
    [Google Scholar]
  136. 136.
    Forrest J, Dalnoki-Veress K, Stevens J, Dutcher J. 1996. Effect of free surfaces on the glass transition temperature of thin polymer films. Phys. Rev. Lett. 77:102002–5
    [Google Scholar]
  137. 137.
    Li Y, Sun Y, Lu Z, Li M, Bai H, Wang W. 2017. Size effect on dynamics and glass transition in metallic liquids and glasses. J. Chem. Phys. 146:224502
    [Google Scholar]
  138. 138.
    Sharp J, Forrest JA. 2003. Free surfaces cause reductions in the glass transition temperature of thin polystyrene films. Phys. Rev. Lett. 91:235701
    [Google Scholar]
  139. 139.
    Bell RC, Wang H, Iedema MJ, Cowin JP. 2003. Nanometer-resolved interfacial fluidity. J. Am. Chem. Soc. 125:175176–85
    [Google Scholar]
  140. 140.
    Garca-Coln L, Del Castillo L, Goldstein P 1989. Theoretical basis for the Vogel-Fulcher-Tammann equation. Phys. Rev. B 40:107040–44
    [Google Scholar]
  141. 141.
    Ghanekarade A, Phan AD, Schweizer KS, Simmons DS. 2021. Nature of dynamic gradients, glass formation, and collective effects in ultrathin freestanding films. PNAS 118:31e2104398118
    [Google Scholar]
  142. 142.
    Thoms E, Gabriel J, Guiseppi-Elie A, Ediger M, Richert R. 2020. In situ observation of fast surface dynamics during the vapor-deposition of a stable organic glass. Soft Matter 16:4810860–64
    [Google Scholar]
  143. 143.
    Cao X, Zhang H, Han Y. 2017. Release of free-volume bubbles by cooperative-rearrangement regions during the deposition growth of a colloidal glass. Nat. Commun. 8:362
    [Google Scholar]
  144. 144.
    Ramos SLLM, Chigira AK, Oguni M. 2015. Devitrification properties of vapor-deposited ethylcyclohexane glasses and interpretation of the molecular mechanism for formation of vapor-deposited glasses. J. Phys. Chem. B 119:104076–83
    [Google Scholar]
  145. 145.
    Mangalara JH, Marvin MD, Simmons DS. 2016. Three-layer model for the emergence of ultrastable glasses from the surfaces of supercooled liquids. J. Phys. Chem. B 120:214861–65
    [Google Scholar]
  146. 146.
    Sinha SK, Jiang Z, Lurio LB. 2014. X-ray photon correlation spectroscopy studies of surfaces and thin films. Adv. Mater. 26:467764–85
    [Google Scholar]
  147. 147.
    Han Y, Huang X, Rohrbach AC, Roth CB. 2020. Comparing refractive index and density changes with decreasing film thickness in thin supported films across different polymers. J. Chem. Phys. 153:044902
    [Google Scholar]
  148. 148.
    Root SE, Gao R, Abrahamsson CK, Kodaimati MS, Ge S, Whitesides GM. 2021. Estimating the density of thin polymeric films using magnetic levitation. ACS Nano 15:1015676–86
    [Google Scholar]
  149. 149.
    Mandanici A, Huang W, Cutroni M, Richert R 2008. On the features of the dielectric response of supercooled ethylcyclohexane. Philos. Mag. 88:33-353961–71
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-042018-052708
Loading
/content/journals/10.1146/annurev-physchem-042018-052708
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error