1932

Abstract

This review examines low-frequency vibrational modes of proteins and their coupling to enzyme catalytic sites. That protein motions are critical to enzyme function is clear, but the kinds of motions present in proteins and how they are involved in function remain unclear. Several models of enzyme-catalyzed reaction suggest that protein dynamics may be involved in the chemical step of the catalyzed reaction, but the evidence in support of such models is indirect. Spectroscopic studies of low-frequency protein vibrations consistently show that there are underdamped modes of the protein with frequencies in the tens of wavenumbers where overdamped behavior would be expected. Recent studies even show that such underdamped vibrations modulate enzyme active sites. These observations suggest that increasingly sophisticated spectroscopic methods will be able to unravel the link between low-frequency protein vibrations and enzyme function.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-050317-014308
2020-04-20
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/physchem/71/1/annurev-physchem-050317-014308.html?itemId=/content/journals/10.1146/annurev-physchem-050317-014308&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Jencks WP. 1987. Catalysis in Chemistry and Enzymology New York: Dover
  2. 2. 
    Benkovic SJ, Hammes-Schiffer S. 2006. Enzyme motions inside and out. Science 312:208–9
    [Google Scholar]
  3. 3. 
    Hammes-Schiffer S, Benkovic SJ. 2006. Relating protein motion to catalysis. Annu. Rev. Biochem. 75:519–41
    [Google Scholar]
  4. 4. 
    Schramm VL, Schwartz SD. 2018. Promoting vibrations and the function of enzymes. Emerging theoretical and experimental convergence. Biochemistry 57:3299–308
    [Google Scholar]
  5. 5. 
    Schwartz SD, Schramm VL. 2009. Enzymatic transition states and dynamic motion in barrier crossing. Nat. Chem. Biol. 5:552–59
    [Google Scholar]
  6. 6. 
    Bahar I, Lezon TR, Yang LW, Eyal E 2010. Global dynamics of proteins: bridging between structure and function. Annu. Rev. Biophys. 39:23–42
    [Google Scholar]
  7. 7. 
    Villali J, Kern D. 2010. Choreographing an enzyme's dance. Curr. Opin. Chem. Biol. 14:636–43
    [Google Scholar]
  8. 8. 
    Kern D, Eisenmesser EZ, Wolf-Watz M 2005. Enzyme dynamics during catalysis measured by NMR spectroscopy. Methods Enzymol 394:507–24
    [Google Scholar]
  9. 9. 
    Singh P, Abeysinghe T, Kohen A 2015. Linking protein motion to enzyme catalysis. Molecules 20:1192–209
    [Google Scholar]
  10. 10. 
    Cheatum C, Kohen A. 2013. Relationship of femtosecond–picosecond dynamics to enzyme-catalyzed H-transfer. Top. Curr. Chem. 337:1–39
    [Google Scholar]
  11. 11. 
    Klinman JP. 2015. Dynamically achieved active site precision in enzyme catalysis. Acc. Chem. Res. 48:449–56
    [Google Scholar]
  12. 12. 
    Klinman JP, Kohen A. 2013. Hydrogen tunneling links protein dynamics to enzyme catalysis. Annu. Rev. Biochem. 82:471–96
    [Google Scholar]
  13. 13. 
    Delgado M, Gorlich S, Longbotham JE, Scrutton NS, Hay S et al. 2017. Convergence of theory and experiment on the role of preorganization, quantum tunneling, and enzyme motions into flavoenzyme-catalyzed hydride transfer. ACS Catal 7:3190–98
    [Google Scholar]
  14. 14. 
    Hay S, Scrutton NS. 2012. Good vibrations in enzyme-catalysed reactions. Nat. Chem. 4:161–68
    [Google Scholar]
  15. 15. 
    Kohen A. 2015. Role of dynamics in enzyme catalysis: substantial versus semantic controversies. Acc. Chem. Res. 48:466–73
    [Google Scholar]
  16. 16. 
    Pudney CR, Guerriero A, Baxter NJ, Johannissen LO, Waltho JP et al. 2013. Fast protein motions are coupled to enzyme H-transfer reactions. J. Am. Chem. Soc. 135:2512–17
    [Google Scholar]
  17. 17. 
    Schwartz SD. 2013. Protein dynamics and the enzymatic reaction coordinate. Top. Curr. Chem. 337:189–208
    [Google Scholar]
  18. 18. 
    Klinman JP. 2006. The role of tunneling in enzyme catalysis of C-H activation. Biochim. Biophys. Acta Bioenerg. 1757:981–87
    [Google Scholar]
  19. 19. 
    Kohen A, Klinman JP. 1999. Hydrogen tunneling in biology. Chem. Biol. 6:R191–98
    [Google Scholar]
  20. 20. 
    Bahnson BJ, Klinman JP. 1995. Hydrogen tunneling in enzyme catalysis. Methods Enzymol 249:373–97
    [Google Scholar]
  21. 21. 
    Cha Y, Murray CJ, Klinman JP 1989. Hydrogen tunneling in enzyme reactions. Science 243:1325–30
    [Google Scholar]
  22. 22. 
    Kuznetsov AM, Ulstrup J. 1999. Proton and hydrogen atom tunnelling in hydrolytic and redox enzyme catalysis. Can. J. Chem. 77:1085–96
    [Google Scholar]
  23. 23. 
    Kiefer PM, Hynes JT. 2010. Theoretical aspects of tunneling proton transfer reactions in a polar environment. J. Phys. Org. Chem. 23:632–46
    [Google Scholar]
  24. 24. 
    Kiefer PM, Hynes JT. 2004. Kinetic isotope effects for nonadiabatic proton transfer reactions in a polar environment. 2. Comparison with an electronically diabatic description. J. Phys. Chem. A 108:11809–18
    [Google Scholar]
  25. 25. 
    Kiefer PM, Hynes JT. 2004. Kinetic isotope effects for nonadiabatic proton transfer reactions in a polar environment. 1. Interpretation of tunneling kinetic isotopic effects. J. Phys. Chem. A 108:11793–808
    [Google Scholar]
  26. 26. 
    Kiefer PM, Hynes JT. 2002. Nonlinear free energy relations for adiabatic proton transfer reactions in a polar environment. II. Inclusion of the hydrogen bond vibration. J. Phys. Chem. A 106:1850–61
    [Google Scholar]
  27. 27. 
    Borgis D, Hynes JT. 1993. Dynamical theory of proton tunneling transfer rates in solution: general formulation. Chem. Phys. 170:315–46
    [Google Scholar]
  28. 28. 
    Borgis DC, Lee SY, Hynes JT 1989. A dynamical theory of nonadiabatic proton and hydrogen atom transfer reaction rates in solution. Chem. Phys. Lett. 162:19–26
    [Google Scholar]
  29. 29. 
    Meyer MP, Klinman JP. 2005. Modeling temperature dependent kinetic isotope effects for hydrogen transfer in a series of soybean lipoxygenase mutants: the effect of anharmonicity upon transfer distance. Chem. Phys. 319:283–96
    [Google Scholar]
  30. 30. 
    Roston D, Cheatum CM, Kohen A 2012. Hydrogen donor-acceptor fluctuations from kinetic isotope effects: a phenomenological model. Biochemistry 51:6860–70
    [Google Scholar]
  31. 31. 
    Hammes-Schiffer S, Tully JC. 1995. Vibrationally enhanced proton transfer. J. Phys. Chem. 99:5793–97
    [Google Scholar]
  32. 32. 
    Hammes-Schiffer S, Tully JC. 1994. Proton transfer in solution: molecular dynamics with quantum transitions. J. Chem. Phys. 101:4657–67
    [Google Scholar]
  33. 33. 
    Marcus RA, Sutin N. 1985. Electron transfer in chemistry and biology. Biochim. Biophys. Acta 811:265–322
    [Google Scholar]
  34. 34. 
    Kholodar SA, Ghosh AK, Kohen A 2017. Measurement of enzyme isotope effects. Methods Enzymol 596:43–83
    [Google Scholar]
  35. 35. 
    Guo Q, Gakhar L, Wickersham K, Francis K, Vardi-Kilshtain A et al. 2016. Structural and kinetic studies of formate dehydrogenase from Candida boidinii. . Biochemistry 55:2760–71
    [Google Scholar]
  36. 36. 
    Singh P, Islam Z, Kohen A 2016. Examinations of the chemical step in enzyme catalysis. Methods Enzymol 577:287–318
    [Google Scholar]
  37. 37. 
    Singh P, Francis K, Kohen A 2015. Network of remote and local protein dynamics in dihydrofolate reductase catalysis. ACS Catal 5:3067–73
    [Google Scholar]
  38. 38. 
    Singh P, Sen A, Francis K, Kohen A 2014. Extension and limits of the network of coupled motions correlated to hydride transfer in dihydrofolate reductase. J. Am. Chem. Soc. 136:2575–82
    [Google Scholar]
  39. 39. 
    Klinman JP, Kohen A. 2014. Evolutionary aspects of enzyme dynamics. J. Biol. Chem. 289:30205–12
    [Google Scholar]
  40. 40. 
    Abeysinghe T, Kohen A. 2015. Role of long-range protein dynamics in different thymidylate synthase catalyzed reactions. Int. J. Mol. Sci. 16:7304–19
    [Google Scholar]
  41. 41. 
    Klinman JP, Offenbacher AR, Hu SS 2017. Origins of enzyme catalysis: experimental findings for C-H activation, new models, and their relevance to prevailing theoretical constructs. J. Am. Chem. Soc. 139:18409–27
    [Google Scholar]
  42. 42. 
    Klinman JP. 2010. Control of active-site compression. Nat. Chem. 2:907–9
    [Google Scholar]
  43. 43. 
    Oyeyemi OA, Sours KM, Lee T, Resing KA, Ahn NG, Klinman JP 2010. Temperature dependence of protein motions in a thermophilic dihydrofolate reductase and its relationship to catalytic efficiency. PNAS 107:10074–79
    [Google Scholar]
  44. 44. 
    Klinman JP. 2009. An integrated model for enzyme catalysis emerges from studies of hydrogen tunneling. Chem. Phys. Lett. 471:179–93
    [Google Scholar]
  45. 45. 
    Meyer MP, Tomchick DR, Klinman JP 2008. Enzyme structure and dynamics affect hydrogen tunneling: the impact of a remote side chain (1553) in soybean lipoxygenase-1. PNAS 105:1146–51
    [Google Scholar]
  46. 46. 
    Klinman JP. 2007. Linking protein dynamics to function. FASEB J 21:A645
    [Google Scholar]
  47. 47. 
    Liang ZX, Lee T, Resing KA, Ahn NG, Klinman JP 2004. Thermal-activated protein mobility and its correlation with catalysis in thermophilic alcohol dehydrogenase. PNAS 101:9556–61
    [Google Scholar]
  48. 48. 
    Knapp MJ, Rickert K, Klinman JP 2002. Temperature-dependent isotope effects in soybean lipoxygenase-1: correlating hydrogen tunneling with protein dynamics. J. Am. Chem. Soc. 124:3865–74
    [Google Scholar]
  49. 49. 
    Luk LYP, Loveridge EJ, Allemann RK 2015. Protein motions and dynamic effects in enzyme catalysis. Phys. Chem. Chem. Phys. 17:30817–27
    [Google Scholar]
  50. 50. 
    Loveridge EJ, Behiry EM, Swanwick RS, Allemann RK 2009. Different reaction mechanisms for mesophilic and thermophilic dihydrofolate reductases. J. Am. Chem. Soc. 131:6926–27
    [Google Scholar]
  51. 51. 
    Agarwal PK, Billeter SR, Rajagopalan PTR, Benkovic SJ, Hammes-Schiffer S 2002. Network of coupled promoting motions in enzyme catalysis. PNAS 99:2794–99
    [Google Scholar]
  52. 52. 
    Ruiz-Pernia JJ, Behiry E, Luk LYP, Loveridge EJ, Tunon I et al. 2016. Minimization of dynamic effects in the evolution of dihydrofolate reductase. Chem. Sci. 7:3248–55
    [Google Scholar]
  53. 53. 
    Antoniou D, Caratzoulas S, Kalyanaraman C, Mincer JS, Schwartz SD 2002. Barrier passage and protein dynamics in enzymatically catalyzed reactions. Eur. J. Biochem. 269:3103–12
    [Google Scholar]
  54. 54. 
    Caratzoulas S, Mincer JS, Schwartz SD 2002. Identification of a protein-promoting vibration in the reaction catalyzed by horse liver alcohol dehydrogenase. J. Am. Chem. Soc. 124:3270–76
    [Google Scholar]
  55. 55. 
    Antoniou D, Schwartz SD. 2001. Internal enzyme motions as a source of catalytic activity: rate-promoting vibrations and hydrogen tunneling. J. Phys. Chem. B 105:5553–58
    [Google Scholar]
  56. 56. 
    Antoniou D, Abolfath MR, Schwartz SD 2004. Transition path sampling study of classical rate-promoting vibrations. J. Chem. Phys. 121:6442–47
    [Google Scholar]
  57. 57. 
    Bolhuis PG, Chandler D, Dellago C, Geissler PL 2002. Transition path sampling: throwing ropes over rough mountain passes, in the dark. Annu. Rev. Phys. Chem. 53:291–318
    [Google Scholar]
  58. 58. 
    Dellago C, Bolhuis PG, Chandler D 1998. Efficient transition path sampling: application to Lennard-Jones cluster rearrangements. J. Chem. Phys. 108:9236–45
    [Google Scholar]
  59. 59. 
    Dellago C, Bolhuis PG, Csajka FS, Chandler D 1998. Transition path sampling and the calculation of rate constants. J. Chem. Phys. 108:1964–77
    [Google Scholar]
  60. 60. 
    Davarifar A, Antoniou D, Schwartz SD 2011. The promoting vibration in human heart lactate dehydrogenase is a preferred vibrational channel. J. Phys. Chem. B 115:15439–44
    [Google Scholar]
  61. 61. 
    Wang Z, Antoniou D, Schwartz SD, Schramm VL 2016. Hydride transfer in DHFR by transition path sampling, kinetic isotope effects, and heavy enzyme studies. Biochemistry 55:157–66
    [Google Scholar]
  62. 62. 
    Wang Z, Singh P, Czekster CM, Kohen A, Schramm VL 2014. Protein mass-modulated effects in the catalytic mechanism of dihydrofolate reductase: beyond promoting vibrations. J. Am. Chem. Soc. 136:8333–41
    [Google Scholar]
  63. 63. 
    Antoniou D, Ge X, Schramm VL, Schwartz SD 2012. Mass modulation of protein dynamics associated with barrier crossing in purine nucleoside phosphorylase. J. Phys. Chem. Lett. 3:3538–44
    [Google Scholar]
  64. 64. 
    Silva RG, Murkin AS, Schramm VL 2011. Femtosecond dynamics coupled to chemical barrier crossing in a Born-Oppenheimer enzyme. PNAS 108:18661–65
    [Google Scholar]
  65. 65. 
    Ranasinghe C, Guo Q, Sapienza PJ, Lee AL, Quinn DM et al. 2017. Protein mass effects on formate dehydrogenase. J. Am. Chem. Soc. 139:17405–13
    [Google Scholar]
  66. 66. 
    Longbotham JE, Hardman SJO, Gorlich S, Scrutton NS, Hay S 2016. Untangling heavy protein and cofactor isotope effects on enzyme catalyzed hydride transfer. J. Am. Chem. Soc. 138:13693–99
    [Google Scholar]
  67. 67. 
    Sapienza PJ, Lee AL. 2010. Using NMR to study fast dynamics in proteins: methods and applications. Curr. Opin. Pharmacol. 10:723–30
    [Google Scholar]
  68. 68. 
    Palmer AG. 2015. Enzyme dynamics from NMR spectroscopy. Acc. Chem. Res. 48:457–65
    [Google Scholar]
  69. 69. 
    Palmer AG. 2004. NMR characterization of the dynamics of biomacromolecules. Chem. Rev. 104:3623–40
    [Google Scholar]
  70. 70. 
    Boehr DD, Dyson HJ, Wright PE 2006. An NMR perspective on enzyme dynamics. Chem. Rev. 106:3055–79
    [Google Scholar]
  71. 71. 
    Henzler-Wildman K, Kern D. 2007. Dynamic personalities of proteins. Nature 450:964–72
    [Google Scholar]
  72. 72. 
    Lipari G, Szabo A. 1982. Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104:4546–59
    [Google Scholar]
  73. 73. 
    Lipari G, Szabo A. 1982. Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules. 2. Analysis of experimental results. J. Am. Chem. Soc. 104:4559–70
    [Google Scholar]
  74. 74. 
    Painter PC, Mosher LE, Rhoads C 1982. Low-frequency modes in the Raman spectra of proteins. Biopolymers 21:1469–72
    [Google Scholar]
  75. 75. 
    Chou KC. 1988. Low-frequency collective motion in biomacromolecules and its biological functions. Biophys. Chem. 30:3–48
    [Google Scholar]
  76. 76. 
    Genzel L, Keilmann F, Martin TP, Winterling G, Yacoby Y et al. 1976. Low-frequency Raman spectra of lysozyme. Biopolymers 15:219–25
    [Google Scholar]
  77. 77. 
    Brown KG, Erfurth SC, Small EW, Peticolas WL 1972. Conformationally dependent low-frequency motions of proteins by laser Raman spectroscopy. PNAS 69:1467–69
    [Google Scholar]
  78. 78. 
    Lord RC, Yu NT. 1970. Laser-excited Raman spectroscopy of biomolecules: II. Native ribonuclease and α-chymotrypsin. J. Mol. Biol. 51:203–13
    [Google Scholar]
  79. 79. 
    Lord RC, Yu NT. 1970. Laser-excited Raman spectroscopy of biomolecules: I. Native lysozyme and its constituent amino acids. J. Mol. Biol. 50:509–24
    [Google Scholar]
  80. 80. 
    Tobin MC. 1968. Raman spectra of crystalline lysozyme, pepsin, and alpha chymotrypsin. Science 161:68–69
    [Google Scholar]
  81. 81. 
    Lacidogna G, Piana G, Bassani A, Carpinteri A 2017. Raman spectroscopy of Na/K-ATPase with special focus on low-frequency vibrations. Vib. Spectrosc. 92:298–301
    [Google Scholar]
  82. 82. 
    Carpinteri A, Lacidogna G, Piana G, Bassani A 2017. Terahertz mechanical vibrations in lysozyme: Raman spectroscopy versus modal analysis. J. Mol. Struct. 1139:222–30
    [Google Scholar]
  83. 83. 
    Xu Y, Havenith M. 2015. Perspective: watching low-frequency vibrations of water in biomolecular recognition by THz spectroscopy. J. Chem. Phys. 143:170901
    [Google Scholar]
  84. 84. 
    Falconer RJ, Markelz AG. 2012. Terahertz spectroscopic analysis of peptides and proteins. J. Infrared Millim. Terahertz Waves 33:973–88
    [Google Scholar]
  85. 85. 
    Xu J, Plaxco KW, Allen SJ 2006. Probing the collective vibrational dynamics of a protein in liquid water by terahertz absorption spectroscopy. Protein Sci 15:1175–81
    [Google Scholar]
  86. 86. 
    Markelz AG, Roitberg A, Heilweil EJ 2000. Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz. Chem. Phys. Lett. 320:42–48
    [Google Scholar]
  87. 87. 
    Charkhesht A, Regmi CK, Mitchell-Koch KR, Cheng S, Vinh NQ 2018. High-precision megahertz-to-terahertz dielectric spectroscopy of protein collective motions and hydration dynamics. J. Phys. Chem. B 122:6341–50
    [Google Scholar]
  88. 88. 
    Acbas G, Niessen KA, Snell EH, Markelz AG 2014. Optical measurements of long-range protein vibrations. Nat. Commun. 5:3076
    [Google Scholar]
  89. 89. 
    Urabe H, Sugawara Y, Ataka M, Rupprecht A 1998. Low-frequency Raman spectra of lysozyme crystals and oriented DNA films: dynamics of crystal water. Biophys. J. 74:1533–40
    [Google Scholar]
  90. 90. 
    Giraud G, Karolin J, Wynne K 2003. Low-frequency modes of peptides and globular proteins in solution observed by ultrafast OHD-RIKES spectroscopy. Biophys. J. 85:1903–13
    [Google Scholar]
  91. 91. 
    Giraud G, Wynne K. 2002. Time-resolved optical Kerr-effect spectroscopy of low-frequency dynamics in di-l-alanine, poly-l-alanine, and lysozyme in solution. J. Am. Chem. Soc. 124:12110–11
    [Google Scholar]
  92. 92. 
    Eaves JD, Fecko CJ, Stevens AL, Peng P, Tokmakoff A 2003. Polarization-selective femtosecond Raman spectroscopy of low-frequency motions in hydrated protein films. Chem. Phys. Lett. 376:20–25
    [Google Scholar]
  93. 93. 
    Turton DA, Senn HM, Harwood T, Lapthorn AJ, Ellis EM, Wynne K 2014. Terahertz underdamped vibrational motion governs protein-ligand binding in solution. Nat. Commun. 5:3999
    [Google Scholar]
  94. 94. 
    Vos MH, Martin JL. 1999. Femtosecond processes in proteins. Biochim. Biophys. Acta Bioenerg. 1411:1–20
    [Google Scholar]
  95. 95. 
    Gruia F, Kubo M, Ye X, Champion PM 2008. Investigations of vibrational coherence in the low-frequency region of ferric heme proteins. Biophys. J. 94:2252–68
    [Google Scholar]
  96. 96. 
    Rosca F, Kumar ATN, Ionascu D, Ye X, Demidov AA et al. 2002. Investigations of anharmonic low-frequency oscillations in heme proteins. J. Phys. Chem. A 106:3540–52
    [Google Scholar]
  97. 97. 
    Rosca F, Kumar ATN, Ye X, Sjodin T, Demidov AA, Champion PM 2000. Investigations of coherent vibrational oscillations in myoglobin. J. Phys. Chem. A 104:4280–90
    [Google Scholar]
  98. 98. 
    Zhu L, Li P, Huang M, Sage JT, Champion PM 1994. Real time observation of low frequency heme protein vibrations using femtosecond coherence spectroscopy. Phys. Rev. Lett. 72:301
    [Google Scholar]
  99. 99. 
    Ishizaki A, Fleming GR. 2012. Quantum coherence in photosynthetic light harvesting. Annu. Rev. Condens. Matter Phys. 3:333–61
    [Google Scholar]
  100. 100. 
    Cheng YC, Fleming GR. 2009. Dynamics of light harvesting in photosynthesis. Annu. Rev. Phys. Chem. 60:241–62
    [Google Scholar]
  101. 101. 
    Hoffman DP, Mathies RA. 2016. Femtosecond stimulated Raman exposes the role of vibrational coherence in condensed-phase photoreactivity. Acc. Chem. Res. 49:616–25
    [Google Scholar]
  102. 102. 
    Shim S, Mathies RA. 2008. Femtosecond Raman-induced Kerr effect spectroscopy. J. Raman Spectrosc. 39:1526–30
    [Google Scholar]
  103. 103. 
    Barends TRM, Foucar L, Ardevol A, Nass K, Aquila A et al. 2015. Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science 350:445–50
    [Google Scholar]
  104. 104. 
    Karunakaran V, Sun YH, Benabbas A, Champion PM 2014. Investigations of the low frequency modes of ferric cytochrome c using vibrational coherence spectroscopy. J. Phys. Chem. B 118:6062–70
    [Google Scholar]
  105. 105. 
    Sun Y, Benabbas A, Zeng W, Kleingardner JG, Bren KL, Champion PM 2014. Investigations of heme distortion, low-frequency vibrational excitations, and electron transfer in cytochrome c. . PNAS 111:6570–75
    [Google Scholar]
  106. 106. 
    Sun Y, Karunakaran V, Champion PM 2013. Investigations of the low-frequency spectral density of cytochrome c upon equilibrium unfolding. J. Phys. Chem. B 117:9615–25
    [Google Scholar]
  107. 107. 
    Zeng W, Sun Y, Benabbas A, Champion PM 2013. Investigations of ferric heme cyanide photodissociation in myoglobin and horseradish peroxidase. J. Phys. Chem. B 117:4042–49
    [Google Scholar]
  108. 108. 
    Karunakaran V, Denisov I, Sligar SG, Champion PM 2011. Investigation of the low frequency dynamics of heme proteins: native and mutant cytochrome P450cam and redox partner complexes. J. Phys. Chem. B 115:5665–77
    [Google Scholar]
  109. 109. 
    Karunakaran V, Benabbas A, Youn H, Champion PM 2011. Vibrational coherence spectroscopy of the heme domain in the CO-sensing transcriptional activator CooA. J. Am. Chem. Soc. 133:18816–27
    [Google Scholar]
  110. 110. 
    Karunakaran V, Benabbas A, Sun Y, Zhang Z, Singh S et al. 2010. Investigations of low-frequency vibrational dynamics and ligand binding kinetics of cystathionine β-synthase. J. Phys. Chem. B 114:3294–306
    [Google Scholar]
  111. 111. 
    Gruia F, Kubo M, Ye X, Ionascu D, Lu C et al. 2008. Coherence spectroscopy investigations of the low-frequency vibrations of heme: effects of protein-specific perturbations. J. Am. Chem. Soc. 130:5231–44
    [Google Scholar]
  112. 112. 
    Gruia F, Ye X, Ionascu D, Kubo M, Champion PM 2007. Low frequency spectral density of ferrous heme: perturbations induced by axial ligation and protein insertion. Biophys. J. 93:4404–13
    [Google Scholar]
  113. 113. 
    Bizzarri AR, Brida D, Santini S, Cerullo G, Cannistraro S 2012. Ultrafast pump-probe study of the excited-state charge-transfer dynamics in blue copper rusticyanin. J. Phys. Chem. B 116:4192–98
    [Google Scholar]
  114. 114. 
    Armstrong MR, Ogilvie JP, Cowan ML, Nagy AM, Miller RJD 2003. Observation of the cascaded atomic-to-global length scales driving protein motion. PNAS 100:4990–94
    [Google Scholar]
  115. 115. 
    Book LD, Arnett DC, Hu HB, Scherer NF 1998. Ultrafast pump-probe studies of excited-state charge-transfer dynamics in blue copper proteins. J. Phys. Chem. A 102:4350–59
    [Google Scholar]
  116. 116. 
    Deak J, Chin HL, Lewis CM, Miller RJD 1998. Ultrafast phase grating studies of heme proteins: observation of the low-frequency modes directing functionally important protein motions. J. Phys. Chem. B 102:6621–34
    [Google Scholar]
  117. 117. 
    Maiuri M, Delfino I, Cerullo G, Manzoni C, Pelmenschikov V et al. 2015. Low frequency dynamics of the nitrogenase MoFe protein via femtosecond pump probe spectroscopy—observation of a candidate promoting vibration. J. Inorg. Biochem. 153:128–35
    [Google Scholar]
  118. 118. 
    Srajer V, Schmidt M. 2017. Watching proteins function with time-resolved X-ray crystallography. J. Phys. D Appl. Phys. 50:23
    [Google Scholar]
  119. 119. 
    Brinkmann LUL, Hub JS. 2016. Ultrafast anisotropic protein quake propagation after CO photodissociation in myoglobin. PNAS 113:10565–70
    [Google Scholar]
  120. 120. 
    Levantino M, Schiro G, Lemke HT, Cottone G, Glownia JM et al. 2015. Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser. Nat. Commun. 6:6
    [Google Scholar]
  121. 121. 
    Hamm P, Zanni MT. 2011. Concepts and Methods of 2D Infrared Spectroscopy New York: Cambridge Univ. Press
  122. 122. 
    Ghosh A, Ostrander JS, Zanni MT 2017. Watching proteins wiggle: mapping structures with two dimensional infrared spectroscopy. Chem. Rev. 117:10726–59
    [Google Scholar]
  123. 123. 
    Thielges MC, Axup JY, Wong D, Lee HS, Chung JK et al. 2011. Two-dimensional IR spectroscopy of protein dynamics using two vibrational labels: a site-specific genetically encoded unnatural amino acid and an active site ligand. J. Phys. Chem. B 115:11294–304
    [Google Scholar]
  124. 124. 
    Thielges MC, Chung JK, Axup JY, Fayer MD 2011. Influence of histidine tag attachment on picosecond protein dynamics. Biochemistry 50:5799–805
    [Google Scholar]
  125. 125. 
    Thielges MC, Chung JK, Fayer MD 2011. Protein dynamics in cytochrome P450 molecular recognition and substrate specificity using 2D IR vibrational echo spectroscopy. J. Am. Chem. Soc. 133:3995–4004
    [Google Scholar]
  126. 126. 
    Thielges MC, Chung JK, Fayer MD 2010. The contribution of fast protein dynamics to cytochrome P450 molecular recognition characterized by two-dimensional infrared spectroscopy. Biophys. J. 98:234A
    [Google Scholar]
  127. 127. 
    Kim S, Chung JK, Kwak K, Bowman SEJ, Bren KL et al. 2008. Native and unfolded cytochrome c—comparison of dynamics using 2D-IR vibrational echo spectroscopy. J. Phys. Chem. B 112:10054–63
    [Google Scholar]
  128. 128. 
    Finkelstein IJ, Ishikawa H, Kim S, Massari AM, Fayer MD 2007. Substrate binding and protein conformational dynamics measured by 2D-IR vibrational echo spectroscopy. PNAS 104:2637–42
    [Google Scholar]
  129. 129. 
    Ishikawa H, Finkelstein IJ, Kim S, Kwak K, Chung JK et al. 2007. Neuroglobin dynamics observed with ultrafast 2D-IR vibrational echo spectroscopy. PNAS 104:16116–21
    [Google Scholar]
  130. 130. 
    Ishikawa H, Kim S, Kwak K, Wakasugi K, Fayer MD 2007. Disulfide bond influence on protein structural dynamics probed with 2D-IR vibrational echo spectroscopy. PNAS 104:19309–14
    [Google Scholar]
  131. 131. 
    Ramos S, Thielges MC. 2019. Site-specific 1D and 2D IR spectroscopy to characterize the conformations and dynamics of protein molecular recognition. J. Phys. Chem. B 123:3551–66
    [Google Scholar]
  132. 132. 
    Ramos S, Horness RE, Collins JA, Haak D, Thielges MC 2019. Site-specific 2D IR spectroscopy: a general approach for the characterization of protein dynamics with high spatial and temporal resolution. Phys. Chem. Chem. Phys. 21:780–88
    [Google Scholar]
  133. 133. 
    Basom EJ, Spearman JW, Thielges MC 2015. Conformational landscape and the selectivity of cytochrome P450cam. J. Phys. Chem. B 119:6620–27
    [Google Scholar]
  134. 134. 
    Edington SC, Halling DB, Bennett SM, Middendorf TR, Aldrich RW, Baiz CR 2019. Non-additive effects of binding site mutations in calmodulin. Biochemistry 58:2730–39
    [Google Scholar]
  135. 135. 
    Basom EJ, Maj M, Cho M, Thielges MC 2016. Site-specific characterization of cytochrome P450cam conformations by infrared spectroscopy. Anal. Chem. 88:6598–606
    [Google Scholar]
  136. 136. 
    Chung JK, Thielges MC, Lynch SR, Fayer MD 2012. Fast dynamics of HP35 for folded and urea-unfolded conditions. J. Phys. Chem. B 116:11024–31
    [Google Scholar]
  137. 137. 
    Chung JK, Thielges MC, Fayer MD 2012. Conformational dynamics and stability of HP35 studied with 2D IR vibrational echoes. J. Am. Chem. Soc. 134:12118–24
    [Google Scholar]
  138. 138. 
    Kuroda DG, Bauman JD, Challa JR, Patel D, Troxler T et al. 2013. Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase. Nat. Chem. 5:174–81
    [Google Scholar]
  139. 139. 
    Fang C, Bauman JD, Das K, Remorino A, Arnold E, Hochstrasser RM 2008. Two-dimensional infrared spectra reveal relaxation of the nonnucleoside inhibitor TMC278 complexed with HIV-1 reverse transcriptase. PNAS 105:1472–77
    [Google Scholar]
  140. 140. 
    Pagano P, Guo Q, Kohen A, Cheatum CM 2016. Oscillatory enzyme dynamics revealed by two-dimensional infrared spectroscopy. J. Phys. Chem. Lett. 7:2507–11
    [Google Scholar]
  141. 141. 
    Johnson PJM, Koziol KL, Hamm P 2017. Quantifying biomolecular recognition with site-specific 2D infrared probes. J. Phys. Chem. Lett. 8:2280–84
    [Google Scholar]
  142. 142. 
    Stucki-Buchli B, Johnson PJM, Bozovic O, Zanobini C, Koziol KL et al. 2017. 2D-IR spectroscopy of an AHA labeled photoswitchable PDZ2 domain. J. Phys. Chem. A 121:9435–45
    [Google Scholar]
  143. 143. 
    Bloem R, Koziol K, Waldauer SA, Buchli B, Walser R et al. 2012. Ligand binding studied by 2D IR spectroscopy using the azidohomoalanine label. J. Phys. Chem. B 116:13705–12
    [Google Scholar]
  144. 144. 
    Guo Q, Pagano P, Li Y-L, Kohen A, Cheatum CM 2015. Line shape analysis of two-dimensional infrared spectra. J. Chem. Phys. 142:212427
    [Google Scholar]
  145. 145. 
    Simpson N, Hunt NT. 2015. Ultrafast 2D-IR spectroscopy of haemoproteins. Int. Rev. Phys. Chem. 34:361–83
    [Google Scholar]
  146. 146. 
    Simpson N, Adamczyk K, Hithell G, Shaw DJ, Greetham GM et al. 2015. The effect on structural and solvent water molecules of substrate binding to ferric horseradish peroxidase. Faraday Discuss 177:163–79
    [Google Scholar]
  147. 147. 
    Basom EJ, Manifold BA, Thielges MC 2017. Conformational heterogeneity and the affinity of substrate molecular recognition by cytochrome P450cam. Biochemistry 56:3248–56
    [Google Scholar]
  148. 148. 
    Thielges MC, Fayer MD. 2012. Protein dynamics studied with ultrafast two-dimensional infrared vibrational echo spectroscopy. Acc. Chem. Res. 45:1866–74
    [Google Scholar]
  149. 149. 
    Ramos S, Le Sueur AL, Horness RE, Specker JT, Collins JA et al. 2019. Heterogeneous and highly dynamic interface in plastocyanin-cytochrome f complex revealed by site-specific 2D-IR spectroscopy. J. Phys. Chem. B 123:2114–22
    [Google Scholar]
  150. 150. 
    Baumann T, Hauf M, Schildhauer F, Eberl KB, Durkin PM et al. 2019. Site-resolved observation of vibrational energy transfer using a genetically encoded ultrafast heater. Angew. Chem. Int. Ed. 58:2899–903
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-050317-014308
Loading
/content/journals/10.1146/annurev-physchem-050317-014308
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error