1932

Abstract

Roaming reactions were first clearly identified in photodissociation of formaldehyde 15 years ago, and roaming dynamics are now recognized as a universal aspect of chemical reactivity. These reactions typically involve frustrated near-dissociation of a quasibound system to radical fragments, followed by reorientation at long range and intramolecular abstraction. The consequences can be unexpected formation of molecular products, depletion of the radical pool in chemical systems, and formation of products with unusual internal state distributions. In this review, I examine some current aspects of roaming reactions with an emphasis on experimental results, focusing on possible quantum effects in roaming and roaming dynamics in bimolecular systems. These considerations lead to a more inclusive definition of roaming reactions as those for which key dynamics take place at long range.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-050317-020929
2020-04-20
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/physchem/71/1/annurev-physchem-050317-020929.html?itemId=/content/journals/10.1146/annurev-physchem-050317-020929&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Townsend D, Lahankar SA, Lee SK, Chambreau SD, Suits AG et al. 2004. The roaming atom: straying from the reaction path in formaldehyde decomposition. Science 306:1158–61
    [Google Scholar]
  2. 2. 
    Norrish RGW. 1934. Part II. Free radicals of short life: chemical aspects. A. General and inorganic. The primary photochemical production of some free radicals. Trans. Faraday Soc. 30:103–13
    [Google Scholar]
  3. 3. 
    Lahankar SA, Chambreau SD, Townsend D, Suits F, Farnum J et al. 2006. The roaming atom pathway in formaldehyde decomposition. J. Chem. Phys. 125:044303
    [Google Scholar]
  4. 4. 
    Lahankar SA, Chambreau SD, Zhang X, Bowman JM, Suits AG 2007. Energy dependence of the roaming atom pathway in formaldehyde decomposition. J. Chem. Phys. 126:044314
    [Google Scholar]
  5. 5. 
    Lahankar SA, Goncharov V, Suits F, Farnum JD, Bowman JM, Suits AG 2008. Further aspects of the roaming mechanism in formaldehyde dissociation. Chem. Phys. 347:288–99
    [Google Scholar]
  6. 6. 
    Rheinecker JL, Zhang X, Bowman JM 2005. Quasiclassical trajectory studies of the dynamics of H2CO on a global ab initio-based potential energy surface. Mol. Phys. 103:1067–74
    [Google Scholar]
  7. 7. 
    Suits AG. 2008. Roaming atoms and radicals: a new mechanism in molecular dissociation. Acc. Chem. Res. 41:873–81
    [Google Scholar]
  8. 8. 
    Bowman JM, Shepler BC. 2011. Roaming radicals. Annu. Rev. Phys. Chem. 62:531–53
    [Google Scholar]
  9. 9. 
    Bowman JM, Houston PL. 2017. Theories and simulations of roaming. Chem. Soc. Rev. 46:7615–24
    [Google Scholar]
  10. 10. 
    Houston PL, Kable SH. 2006. Photodissociation of acetaldehyde as a second example of the roaming mechanism. PNAS 103:16079–82
    [Google Scholar]
  11. 11. 
    Harding LB, Klippenstein SJ, Jasper AW 2007. Ab initio methods for reactive potential surfaces. Phys. Chem. Chem. Phys. 9:4055–70
    [Google Scholar]
  12. 12. 
    Heazlewood BR, Jordan MJT, Kable SH, Selby TM, Osborn DL et al. 2008. Roaming is the dominant mechanism for molecular products in acetaldehyde photodissociation. PNAS 105:12719–24
    [Google Scholar]
  13. 13. 
    Sivaramakrishnan R, Michael JV, Harding LB, Klippenstein SJ 2012. Shock tube explorations of roaming radical mechanisms: the decompositions of isobutane and neopentane. J. Phys. Chem. A 116:5981–89
    [Google Scholar]
  14. 14. 
    Sivaramakrishnan R, Michael JV, Klippenstein SJ 2010. Direct observation of roaming radicals in the thermal decomposition of acetaldehyde. J. Phys. Chem. A 114:755–64
    [Google Scholar]
  15. 15. 
    Sivaramakrishnan R, Michael JV, Wagner AF, Dawes R, Jasper AW et al. 2011. Roaming radicals in the thermal decomposition of dimethyl ether: experiment and theory. Combust. Flame 158:618–32
    [Google Scholar]
  16. 16. 
    Sivaramakrishnan R, Su MC, Michael JV, Klippenstein SJ, Harding LB, Ruscic B 2011. Shock tube and theoretical studies on the thermal decomposition of propane: evidence for a roaming radical channel. J. Phys. Chem. A 115:3366–79
    [Google Scholar]
  17. 17. 
    West RH, Goldsmith CF. 2018. The impact of roaming radicals on the combustion properties of transportation fuels. Combust. Flame 194:387–95
    [Google Scholar]
  18. 18. 
    Asatryan R, Pal Y, Hachmann J, Ruckenstein E 2018. Roaming-like mechanism for dehydration of diol radicals. J. Phys. Chem. A 122:9738–54
    [Google Scholar]
  19. 19. 
    Nilsson EJK, Andersen VF, Skov H, Johnson MS 2010. Pressure dependence of the deuterium isotope effect in the photolysis of formaldehyde by ultraviolet light. Atmos. Chem. Phys. 10:3455–62
    [Google Scholar]
  20. 20. 
    Nguyen MT, Le HT, Hajgato B, Veszpremi T, Lin MC 2003. Nitromethane-methyl nitrite rearrangement: a persistent discrepancy between theory and experiment. J. Phys. Chem. A 107:4286–91
    [Google Scholar]
  21. 21. 
    Zhu RS, Lin MC. 2009. CH3NO2 decomposition/isomerization mechanism and product branching ratios: an ab initio chemical kinetic study. Chem. Phys. Lett. 478:11–16
    [Google Scholar]
  22. 22. 
    Dey A, Fernando R, Abeysekera C, Homayoon Z, Bowman JM, Suits AG 2014. Photodissociation dynamics of nitromethane and methyl nitrite by infrared multiphoton dissociation imaging with quasiclassical trajectory calculations: signatures of the roaming pathway. J. Chem. Phys. 140:054305
    [Google Scholar]
  23. 23. 
    Annesley CJ, Randazzo JB, Klippenstein SJ, Harding LB, Jasper AW et al. 2015. Thermal dissociation and roaming isomerization of nitromethane: experiment and theory. J. Phys. Chem. A 119:7872–93
    [Google Scholar]
  24. 24. 
    Isegawa M, Liu F, Maeda S, Morokuma K 2014. Ab initio reaction pathways for photodissociation and isomerization of nitromethane on four singlet potential energy surfaces with three roaming paths. J. Chem. Phys. 140:244310
    [Google Scholar]
  25. 25. 
    Hause ML, Herath N, Zhu R, Lin MC, Suits AG 2011. Roaming-mediated isomerization in the photodissociation of nitrobenzene. Nat. Chem. 3:932–37
    [Google Scholar]
  26. 26. 
    Grubb MP, Warter ML, Suits AG, North SW 2010. Evidence of roaming dynamics and multiple channels for molecular elimination in NO3 photolysis. J. Phys. Chem. Lett. 1:2455–58
    [Google Scholar]
  27. 27. 
    Grubb MP, Warter ML, Xiao H, Maeda S, Morokuma K, North SW 2012. No straight path: roaming in both ground- and excited-state photolytic channels of NO3 → NO + O2. Science 335:1075–78
    [Google Scholar]
  28. 28. 
    Xiao H, Maeda S, Morokuma K 2012. Global ab initio potential energy surfaces for low-lying doublet states of NO3. J. Chem. Theory Comput. 8:2600–5
    [Google Scholar]
  29. 29. 
    Fu B, Bowman JM, Xiao H, Maeda S, Morokuma K 2013. Quasiclassical trajectory studies of the photodissociation dynamics of NO3 from the D0 and D1 potential energy surfaces. J. Chem. Theory Comput. 9:893–900
    [Google Scholar]
  30. 30. 
    Fernando R, Dey A, Broderick BM, Fu B, Homayoon Z et al. 2015. Visible/infrared dissociation of NO3: roaming in the dark or roaming on the ground?. J. Phys. Chem. A 119:7163–68
    [Google Scholar]
  31. 31. 
    Bencsura A, Lendvay G. 2012. Bimolecular reactions of vibrationally excited molecules: roaming atom mechanism at low kinetic energies. J. Phys. Chem. A 116:4445–56
    [Google Scholar]
  32. 32. 
    Joalland B, Shi Y, Kamasah A, Suits AG, Mebel AM 2014. Roaming dynamics in radical addition–elimination reactions. Nat. Commun. 5:4064
    [Google Scholar]
  33. 33. 
    Joalland B, Van Camp R, Shi YY, Patel N, Suits AG 2013. Crossed-beam slice imaging of Cl reaction dynamics with butene isomers. J. Phys. Chem. A 117:7589–94
    [Google Scholar]
  34. 34. 
    Cascarini FJJ, Hornung B, Quinn MS, Robertson PA, Orr-Ewing AJ 2019. Collision energy dependence of the competing mechanisms of reaction of chlorine atoms with propene. J. Phys. Chem. A 123:2679–86
    [Google Scholar]
  35. 35. 
    Hornung B, Preston TJ, Pandit S, Harvey JN, Orr-Ewing AJ 2015. Computational study of competition between direct abstraction and addition-elimination in the reaction of Cl atoms with propene. J. Phys. Chem. A 119:9452–64
    [Google Scholar]
  36. 36. 
    Christoffel KM, Bowman JM. 2009. Three reaction pathways in the H + HCO → H2 + CO reaction. J. Phys. Chem. A 113:4138–44
    [Google Scholar]
  37. 37. 
    Takayanagi T, Tanaka T. 2011. Roaming dynamics in the MgH + H → Mg + H2 reaction: quantum dynamics calculations. Chem. Phys. Lett. 504:130–35
    [Google Scholar]
  38. 38. 
    Li A, Li J, Guo H 2013. Quantum manifestation of roaming in H + MgH → Mg + H2: the birth of roaming resonances. J. Phys. Chem. A 117:5052–60
    [Google Scholar]
  39. 39. 
    Mauguière FAL, Collins P, Stamatiadis S, Li A, Ezra GS et al. 2016. Toward understanding the roaming mechanism in H + MgH → Mg + HH reaction. J. Phys. Chem. A 120:5145–54
    [Google Scholar]
  40. 40. 
    Mauguière FAL, Collins P, Ezra GS, Farantos SC, Wiggins S 2014. Roaming dynamics in ion-molecule reactions: phase space reaction pathways and geometrical interpretation. J. Chem. Phys. 140:134112
    [Google Scholar]
  41. 41. 
    Mauguière FAL, Collins P, Ezra GS, Farantos SC, Wiggins S 2014. Multiple transition states and roaming in ion-molecule reactions: a phase space perspective. Chem. Phys. Lett. 592:282–87
    [Google Scholar]
  42. 42. 
    Krajňák V, Wiggins S. 2018. Influence of mass and potential energy surface geometry on roaming in Chesnavich's CH4+ model. J. Chem. Phys. 149:094109
    [Google Scholar]
  43. 43. 
    Chesnavich WJ, Bass L, Su T, Bowers MT 1981. Multiple transition states in unimolecular reactions: a transition state switching model. Application to the C4H8+⋅system. J. Chem. Phys. 74:2228–46
    [Google Scholar]
  44. 44. 
    Pu MP, Privalov T. 2014. Uncovering the role of intra- and intermolecular motion in frustrated Lewis acid/base chemistry: ab initio molecular dynamics study of CO2 binding by phosphorus/boron frustrated Lewis pair [tBu3P/B(C6F5)3]. Inorg. Chem. 53:4598–609
    [Google Scholar]
  45. 45. 
    Rehbein J, Wulff B. 2015. Chemistry in motion—off the MEP. Tetrahedron Lett 56:6931–43
    [Google Scholar]
  46. 46. 
    Black K, Liu P, Xu L, Doubleday C, Houk KN 2012. Dynamics, transition states, and timing of bond formation in Diels-Alder reactions. PNAS 109:12860–65
    [Google Scholar]
  47. 47. 
    Oyola Y, Singleton DA. 2009. Dynamics and the failure of transition state theory in alkene hydroboration. J. Am. Chem. Soc. 131:3130–31
    [Google Scholar]
  48. 48. 
    Hong YJ, Tantillo DJ. 2014. Biosynthetic consequences of multiple sequential post-transition-state bifurcations. Nat. Chem. 6:104–11
    [Google Scholar]
  49. 49. 
    Klippenstein SJ, Georgievskii Y, Harding LB 2011. Statistical theory for the kinetics and dynamics of roaming reactions. J. Phys. Chem. A 115:14370–81
    [Google Scholar]
  50. 50. 
    Harding LB, Klippenstein SJ, Jasper AW 2012. Separability of tight and roaming pathways to molecular decomposition. J. Phys. Chem. A 116:6967–82
    [Google Scholar]
  51. 51. 
    Lee KLK, Quinn MS, Maccarone AT, Nauta K, Houston PL et al. 2014. Two roaming pathways in the photolysis of CH3CHO between 328 and 308 nm. Chem. Sci. 5:4633–38
    [Google Scholar]
  52. 52. 
    Lopez JG, Vayner G, Lourderaj U, Addepalli SV, Kato S et al. 2007. A direct dynamics trajectory study of F + CH3OOH reactive collisions reveals a major non-IRC reaction path. J. Am. Chem. Soc. 129:9976–85
    [Google Scholar]
  53. 53. 
    Lourderaj U, Park K, Hase WL 2008. Classical trajectory simulations of post-transition state dynamics. Int. Rev. Phys. Chem. 27:361–403
    [Google Scholar]
  54. 54. 
    Pomerantz AE, Camden JP, Chiou AS, Ausfelder F, Chawla N et al. 2005. Reaction products with internal energy beyond the kinematic limit result from trajectories far from the minimum energy path: an example from H + HBr → H2 + Br. J. Am. Chem. Soc. 127:16368–69
    [Google Scholar]
  55. 55. 
    Mauguière FAL, Collins P, Kramer ZC, Carpenter BK, Ezra GS et al. 2015. Phase space structures explain hydrogen atom roaming in formaldehyde decomposition. J. Phys. Chem. Lett. 6:4123–28
    [Google Scholar]
  56. 56. 
    Mauguière FAL, Collins P, Kramer ZC, Carpenter BK, Ezra GS et al. 2016. Phase space barriers and dividing surfaces in the absence of critical points of the potential energy: application to roaming in ozone. J. Chem. Phys. 144:054107
    [Google Scholar]
  57. 57. 
    Cofer-Shabica DV, Stratt RM. 2017. What is special about how roaming chemical reactions traverse their potential surfaces? Differences in geodesic paths between roaming and non-roaming events. J. Chem. Phys. 146:214303
    [Google Scholar]
  58. 58. 
    Mauguière FAL, Collins P, Kramer ZC, Carpenter BK, Ezra GS et al. 2017. Roaming: a phase space perspective. Annu. Rev. Phys. Chem. 68:499–524
    [Google Scholar]
  59. 59. 
    Bowman JM, Suits AG. 2011. Roaming reactions: the third way. Phys. Today 64:33–37
    [Google Scholar]
  60. 60. 
    Herath N, Suits AG. 2011. Roaming radical reactions. J. Phys. Chem. Lett. 2:642–47
    [Google Scholar]
  61. 61. 
    Andrews DU, Kable SH, Jordan MJT 2013. A phase space theory for roaming reactions. J. Phys. Chem. A 117:7631–42
    [Google Scholar]
  62. 62. 
    Bowman JM. 2014. Roaming. Mol. Phys. 112:2516–28
    [Google Scholar]
  63. 63. 
    Zhang XB, Zou SL, Harding LB, Bowman JM 2004. A global ab initio potential energy surface for formaldehyde. J. Phys. Chem. A 108:8980–86
    [Google Scholar]
  64. 64. 
    van Zee RD, Foltz MF, Moore CB 1993. Evidence for a second molecular channel in the fragmentation of formaldehyde. J. Chem. Phys. 99:1664–73
    [Google Scholar]
  65. 65. 
    Townsend D, Minitti MP, Suits AG 2003. Direct current slice imaging. Rev. Sci. Instrum. 74:2530–39
    [Google Scholar]
  66. 66. 
    Chandler DW, Houston PL. 1987. Two‐dimensional imaging of state‐selected photodissociation products detected by multiphoton ionization. J. Chem. Phys. 87:1445–47
    [Google Scholar]
  67. 67. 
    Parker DH, Eppink ATJB. 1997. Photoelectron and photofragment velocity map imaging of state-selected molecular oxygen dissociation/ionization dynamics. J. Chem. Phys. 107:2357–62
    [Google Scholar]
  68. 68. 
    Suits AG. 2018. Invited review article: photofragment imaging. Rev. Sci. Instrum. 89:111101
    [Google Scholar]
  69. 69. 
    Houston PL, Wang XH, Ghosh A, Bowman JM, Quinn MS, Kable SH 2017. Formaldehyde roaming dynamics: comparison of quasi-classical trajectory calculations and experiments. J. Chem. Phys. 147:013936
    [Google Scholar]
  70. 70. 
    Quinn MS, Andrews DU, Nauta K, Jordan MJT, Kable SH 2017. The energy dependence of CO(v, J) produced from H2CO via the transition state, roaming, and triple fragmentation channels. J. Chem. Phys. 147:013935
    [Google Scholar]
  71. 71. 
    Shepler BC, Braams BJ, Bowman JM 2007. Quasiclassical trajectory calculations of acetaldehyde dissociation on a global potential energy surface indicate significant non-transition state dynamics. J. Phys. Chem. A 111:8282–85
    [Google Scholar]
  72. 72. 
    Rubio-Lago L, Amaral GA, Arregui A, González-Vázquez J, Bañares L 2012. Imaging the molecular channel in acetaldehyde photodissociation: roaming and transition state mechanisms. Phys. Chem. Chem. Phys. 14:6067–78
    [Google Scholar]
  73. 73. 
    Rubio-Lago L, Amaral GA, Arregui A, Izquierdo JG, Wang F et al. 2007. Slice imaging of the photodissociation of acetaldehyde at 248 nm. Evidence of a roaming mechanism. Phys. Chem. Chem. Phys. 9:6123–27
    [Google Scholar]
  74. 74. 
    Hung K-C, Tsai P-Y, Li H-K, Lin K-C 2014. Photodissociation of CH3CHO at 248 nm by time-resolved Fourier-transform infrared emission spectroscopy: verification of roaming and triple fragmentation. J. Chem. Phys. 140:064313
    [Google Scholar]
  75. 75. 
    Li H-K, Tsai P-Y, Hung K-C, Kasai T, Lin K-C 2015. Communication: Photodissociation of CH3CHO at 308 nm: observation of H-roaming, CH3-roaming, and transition state pathways together along the ground state surface. J. Chem. Phys. 142:041101
    [Google Scholar]
  76. 76. 
    Chao M-H, Tsai P-Y, Lin K-C 2011. Molecular elimination of methyl formate in photolysis at 234 nm: roaming versus transition state-type mechanism. Phys. Chem. Chem. Phys. 13:7154–61
    [Google Scholar]
  77. 77. 
    Lombardi A, Palazzetti F, Aquilanti V, Li H-K, Tsai P-Y et al. 2016. Rovibrationally excited molecules on the verge of a triple breakdown: molecular and roaming mechanisms in the photodecomposition of methyl formate. J. Phys. Chem. A 120:5155–62
    [Google Scholar]
  78. 78. 
    Nakamura M, Tsai P-Y, Kasai T, Lin K-C, Palazzetti F et al. 2015. Dynamical, spectroscopic and computational imaging of bond breaking in photodissociation: roaming and role of conical intersections. Faraday Discuss 177:77–98
    [Google Scholar]
  79. 79. 
    Tsai P-Y, Hung K-C, Li H-K, Lin K-C 2014. Photodissociation of propionaldehyde at 248 nm: roaming pathway as an increasingly important role in large aliphatic aldehydes. J. Phys. Chem. Lett. 5:190–95
    [Google Scholar]
  80. 80. 
    Tsai P-Y, Lin K-C. 2015. Insight into the photodissociation dynamical feature of conventional transition state and roaming pathways by an impulsive model. J. Phys. Chem. A 119:29–38
    [Google Scholar]
  81. 81. 
    Truhlar DG, Garrett BC, Klippenstein SJ 1996. Current status of transition-state theory. J. Phys. Chem. 100:12771–800
    [Google Scholar]
  82. 82. 
    Houston PL, Conte R, Bowman JM 2016. Roaming under the microscope: trajectory study of formaldehyde dissociation. J. Phys. Chem. A 120:5103–14
    [Google Scholar]
  83. 83. 
    Homayoon Z, Bowman JM. 2013. Quasiclassical trajectory study of CH3NO2 decomposition via roaming mediated isomerization using a global potential energy surface. J. Phys. Chem. A 117:11665–72
    [Google Scholar]
  84. 84. 
    Shepler BC, Han Y, Bowman JM 2011. Are roaming and conventional saddle points for H2CO and CH3CHO dissociation to molecular products isolated from each other. J. Phys. Chem. Lett. 2:834–38
    [Google Scholar]
  85. 85. 
    Davis HF, Kim BS, Johnston HS, Lee YT 1993. Dissociation energy and photochemistry of NO3. J. Phys. Chem 97:2172–80
    [Google Scholar]
  86. 86. 
    Johnston HS, Davis HF, Lee YT 1996. NO3 photolysis product channels: quantum yields from observed energy thresholds. J. Phys. Chem 100:4713–23
    [Google Scholar]
  87. 87. 
    Xiao H, Maeda S, Morokuma K 2011. Excited-state roaming dynamics in photolysis of a nitrate radical. J. Phys. Chem. Lett. 2:934–38
    [Google Scholar]
  88. 88. 
    Wang XH, Houston PL, Bowman JM 2017. A new (multi-reference configuration interaction) potential energy surface for H2CO and preliminary studies of roaming. Philos. Trans. R. Soc. A 375:20160194
    [Google Scholar]
  89. 89. 
    Gray SK, Miller WH, Yamaguchi Y, Schaefer HF III 1981. Tunneling in the unimolecular decomposition of formaldehyde: a more quantitative study. J. Am. Chem. Soc. 103:1900–4
    [Google Scholar]
  90. 90. 
    Bergeat A, Onvlee J, Naulin C, van der Avoird A, Costes M 2015. Quantum dynamical resonances in low-energy CO(j = 0) + He inelastic collisions. Nat. Chem. 7:349–53
    [Google Scholar]
  91. 91. 
    Costes M, Naulin C. 2016. Observation of quantum dynamical resonances in near cold inelastic collisions of astrophysical molecules. Chem. Sci. 7:2462–69
    [Google Scholar]
  92. 92. 
    Vogels SN, Onvlee J, Chefdeville S, van der Avoird A, Groenenboom GC, van de Meerakker SYT 2015. Imaging resonances in low-energy NO-He inelastic collisions. Science 350:787–90
    [Google Scholar]
  93. 93. 
    Vogels SN, Karman T, Klos J, Besemer M, Onvlee J et al. 2018. Scattering resonances in bimolecular collisions between NO radicals and H2 challenge the theoretical gold standard. Nat. Chem. 10:435–40
    [Google Scholar]
  94. 94. 
    Polik WF, Moore CB, Miller WH 1988. Quantum interference among competing unimolecular decay channels: asymmetric S0 D2CO decay profiles. J. Chem. Phys. 89:3584–91
    [Google Scholar]
  95. 95. 
    Gelbart WM, Elert ML, Heller DF 1980. Photodissociation of the formaldehyde molecule: Does it or doesn't it?. Chem. Rev. 80:403–16
    [Google Scholar]
  96. 96. 
    Yarkony DR. 2001. Conical intersections: the new conventional wisdom. J. Phys. Chem. A 105:6277–93
    [Google Scholar]
  97. 97. 
    Maeda S, Taketsugu T, Ohno K, Morokuma K 2015. From roaming atoms to hopping surfaces: mapping out global reaction routes in photochemistry. J. Am. Chem. Soc. 137:3433–45
    [Google Scholar]
  98. 98. 
    Yeung ES, Moore CB. 1974. Predissociation model for formaldehyde. J. Chem. Phys. 60:2139–47
    [Google Scholar]
  99. 99. 
    Weisshaar JC, Moore CB. 1979. Collisionless nonradiative decay rates of single rotational levels of S1 formaldehyde. J. Chem. Phys. 70:5135–46
    [Google Scholar]
  100. 100. 
    Apel EC, Lee EKC. 1985. Electronic spectra and single rotational level fluorescence lifetimes of jet-cooled H2CO: the Ã1A21A1. J. Phys. Chem. 89:1391–95
    [Google Scholar]
  101. 101. 
    Polik WF, Guyer DR, Miller WH, Moore CB 1990. Eigenstate-resolved unimolecular reaction dynamics—ergodic character of S0 formaldehyde at the dissociation threshold. J. Chem. Phys. 92:3471–84
    [Google Scholar]
  102. 102. 
    Polik WF, Guyer DR, Moore CB 1990. Stark level-crossing spectroscopy of S0 formaldehyde eigenstates at the dissociation threshold. J. Chem. Phys. 92:3453–70
    [Google Scholar]
  103. 103. 
    Apel EC, Lee EKC. 1986. The effect of initial S1 vibrational mode on the photodissociation H2CO → H2 + CO. J. Chem. Phys. 84:1039–40
    [Google Scholar]
  104. 104. 
    Araújo M, Lasorne B, Bearpark MJ, Robb MA 2008. The photochemistry of formaldehyde: internal conversion and molecular dissociation in a single step. J. Phys. Chem. A 112:7489–91
    [Google Scholar]
  105. 105. 
    Araújo M, Lasorne B, Magalhães AL, Worth GA, Bearpark MJ, Robb MA 2009. The molecular dissociation of formaldehyde at medium photoexcitation energies: a quantum chemistry and direct quantum dynamics study. J. Chem. Phys. 131:144301
    [Google Scholar]
  106. 106. 
    Zhang P, Maeda S, Morokuma K, Braams BJ 2009. Photochemical reactions of the low-lying excited states of formaldehyde: T1/S0 intersystem crossings, characteristics of the S1 and T1 potential energy surfaces, and a global T1 potential energy surface. J. Chem. Phys. 130:114304
    [Google Scholar]
  107. 107. 
    Bowman JM, Zhang XB. 2006. New insights on reaction dynamics from formaldehyde photodissociation. Phys. Chem. Chem. Phys. 8:321–32
    [Google Scholar]
  108. 108. 
    Fu B, Shepler BC, Bowman JM 2011. Three-state trajectory surface hopping studies of the photodissociation dynamics of formaldehyde on ab initio potential energy surfaces. J. Am. Chem. Soc. 133:7957–68
    [Google Scholar]
  109. 109. 
    Chuang MC, Foltz MF, Moore CB 1987. T1 barrier height, S1-T1 intersystem crossing rate, and S0 radical dissociation threshold for H2CO, D2CO, and HDCO. J. Chem. Phys 87:3855–64
    [Google Scholar]
  110. 110. 
    Li H, Xie DQ, Guo H 2004. An ab initio potential energy surface and vibrational states of MgH2(11A′). J. Chem. Phys. 121:4156–63
    [Google Scholar]
  111. 111. 
    Mar KA, Van Wyngarden AL, Liang CW, Lee YT, Lin JJ, Boering KA 2012. A crossed beam study of 18O(3P)+NO2 and 18O(1D)+NO2: isotope exchange and O2+NO formation channels. J. Chem. Phys. 137:044302
    [Google Scholar]
  112. 112. 
    Fu B, Zhang DH, Bowman JM 2013. Quasiclassical trajectory studies of 18O(3P) + NO2 isotope exchange and reaction to O2 + NO on D0 and D1 potentials. J. Chem. Phys. 139:024303
    [Google Scholar]
  113. 113. 
    Joalland B, Shi Y, Estillore AD, Kamasah A, Mebel AM, Suits AG 2014. Dynamics of chlorine atom reactions with hydrocarbons: insights from imaging the radical product in crossed beams. J. Phys. Chem. A 118:9281–95
    [Google Scholar]
  114. 114. 
    Chen LW, Hung CM, Matsui H, Lee YP 2017. New experimental evidence to support roaming in the reaction Cl plus isobutene (i-C4H8). Sci. Rep 7:40105
    [Google Scholar]
  115. 115. 
    Stutz J, Ezell MJ, Ezell AA, Finlayson-Pitts BJ 1998. Rate constants and kinetic isotope effects in the reactions of atomic chlorine with n-butane and simple alkenes at room temperature. J. Phys. Chem. A 102:8510–19
    [Google Scholar]
  116. 116. 
    Preston TJ, Dunning GT, Orr-Ewing AJ, Vazquez SA 2014. Direct and indirect hydrogen abstraction in Cl plus alkene reactions. J. Phys. Chem. A 118:5595–607
    [Google Scholar]
  117. 117. 
    Jacobellis v. Ohio, 378 U.S. 184 1964.
  118. 118. 
    Mauguière FAL, Collins P, Ezra GS, Farantos SC, Wiggins S 2014. Roaming dynamics in ketene isomerization. Theor. Chem. Acc. 133:1507
    [Google Scholar]
  119. 119. 
    Ulusoy IS, Stanton JF, Hernandez R 2013. Effects of roaming trajectories on the transition state theory rates of a reduced-dimensional model of ketene isomerization. J. Phys. Chem. A 117:7553–56 Correction. 2013. J. Phys. Chem. A 117:10567–68
    [Google Scholar]
  120. 120. 
    Polanyi J, Schreiber J, Skrlac W 1979. Distribution of reaction products (theory). Part 12.—Microscopic branching in H + XY → HX + Y, HY + X (X, Y = halogens). Faraday Discuss. Chem. Soc. 67:66–89
    [Google Scholar]
  121. 121. 
    Skouteris D, Manolopoulos DE, Bian WS, Werner HJ, Lai LH, Liu KP 1999. van der Waals interactions in the Cl + HD reaction. Science 286:1713–16
    [Google Scholar]
  122. 122. 
    Li HW, Kamasah A, Matsika S, Suits AG 2019. Intersystem crossing in the exit channel. Nat. Chem. 11:123–28
    [Google Scholar]
  123. 123. 
    El-Sayed MA. 1968. Triplet state: its radiative and nonradiative properties. Acc. Chem. Res. 1:8–16
    [Google Scholar]
  124. 124. 
    Schmoltner AM, Huang SY, Brudzynski RJ, Chu PM, Lee YT 1993. Crossed molecular-beam study of the reaction O(3P)+allene. J. Chem. Phys. 99:1644–53
    [Google Scholar]
  125. 125. 
    Balucani N, Leonori F, Casavecchia P, Fu BN, Bowman JM 2015. Crossed molecular beams and quasiclassical trajectory surface hopping studies of the multichannel nonadiabatic O(3P) + ethylene reaction at high collision energy. J. Phys. Chem. A 119:12498–511
    [Google Scholar]
  126. 126. 
    Fu BN, Han YC, Bowman JM, Angelucci L, Balucani N et al. 2012. Intersystem crossing and dynamics in O(3P) + C2H4 multichannel reaction: Experiment validates theory. PNAS 109:9733–38
    [Google Scholar]
  127. 127. 
    Fu BN, Han YC, Bowman JM, Leonori F, Balucani N et al. 2012. Experimental and theoretical studies of the O(3P) + C2H4 reaction dynamics: collision energy dependence of branching ratios and extent of intersystem crossing. J. Chem. Phys. 137:22A532
    [Google Scholar]
  128. 128. 
    Prozument K, Suleimanov YV, Buesser B, Oldham JM, Green WH et al. 2014. A signature of roaming dynamics in the thermal decomposition of ethyl nitrite: chirped-pulse rotational spectroscopy and kinetic modeling. J. Phys. Chem. Lett. 5:3641–48
    [Google Scholar]
  129. 129. 
    Ekanayake N, Nairat M, Weingartz NP, Michie MJ, Levine BG, Dantus M 2018. Substituent effects on H3+ formation via H2 roaming mechanisms from organic molecules under strong-field photodissociation. J. Chem. Phys. 149:244310
    [Google Scholar]
  130. 130. 
    Ekanayake N, Severt T, Nairat M, Weingartz NP, Farris BM et al. 2018. H2 roaming chemistry and the formation of H3+ from organic molecules in strong laser fields. Nat. Commun. 9:5186
    [Google Scholar]
  131. 131. 
    von Conta A, Tehlar A, Schletter A, Arasaki Y, Takatsuka K, Wörner HJ 2018. Conical-intersection dynamics and ground-state chemistry probed by extreme-ultraviolet time-resolved photoelectron spectroscopy. Nat. Commun. 9:3162
    [Google Scholar]
  132. 132. 
    Reid SA, Reisler H. 1996. Unimolecular reaction of NO2: overlapping resonances, fluctuations, and the transition state. J. Phys. Chem 100:474–87
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-050317-020929
Loading
/content/journals/10.1146/annurev-physchem-050317-020929
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error