Vibrational sum frequency generation (VSFG) spectroscopy is a widely used probe of interfaces and, having ideal surface sensitivity and selectivity, is particularly powerful when applied to wet and soft interfaces. Although VSFG spectroscopy can sensitively detect molecular details of interfaces, interpretation of observed spectra has, until recently, been challenging and often ambiguous. The situation has been greatly improved by remarkable advances in computational VSFG analysis on the basis of molecular modeling and molecular dynamics simulation. This article reviews the basic idea of computational VSFG analysis and recent applications to both aqueous and organic interfaces.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Hunt JH, Guyot-Sionnest P, Shen YR. 1.  1987. Observation of C–H stretch vibrations of monolayers of molecules optical sum-frequency generation. Chem. Phys. Lett. 133:189–92 [Google Scholar]
  2. Shen YR. 2.  1994. Surface spectroscopy by nonlinear optics. Proc. Int. Sch. Phys.Enrico Fermi,” 120 Frontiers in Laser Spectroscopy TW Hänsch, M Inguscio 139–66 Amsterdam: North Holland [Google Scholar]
  3. Shultz MJ, Schnitzer C, Simonelli D, Baldelli S. 3.  2000. Sum frequency generation spectroscopy of the aqueous interface: ionic and soluble molecular solutions. Int. Rev. Phys. Chem. 19:123–53 [Google Scholar]
  4. Buck M, Himmelhaus M. 4.  2001. Vibrational spectroscopy of interfaces by infrared–visible sum frequency generation. J. Vac. Sci. Technol. A 19:2717–36 [Google Scholar]
  5. Richmond GL. 5.  2002. Molecular bonding and interactions at aqueous surfaces as probed by vibrational sum frequency spectroscopy. Chem. Rev. 102:2693–724 [Google Scholar]
  6. Vidal F, Tadjeddine A. 6.  2005. Sum-frequency generation spectroscopy of interfaces. Rep. Prog. Phys. 68:1095 [Google Scholar]
  7. Wang HF, Gan W, Lu R, Rao Y, Wu BH. 7.  2005. Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy. Int. Rev. Phys. Chem. 24:191–256 [Google Scholar]
  8. Shen YR, Ostroverkhov V. 8.  2006. Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces. Chem. Rev. 106:1140–54 [Google Scholar]
  9. Gopalakrishnan S, Liu D, Allen HC, Kuo M, Shultz MJ. 9.  2006. Vibrational spectroscopic studies of aqueous interfaces: salts, acids, bases, and nanodrops. Chem. Rev. 106:1155–75 [Google Scholar]
  10. Tian CS, Shen YR. 10.  2014. Recent progress on sum-frequency spectroscopy. Surf. Sci. Rep. 69:105–31 [Google Scholar]
  11. Bonn M, Nagata Y, Backus E. 11.  2015. Molecular structure and dynamics of water at the water–air interface studied with surface-specific vibrational spectroscopy. Angew. Chem. Int. Ed. 54:5560–76 [Google Scholar]
  12. Morita A, Hynes JT. 12.  2000. A theoretical analysis of the sum frequency generation spectrum of the water surface. Chem. Phys. 258:371–90 [Google Scholar]
  13. Morita A, Hynes JT. 13.  2002. A theoretical analysis of the sum frequency generation spectrum of the water surface. II. Time-dependent approach. J. Phys. Chem. B 106:673–85 [Google Scholar]
  14. Morita A, Ishiyama T. 14.  2008. Recent progress in theoretical analysis of vibrational sum frequency generation spectroscopy. Phys. Chem. Chem. Phys. 10:5801–16 [Google Scholar]
  15. Ishiyama T, Imamura T, Morita A. 15.  2014. Theoretical studies of structures and vibrational sum frequency generation spectra at aqueous interfaces. Chem. Rev. 114:8447–70 [Google Scholar]
  16. Shen YR. 16.  2013. Phase-sensitive sum-frequency spectroscopy. Annu. Rev. Phys. Chem. 64:129–50 [Google Scholar]
  17. Nihonyanagi S, Mondal JA, Yamaguchi S, Tahara T. 17.  2013. Structure and dynamics of interfacial water studied by heterodyne-detected vibrational sum-frequency generation. Annu. Rev. Phys. Chem. 64:579–603 [Google Scholar]
  18. Wang J, Cieplak P, Kollman PA. 18.  2000. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?. J. Comput. Chem. 21:1049–74 [Google Scholar]
  19. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. 19.  2004. Development and testing of a general Amber force field. J. Comput. Chem. 25:1157–74 [Google Scholar]
  20. Feller SE, MacKerell AD Jr. 20.  2000. An improved empirical potential energy function for molecular simulations of phospholipids. J. Phys. Chem. B 104:7510–15 [Google Scholar]
  21. Oostenbrink C, Villa A, Mark AE, van Gunsteren WF. 21.  2004. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 25:1656–76 [Google Scholar]
  22. Jorgensen WL, Maxwell DS, Tirado-Rives J. 22.  1996. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118:11225–36 [Google Scholar]
  23. Jungwirth P, Tobias DJ. 23.  2006. Specific ion effects at the air/water interface. Chem. Rev. 106:1259–81 [Google Scholar]
  24. Applequist J, Carl JR, Fung KK. 24.  1972. Atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities. J. Am. Chem. Soc. 94:2952–60 [Google Scholar]
  25. Rick SW, Stuart SJ, Berne BJ. 25.  1994. Dynamical fluctuating charge force fields: application to liquid water. J. Chem. Phys. 101:6141–56 [Google Scholar]
  26. Straatsma TP, McCammon JA. 26.  1990. Molecular dynamics simulations with interaction potentials including polarization. Development of a noniterative method and application to water. Mol. Sim. 5:181–92 [Google Scholar]
  27. Lamoureux G, Mackerell AD Jr., Roux B. 27.  2003. A simple polarizable model of water based on classical Drude oscillators. J. Chem. Phys. 119:5185–97 [Google Scholar]
  28. Lamoureux G, Roux B. 28.  2003. Modeling induced polarization with classical Drude oscillators: theory and molecular dynamics simulation algorithm. J. Chem. Phys. 119:3025–39 [Google Scholar]
  29. Yu H, van Gunsteren WF. 29.  2004. Charge-on-spring polarizable water models revisited: from water clusters to liquid water to ice. J. Chem. Phys. 121:9549–64 [Google Scholar]
  30. Morita A, Kato S. 30.  1997. Ab initio molecular orbital theory on intramolecular charge polarization: effect of hydrogen abstraction on the charge sensitivity of aromatic and nonaromatic species. J. Am. Chem. Soc. 119:4021–32 [Google Scholar]
  31. Sulpizi M, Salanne M, Sprik M, Gaigeot M. 31.  2013. Vibrational sum frequency generation spectroscopy of the water liquid–vapor interface from density functional theory-based molecular dynamics simulations. J. Phys. Chem. Lett. 4:83–87 [Google Scholar]
  32. Ishiyama T, Morita A. 32.  2009. Analysis of anisotropic local field in sum frequency generation spectroscopy with the charge response kernel water model. J. Chem. Phys. 131:244714 [Google Scholar]
  33. Ishiyama T, Sokolov VV, Morita A. 33.  2011. Molecular dynamics simulation of liquid methanol. I. Molecular modeling including C–H vibration and Fermi resonance. J. Chem. Phys. 134:024509 [Google Scholar]
  34. Ishiyama T, Sokolov VV, Morita A. 34.  2011. Molecular dynamics simulation of liquid methanol. II. Assignments of infrared, Raman, and SFG spectra for C–H stretching region of methanol. J. Chem. Phys. 134:024510 [Google Scholar]
  35. Ishiyama T, Morita A. 35.  2011. Molecular dynamics simulation of sum frequency generation spectra of aqueous sulfuric acid solution. J. Phys. Chem. C 115:13704–16 [Google Scholar]
  36. Imamura T, Ishiyama T, Morita A. 36.  2014. Molecular dynamics analysis of NaOH aqueous solution surface and the sum frequency generation spectra: Is surface OH detected by SFG spectroscopy?. J. Phys. Chem. C 118:29017–27 [Google Scholar]
  37. Imamura T, Mizukoshi Y, Ishiyama T, Morita A. 37.  2012. Surface structures of NaF and Na2SO4 aqueous solutions: specific effects of hard ions on surface vibrational spectra. J. Phys. Chem. C 116:11082–90 [Google Scholar]
  38. Kawaguchi T, Shiratori K, Henmi Y, Ishiyama T, Morita A. 38.  2012. Mechanisms of sum frequency generation from liquid benzene: symmetry breaking at interface and bulk contribution. J. Phys. Chem. C 116:13169–82 [Google Scholar]
  39. Morita A, Kato S. 39.  2002. The charge response kernel with modified electrostatic potential charge model. J. Phys. Chem. A 106:3909–16 [Google Scholar]
  40. Ishida T, Morita A. 40.  2006. Extended treatment of charge response kernel comprising the density functional theory and charge regulation procedures. J. Chem. Phys. 125:074112 [Google Scholar]
  41. Morita A, Kato S. 41.  1998. Molecular dynamics simulation with the charge response kernel: diffusion dynamics of pyrazine and pyrazinyl radical in methanol. J. Chem. Phys. 108:6809–18 [Google Scholar]
  42. Wilson EB Jr., Decius JC, Cross PC. 42.  Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra. New York: Dover
  43. Jungwirth P, Finlayson-Pitts BJ, Tobias DJ. 43.  2006. Chem. Rev. 106
  44. Du Q, Superfine R, Freysz E, Shen YR. 44.  1993. Vibrational spectroscopy of water at the vapor/water interface. Phys. Rev. Lett. 70:2313–16 [Google Scholar]
  45. Du Q, Freysz E, Shen YR. 45.  1994. Surface vibrational spectroscopic studies of hydrogen bonding and hydrophobicity. Science 264:826–28 [Google Scholar]
  46. Raymond EA, Tarbuck TL, Brown MG, Richmond GL. 46.  2003. Hydrogen-bonding interactions at the vapor/water interface investigated by vibrational sum-frequency spectroscopy of HOD/H2O/D2O mixtures and molecular dynamics simulations. J. Phys. Chem. B 107:546–56 [Google Scholar]
  47. Liu D, Ma G, Levering LM, Allen HC. 47.  2004. Vibrational spectroscopy of aqueous sodium halide solutions and air-liquid interfaces: observation of increased interfacial depth. J. Phys. Chem. B 108:2252–60 [Google Scholar]
  48. Gan W, Wu D, Zhang Z, Feng R, Wang H. 48.  2006. Polarization and experimental configuration analyses of sum frequency generation vibrational spectra, structure, and orientational motion. J. Chem. Phys. 124:114705 [Google Scholar]
  49. Sovago M, Campen RK, Wurpel GWH, Müller M, Bakker HJ, Bonn M. 49.  2008. Vibrational response of hydrogen-bonded interfacial water is dominated by intramolecular coupling. Phys. Rev. Lett. 100:173901 [Google Scholar]
  50. Verreault D, Hua W, Allen HC. 50.  2012. From conventional to phase-sensitive vibrational sum frequency generation spectroscopy: probing water organization at aqueous interfaces. J. Phys. Chem. Lett. 3:3012–28 [Google Scholar]
  51. Perry A, Neipert C, Space B, Moore PB. 51.  2006. Theoretical modeling of interface specific vibrational spectroscopy: methods and applications to aqueous interfaces. Chem. Rev. 106:1234–58 [Google Scholar]
  52. Skinner JL, Pieniazek PA, Gruenbaum SM. 52.  2012. Vibrational spectroscopy of water at interfaces. Acc. Chem. Res. 45:93–100 [Google Scholar]
  53. Nagata Y, Pool R, Backus EHG, Bonn M. 53.  2012. Nuclear quantum effects affect bond orientation of water at the water–vapor interface. Phys. Rev. Lett. 109:226101 [Google Scholar]
  54. Roy S, Hore D. 54.  2012. Simulated structure and nonlinear vibrational spectra of water next to hydrophobic and hydrophilic solid surfaces. J. Phys. Chem. C 116:22867–77 [Google Scholar]
  55. Wan Q, Galli G. 55.  2015. First-principles framework to compute sum-frequency generation vibrational spectra of semiconductors and insulators. Phys. Rev. Lett. 115:246404 [Google Scholar]
  56. Medders GR, Paesani F. 56.  2016. Dissecting the molecular structure of the air/water interface from quantum simulations of the sum-frequency generation spectrum. J. Am. Chem. Soc. 138:3912–19 [Google Scholar]
  57. Nihonyanagi S, Kusaka R, Inoue K, Adhikari A, Yamaguchi S, Tahara T. 57.  2015. Accurate determination of complex χ(2) spectrum of the air/water interface. J. Chem. Phys. 143:124707 [Google Scholar]
  58. Yamaguchi S. 58.  2015. Development of single-channel heterodyne-detected sum frequency generation spectroscopy and its application to the water/vapor interface. J. Chem. Phys. 143:034202 [Google Scholar]
  59. Bertie JE, Lan Z. 59.  1996. Infrared intensities of liquids XX: the intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O(I) at 25°C between 15,000 and 1 cm−1. Appl. Spectrosc. 50:1047–57 [Google Scholar]
  60. Ji N, Ostroverkhov V, Tian CS, Shen YR. 60.  2008. New information on water interfacial structure revealed by phase-sensitive surface spectroscopy. Phys. Rev. Lett. 100:096102 [Google Scholar]
  61. Pieniazek P, Tainter C, Skinner J. 61.  2011. Surface of liquid water: three-body ineractions and vibrational sum-frequency spectroscopy. J. Am. Chem. Soc. 133:10360–63 [Google Scholar]
  62. Pieniazek P, Tainter C, Skinner J. 62.  2011. Interpretation of the water surface vibrational sum-frequency spectrum. J. Chem. Phys. 135:044701 [Google Scholar]
  63. Nihonyanagi S, Ishiyama T, Lee T, Yamaguchi S, Bonn M. 63.  et al. 2011. Unified molecular view of air/water interface based on experimental and theoretical χ(2) spectra of isotopically diluted water surface. J. Am. Chem. Soc. 133:16875–80 [Google Scholar]
  64. Johnson CM, Baldelli S. 64.  2014. Vibrational sum frequency spectroscopy studies of the influence of solutes and phospholipids at vapor/water interfaces relevant to biological and environmental systems. Chem. Rev. 106:8416–46 [Google Scholar]
  65. Nihonyanagi S, Yamaguchi S, Tahara T. 65.  2009. Direct evidence for orientational flip-flop of water molecules at charged interfaces: a heterodyne-detected vibrational sum frequency generation study. J. Chem. Phys. 130:204704 [Google Scholar]
  66. Mondal JA, Nihonyanagi S, Yamaguchi S, Tahara T. 66.  2010. Structure and orientation of water at charged lipid monolayer/water interfaces probed by heterodyne-detected vibrational sum frequency generation spectroscopy. J. Am. Chem. Soc. 132:10656–57 [Google Scholar]
  67. Ong S, Zhao X, Eisenthal KB. 67.  1992. Polarization of water molecules at a charged interface: second harmonic studies of the silica/water interface. Chem. Phys. Lett. 191:327–35 [Google Scholar]
  68. Gragson DE, McCarty BM, Richmond GL. 68.  1997. Ordering of interfacial water molecules at the charged air/water interface observed by vibrational sum frequency generation. J. Am. Chem. Soc. 119:6144–52 [Google Scholar]
  69. Geiger FM. 69.  2009. Second harmonic generation, sum frequency generation, and χ(3): dissecting environmental interfaces with a nonlinear optical Swiss Army knife. Annu. Rev. Phys. Chem. 60:61–83 [Google Scholar]
  70. Chen X, Hua W, Huang Z, Allen HC. 70.  2010. Interfacial water structure associated with phospholipid membranes studied by phase-sensitive vibrational sum frequency generation spectroscopy. J. Am. Chem. Soc. 132:11336–42 [Google Scholar]
  71. Mondal JA, Nihonyanagi S, Yamaguchi S, Tahara T. 71.  2012. Three distinct water structures at a zwitterionic lipid/water interface revealed by heterodyne-detected vibrational sum frequency generation. J. Am. Chem. Soc. 134:7842–50 [Google Scholar]
  72. Hua W, Verreault D, Allen H. 72.  2015. Solvation of calcium–phosphate headgroup complex at the DPPC/aqueous interface. ChemPhysChem 16:3910–15 [Google Scholar]
  73. Ishiyama T, Terada D, Morita A. 73.  2016. Hydrogen-bonding structure at zwitterionic lipid/water interface. J. Phys. Chem. Lett. 7:216–20 [Google Scholar]
  74. Nagata Y, Mukamel S. 74.  2010. Vibrational sum-frequency generation spectroscopy at the water/lipid interface: molecular dynamics simulation study. J. Am. Chem. Soc. 132:6434–42 [Google Scholar]
  75. Re S, Nishima W, Tahara T, Sugita Y. 75.  2014. Mosaic of water orientation structures at a neutral zwitterionic lipid/water interface revealed by molecular dynamics simulations. J. Phys. Chem. Lett. 5:4343–48 [Google Scholar]
  76. Roy S, Gruenbaum SM, Skinner JL. 76.  2014. Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces. J. Chem. Phys. 141:18C502 [Google Scholar]
  77. Ohto T, Backus E, Hsieh C, Sulpizi M, Bonn M, Nagata Y. 77.  2015. Lipid carbonyl groups terminate the hydrogen-bond network of membrane-bound water. J. Phys. Chem. Lett. 6:4499–503 [Google Scholar]
  78. McGuire JA, Shen YR. 78.  2006. Ultrafast vibrational dynamics at water interfaces. Science 313:1945–48 [Google Scholar]
  79. Bonn M, Bakker HJ, Ghosh A, Yamamoto S, Sovago M, Campen RK. 79.  2010. Structural inhomogeneity of interfacial water at lipid monolayers revealed by surface-specific vibrational pump–probe spectroscopy. J. Am. Chem. Soc. 132:14971–78 [Google Scholar]
  80. Hsieh CS, Campen RK, Verde ACV, Bolhuis P, Nienhuys HK, Bonn M. 80.  2011. Ultrafast reorientation of dangling OH groups at the air–water interface using femtosecond vibrational spectroscopy. Phys. Rev. Lett. 107:116102 [Google Scholar]
  81. Hsieh CS, Campen RK, Okuno M, Backus EHG, Nagata Y, Bonn M. 81.  2013. Mechanism of vibrational energy dissipation of free OH groups at the air/water interface. PNAS 110:18780–85 [Google Scholar]
  82. Ghosh A, Smits M, Bredenbeck J, Bonn M. 82.  2007. Membrane-bound water is energetically decoupled from nearby bulk water: an ultrafast surface-specific investigation. J. Am. Chem. Soc. 129:9608–09 [Google Scholar]
  83. Eftekhari-Bafrooei A, Borguet E. 83.  2009. Effect of surface charge on the vibrational dynamics of interfacial water. J. Am. Chem. Soc. 131:12034–35 [Google Scholar]
  84. Singh P, Nihonyanagi S, Yamaguchi S, Tahara T. 84.  2013. Ultrafast vibrational dynamics of hydrogen bond network terminated at the air/water interface: a two-dimensional heterodyne-detected vibrational sum frequency generation study. J. Chem. Phys. 139:161101 [Google Scholar]
  85. Hsieh CS, Okuno M, Hunger J, Backus EHG, Nagata Y, Bonn M. 85.  2014. Aqueous heterogeneity at the air/water interface revealed by 2D-HD-SFG spectroscopy. Angew. Chem. Int. Ed. 53:8146–49 [Google Scholar]
  86. Nagata Y, Mukamel S. 86.  2011. Spectral diffusion at the water/lipid interface revealed by two-dimensional fourth-order optical spectroscopy: a classical simulation study. J. Am. Chem. Soc. 133:3276–79 [Google Scholar]
  87. Ni Y, Gruenbaum SM, Skinner JL. 87.  2013. Slow hydrogen-bond switching dynamics at the water surface revealed by theoretical two-dimensional sum-frequency spectroscopy. PNAS 110:1992–98 [Google Scholar]
  88. Inoue K, Ishiyama T, Nihonyanagi S, Yamaguchi S, Morita A, Tahara T. 88.  2016. Efficient spectral diffusion at the air/water interface revealed by femtosecond time-resolved heterodyne-detected vibrational sum frequency generation spectroscopy. J. Phys. Chem. Lett. 7:1811–15 [Google Scholar]
  89. Ishiyama T, Morita A, Tahara T. 89.  2015. Molecular dynamics study of two-dimensional sum frequency generation spectra at vapor/water interface. J. Chem. Phys. 142:212407 [Google Scholar]
  90. Hamm P, Zanni MT. 90.  2011. Concepts and Methods of 2D Infrared Spectroscopy Cambridge, UK: Cambridge Univ. Press
  91. Wang J, Chen X, Clarke ML, Chen Z. 91.  2005. Detection of chiral sum frequency generation vibrational spectra of proteins and peptides at interfaces in situ. PNAS 102:4978–83 [Google Scholar]
  92. Liu H, Tong Y, Kuwata N, Osawa M, Kawamura J, Ye S. 92.  2009. Adsorption of propylene carbonate (PC) on the LiCoO2 surface investigated by nonlinear vibrational spectroscopy. J. Phys. Chem. C 113:20531–34 [Google Scholar]
  93. Nicolau BG, García-Rey N, Dryzhakov B, Dlott DD. 93.  2015. Interfacial processes of a model lithium ion battery anode observed, in situ, with vibrational sum-frequency generation spectroscopy. J. Phys. Chem. C 119:10227–33 [Google Scholar]
  94. Yan ECY, Fu L, Wang Z, Liu W. 94.  2014. Biological macromolecules at interfaces probed by chiral vibrational sum frequency generation spectroscopy. Chem. Rev. 114:8471–98 [Google Scholar]
  95. Zhang D, Gutow J, Eisenthal KB. 95.  1994. Vibrational spectra, orientations, and phase transitions in long-chain amphiphiles at the air/water interface: probing the head and tail groups by sum frequency generation. J. Phys. Chem. 98:13729–34 [Google Scholar]
  96. Shultz MJ, Bisson P, Groenzin H, Li I. 96.  2010. Multiplexed polarization spectroscopy: measuring surface hyperpolarizability orientation. J. Chem. Phys. 133:054702 [Google Scholar]
  97. Bader JS, Berne BJ. 97.  1994. Quantum and classical relaxation rates from classical simulations. J. Chem. Phys. 100:8359–66 [Google Scholar]
  98. Ma G, Allen HC. 98.  2003. Surface studies of aqueous methanol solutions by vibrational broad bandwidth sum frequency generation spectroscopy. J. Phys. Chem. B 107:6343–49 [Google Scholar]
  99. Hirose C, Akamatsu N, Domen K. 99.  1992. Formulas for the analysis of surface sum-frequency generation spectrum by CH. J. Chem. Phys. 96:997–1004 [Google Scholar]
  100. Hirose C, Yamamoto H, Akamatsu N, Domen K. 100.  1993. Orientation analysis by simulation of vibrational sum frequency generation spectrum: CH stretching bands of the methyl group. J. Phys. Chem. 97:10064–69 [Google Scholar]
  101. Ishihara T, Ishiyama T, Morita A. 101.  2015. Surface structure of methanol/water solutions via sum-frequency orientational analysis and molecular dynamics simulation. J. Phys. Chem. C 119:9879–89 [Google Scholar]
  102. Wolfrum K, Graener H, Laubereau A. 102.  1993. Sum-frequency vibrational spectroscopy at the liquid–air interface of methanol. Water solutions. Chem. Phys. Lett. 213:41–46 [Google Scholar]
  103. Huang JY, Wu MH. 103.  1994. Nonlinear optical studies of binary mixtures of hydrogen bonded liquids. Phys. Rev. E 50:3737–46 [Google Scholar]
  104. Chen H, Gan W, Lu R, Guo Y, Wang HF. 104.  2005. Determination of structure and energetics for Gibbs surface adsorption layers of binary liquid mixture 2. Methanol + water. J. Phys. Chem. B 109:8064–75 [Google Scholar]
  105. Sung J, Park K, Kim D. 105.  2005. Surfaces of alcohol–water mixtures studied by sum-frequency generation vibrational spectroscopy. J. Phys. Chem. B 109:18507–14 [Google Scholar]
  106. Jubb AM, Hua W, Allen HC. 106.  2012. Environmental chemistry at vapor/water interfaces: insights from vibrational sum frequency generation spectroscopy. Annu. Rev. Phys. Chem. 63:107–30 [Google Scholar]
  107. Paul S, Chandra A. 107.  2005. Hydrogen bond properties and dynamics of liquid–vapor inter faces of aqueous methanol solutions. J. Chem. Theory Comput. 1:1221–31 [Google Scholar]
  108. Hommel EL, Allen HC. 108.  2003. The air-liquid interface of benzene, toluene, m-xylene, and mesitylene: a sum frequency, Raman, and infrared spectroscopic study. Analyst 128:750–55 [Google Scholar]
  109. Matsuzaki K, Nihonyanagi S, Yamaguchi S, Nagata T, Tahara T. 109.  2013. Vibrational sum frequency generation by the quadrupolar mechanism at the nonpolar benzene/air interface. J. Phys. Chem. Lett. 4:1654–58 [Google Scholar]
  110. Shiratori K, Morita A. 110.  2012. Theory of quadrupole contributions from interface and bulk in second-order optical processes. Bull. Chem. Soc. Jpn. 85:1061–76 [Google Scholar]
  111. Yu L, Liu H, Wang Y, Kuwata N, Osawa M. 111.  et al. 2013. Preferential adsorption of solvents on the cathode surface of lithium ion batteries. Angew. Chem. Int. Ed. 52:5753–56 [Google Scholar]
  112. Horowitz Y, Han HL, Ross PN, Somorjai GA. 112.  2016. In situ potentiodynamic analysis of the electrolyte/silicon electrodes interface reactions—a sum frequency generation vibrational spectroscopy study. J. Am. Chem. Soc. 138:726–29 [Google Scholar]
  113. Wang L, Peng Q, Ye S, Morita A. 113.  2016. Surface structure of organic carbonate liquids investigated by molecular dynamics simulation and sum frequency generation spectroscopy. J. Phys. Chem. C 120:15185–97 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error