Kohn–Sham density functional theory has become the leading electronic structure method for atoms, molecules, and extended systems. It is in principle exact, but any practical application must rely on density functional approximations (DFAs) for the exchange-correlation energy. Here we emphasize four aspects of the subject: () philosophies and strategies for developing DFAs; () classification of DFAs; () major sources of error in existing DFAs; and () some recent developments and future directions.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Parr RG, Yang W. 1.  1989. Density Functional Theory of Atoms and Molecules. New York: Oxford Univ. Press
  2. Dreizler RM, Gross EKU. 2.  1990. Density Functional Theory. Berlin: Springer
  3. Perdew JP, Kurth S. 3.  2003. Density functionals for non-relativistic Coulomb systems in the new century. A Primer in Density Functional Theory C Fiolhais, F Nogueira, M Marques 1–55 Berlin: Springer [Google Scholar]
  4. Thomas LH. 4.  1927. The calculation of atomic fields. Math. Proc. Camb. Philos. Soc. 23:542–48 [Google Scholar]
  5. Fermi E. 5.  1928. Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente. Z. Phys. 48:73–79 [Google Scholar]
  6. Slater JC. 6.  1951. A simplification of the Hartree–Fock method. Phys. Rev. 81:385–90 [Google Scholar]
  7. Dirac PAM. 7.  1930. Note on exchange phenomena in the Thomas atom. Math. Proc. Camb. Philos. Soc. 26:376–85 [Google Scholar]
  8. Hohenberg P, Kohn W. 8.  1964. Inhomogeneous electron gas. Phys. Rev. 136:B864–71 [Google Scholar]
  9. Levy M. 9.  1979. Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. PNAS 76:6062–65 [Google Scholar]
  10. Kohn W, Sham LJ. 10.  1965. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140:A1133–38 [Google Scholar]
  11. Sharp RT, Horton GK. 11.  1953. A variational approach to the unipotential many-electron problem. Phys. Rev. 90:317 [Google Scholar]
  12. Talman JD, Shadwick WF. 12.  1976. Optimized effective atomic central potential. Phys. Rev. A 14:36–40 [Google Scholar]
  13. Levy M. 13.  2010. On the foundations of density-functional theory. Presented at Int. Workshop Quantum Syst. Chem. Phys., 15th, Cambridge Univ., Aug. 31–Sep. 5, Cambridge, UK At this workshop, Levy introduced the term DFA (density functional approximation).
  14. Cohen AJ, Mori-Sánchez P, Yang W. 14.  2011. Challenges for density functional theory. Chem. Rev. 112:289–320 [Google Scholar]
  15. Harris J, Jones RO. 15.  1974. The surface energy of a bounded electron gas. J. Phys. F 4:1170–86 [Google Scholar]
  16. Gunnarsson O, Lundqvist BI. 16.  1976. Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys. Rev. B 13:4274–98 [Google Scholar]
  17. Langreth DC, Perdew JP. 17.  1977. Exchange-correlation energy of a metallic surface: wave-vector analysis. Phys. Rev. B 15:2884–901 [Google Scholar]
  18. Görling A, Levy M. 18.  1993. Correlation-energy functional and its high-density limit obtained from a coupling-constant perturbation expansion. Phys. Rev. B 47:13105–13 [Google Scholar]
  19. Görling A, Levy M. 19.  1994. Exact Kohn–Sham scheme based on perturbation theory. Phys. Rev. A 50:196–204 [Google Scholar]
  20. Levy M, Perdew JP. 20.  1985. Hellmann–Feynman, virial, and scaling requisites for the exact universal density functionals. Shape of the correlation potential and diamagnetic susceptibility for atoms. Phys. Rev. A 32:2010–21 [Google Scholar]
  21. Levy M. 21.  1991. Density-functional exchange correlation through coordinate scaling in adiabatic connection and correlation hole. Phys. Rev. A 43:4637–46 [Google Scholar]
  22. Su NQ, Xu X. 22.  2014. Construction of a parameter-free doubly hybrid density functional from adiabatic connection. J. Chem. Phys. 140:18A512 [Google Scholar]
  23. Su NQ, Xu X. 23.  2016. The XYG3 type of doubly hybrid density functionals. WIREs Comput. Mol. Sci. 6:721–47 [Google Scholar]
  24. Ernzerhof M, Perdew JP, Burke K. 24.  1996. Density functionals: Where do they come from, why do they work?. Density Functional Theory RF Nalewajski 1–30 Berlin: Springer [Google Scholar]
  25. Burke K, Perdew JP, Ernzerhof M. 25.  1997. Why the generalized gradient approximation works and how to go beyond it. Int. J. Quantum Chem. 61:287–93 [Google Scholar]
  26. Levy M. 26.  2016. Mathematical thoughts in DFT. J. Int. Quantum Chem. 116:802–804 [Google Scholar]
  27. Curtiss L, Redfern P, Raghavachari K. 27.  2011. Gn theory. WIREs Comput. Mol. Sci. 1:810–25 [Google Scholar]
  28. Becke AD. 28.  1993. Density-functional thermochemistry 3: the role of exact exchange. J. Chem. Phys. 98:5648–52 [Google Scholar]
  29. Becke AD. 29.  1988. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38:3098–100 [Google Scholar]
  30. Lee CT, Yang WT, Parr RG. 30.  1988. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron-density. Phys. Rev. B 37:785–89 [Google Scholar]
  31. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ. 31.  1994. Ab-initio calculation of vibrational absorption and circular-dichroism spectra using density-functional force-fields. J. Phys. Chem. 98:11623–27 [Google Scholar]
  32. Ernzerhof M, Scuseria GE. 32.  1999. Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 110:5029–36 [Google Scholar]
  33. Adamo C, Barone V. 33.  1999. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110:6158–70 [Google Scholar]
  34. Heyd J, Scuseria G, Ernzerhof M. 34.  2003. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118:8207–15 [Google Scholar]
  35. Yanai T, Tew DP, Handy NC. 35.  2004. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393:51–57 [Google Scholar]
  36. Cohen AJ, Mori-Sánchez P, Yang WT. 36.  2007. Development of exchange-correlation functionals with minimal many-electron self-interaction error. J. Chem. Phys. 126:191109 [Google Scholar]
  37. Chai JD, Head-Gordon M. 37.  2008. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10:6615–20 [Google Scholar]
  38. Handy NC, Cohen A. 38.  2001. Left-right correlation energy. Mol. Phys. 99:403–12 [Google Scholar]
  39. Xu X, III Goddard WA. 39.  2004. Assessment of Handy–Cohen optimized exchange density functional (OPTX). J. Phys. Chem. A 108:8495–504 [Google Scholar]
  40. Xu X, III Goddard WA. 40.  2004. The extended Perdew–Burke–Ernzerhof functional with improved accuracy for thermodynamic and electronic properties of molecular systems. J. Chem. Phys. 121:4068–82 [Google Scholar]
  41. Xu X, III Goddard WA. 41.  2004. The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. PNAS 101:2673–77 [Google Scholar]
  42. Xu X, Zhang QS, Muller RP, III Goddard WA. 42.  2005. An extended hybrid density functional (X3LYP) with improved descriptions of nonbond interactions and thermodynamic properties of molecular systems. J. Chem. Phys. 122:014105 [Google Scholar]
  43. Goerigk L, Grimme S. 43.  2010. A general database for main group thermochemistry, kinetics, and noncovalent interactions—assessment of common and reparameterized (meta-)GGA density functionals. J. Chem. Theory Comput. 6:107–26 [Google Scholar]
  44. Goerigk L, Grimme S. 44.  2011. Efficient and accurate double-hybrid-meta-GGA density functionals—evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions. J. Chem. Theory Comput. 7:291–309 [Google Scholar]
  45. Korth M, Grimme S. 45.  2009. “Mindless” DFT benchmarking. J. Chem. Theory Comput. 5:993–1003 [Google Scholar]
  46. Karton A, Tarnopolsky A, Lamere JF, Schatz GC, Martin JML. 46.  2008. Highly accurate first-principles benchmark data sets for the parametrization and validation of density functional and other approximate methods. Derivation of a robust, generally applicable, double-hybrid functional for thermochemistry and thermochemical kinetics. J. Phys. Chem. A 112:12868–86 [Google Scholar]
  47. Zhao Y, Truhlar DG. 47.  2006. Assessment of density functionals for π systems: energy differences between cumulenes and poly-ynes; proton affinities, bond length alternation, and torsional potentials of conjugated polyenes; and proton affinities of conjugated Shiff bases. J. Phys. Chem. A 110:10478–86 [Google Scholar]
  48. Zhao Y, González-García N, Truhlar DG. 48.  2005. Benchmark database of barrier heights for heavy atom transfer, nucleophilic substitution, association, and unimolecular reactions and its use to test theoretical methods. J. Phys. Chem. A 109:2012–18 [Google Scholar]
  49. Grimme S, Djukic J-P. 49.  2010. The crucial role of dispersion of nonbridged binuclear Os → Cr and Os → W adducts. Inorg. Chem. 49:2911–19 [Google Scholar]
  50. Neese F, Schwabe T, Kossmann S, Schirmer B, Grimme S. 50.  2009. Assessment of orbital-optimized, spin-component scaled second-order many-body perturbation theory for thermochemistry and kinetics. J. Chem. Theory Comput. 5:3060–73 [Google Scholar]
  51. Huenerbein R, Schirmer B, Moellmann J, Grimme S. 51.  2010. Effects of London dispersion on the isomerization reactions of large organic molecules: a density functional benchmark study. Phys. Chem. Chem. Phys. 12:6940–48 [Google Scholar]
  52. Grimme S, Steinmetz M, Korth M. 52.  2007. How to compute isomerization energies of organic molecules with quantum chemical methods. J. Org. Chem. 72:2118–26 [Google Scholar]
  53. Vintonyak VV, Warburg K, Kruse H, Grimme S, Hübel K. 53.  et al. 2010. Identification of thiazolidinones spiro-fused to indolin-2-ones as potent and selective inhibitors of the mycobacterium tuberculosis protein tyrosine phosphatase B. Angew. Chem. Int. Ed. 49:5902–5 [Google Scholar]
  54. Johnson ER, Mori-Sánchez P, Cohen AJ, Yang W. 54.  2008. Delocalization errors in density functionals and implications for main-group thermochemistry. J. Chem. Phys. 129:204112 [Google Scholar]
  55. Zhao Y, Tishchenko O, Gour JR, Li W, Lutz JJ. 55.  et al. 2009. Thermochemical kinetics for multireference systems: addition reactions of ozone. J. Phys. Chem. A 113:5786–99 [Google Scholar]
  56. Krieg H, Grimme S. 56.  2010. Thermochemical benchmarking of hydrocarbon bond separation reaction energies: Jacob's ladder is not reversed!. Mol. Phys. 108:2655–66 [Google Scholar]
  57. Jurečka P, Šponer J, Černý J, Hobza P. 57.  2006. Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Phys. Chem. Chem. Phys. 8:1985–93 [Google Scholar]
  58. Bryantsev VS, Diallo MS, van Duin ACT, III Goddard WA. 58.  2009. Evaluation of B3LYP, X3LYP, and M06-class density functionals for predicting the binding energies of neutral, protonated, and deprotonated water clusters. J. Chem. Theory Comput. 5:1016–26 [Google Scholar]
  59. Gruzman D, Karton A, Martin JML. 59.  2009. Performance of ab initio and density functional methods for conformational equilibria of CnH2n+2 alkane isomers (n = 4–8). J. Phys. Chem. A 113:11974–83 [Google Scholar]
  60. Wilke JJ, Lind MC, III Schaefer HF, Császár AG, Allen WD. 60.  2009. Conformers of gaseous cysteine. J. Chem. Theory Comput. 5:1511–23 [Google Scholar]
  61. Reha D, Valdes H, Vondrasek J, Hobza P, Abu-Riziq A. 61.  et al. 2005. Structure and IR spectrum of phenylalanyl-glycyl-glycine tripetide in the gas-phase: IR/UV experiments, ab initio quantum chemical calculations, and molecular dynamic simulations. Chem. Eur. J. 11:6803–17 [Google Scholar]
  62. Zhao Y, Truhlar DG. 62.  2008. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120:215–41 [Google Scholar]
  63. Peverati R, Truhlar DG. 63.  2014. Quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Phil. Trans. R. Soc. A 372:20120476 [Google Scholar]
  64. Luo S, Zhao Y, Truhlar DG. 64.  2011. Validation of electronic structure methods for isomerization reactions of large organic molecules. Phys. Chem. Chem. Phys. 13:13683–89 [Google Scholar]
  65. Zhao Y, Truhlar DG. 65.  2005. Benchmark databases for nonbonded interactions and their use to test density functional theory. J. Chem. Theory Comput. 1:415–32 [Google Scholar]
  66. Peverati R, Truhlar DG. 66.  2012. M11-L: a local density functional that provides improved accuracy for electronic structure calculations in chemistry and physics. J. Phys. Chem. Lett. 3:117–24 [Google Scholar]
  67. Peverati R, Truhlar DG. 67.  2012. Exchange-correlation functional with good accuracy for both structural and energetic properties while depending only on the density and its gradient. J. Chem. Theory Comput. 8:2310–19 [Google Scholar]
  68. Peverati R, Truhlar DG. 68.  2012. Performance of the M11-L density functional for bandgaps and lattice constants of unary and binary semiconductors. J. Chem. Phys. 136:134704 [Google Scholar]
  69. Perdew JP, Burke K, Ernzerhof M. 69.  1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77:3865–68 [Google Scholar]
  70. Zhao Y, Truhlar DG. 70.  2006. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys. 125:194101 [Google Scholar]
  71. Peverati R, Truhlar DG. 71.  2012. An improved and broadly accurate local approximation to the exchange-correlation density functional: the MN12-L functional for electronic structure calculations in chemistry and physics. Phys. Chem. Chem. Phys. 14:13171–74 [Google Scholar]
  72. Tao J, Perdew JP, Staroverov VN, Scuseria GE. 72.  2002. Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 91:146401 [Google Scholar]
  73. Perdew JP, Ruzsinszky A, Csonka GI, Constantin LA, Sun J. 73.  2009. Workhorse semilocal density functional for condensed matter physics and quantum chemistry. Phys. Rev. Lett. 103:026403 [Google Scholar]
  74. Sun J, Ruzsinszky A, Perdew JP. 74.  2015. Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett. 115:036402 [Google Scholar]
  75. Becke AD. 75.  1993. A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 98:1372–77 [Google Scholar]
  76. Zhao Y, Lynch BJ, Truhlar DG. 76.  2004. Doubly hybrid meta DFT: new multi-coefficient correlation and density functional methods for thermochemistry and thermochemical kinetics. J. Phys. Chem. A 108:4786–91 [Google Scholar]
  77. Grimme S. 77.  2006. Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 124:034108 [Google Scholar]
  78. Zhang Y, Xu X, III Goddard WA. 78.  2009. Doubly hybrid density functional for accurate descriptions of nonbond interactions, thermochemistry, and thermochemical kinetics. PNAS 106:4963–68 [Google Scholar]
  79. Zhang IY, Xu X, Jung Y, III Goddard WA. 79.  2011. A fast doubly hybrid density functional method close to chemical accuracy using a local opposite spin ansatz. PNAS 108:19896–900 [Google Scholar]
  80. Zhang IY, Su NQ, Brémond ÉAG, Adamo C, Xu X. 80.  2012. Doubly hybrid density functional xDH-PBE0 from a parameter-free global hybrid model PBE0. J. Chem. Phys. 136:174103 [Google Scholar]
  81. Zhang IY, Xu X. 81.  2013. Reaching a uniform accuracy for complex molecular systems: long-range-corrected XYG3 doubly hybrid density functional. J. Phys. Chem. Lett. 4:1669–75 [Google Scholar]
  82. Zhang IY, Luo Y, Xu X. 82.  2010. XYG3s: speedup of the XYG3 fifth-rung density functional with scaling-all-correlation method. J. Chem. Phys. 132:194105 [Google Scholar]
  83. Zhang IY, Luo Y, Xu X. 83.  2010. Basis set dependence of the doubly hybrid XYG3 functional. J. Chem. Phys. 133:104105 [Google Scholar]
  84. Sharkas K, Toulouse J, Savin A. 84.  2011. Double-hybrid density-functional theory made rigorous. J. Chem. Phys. 134:064113 [Google Scholar]
  85. Perdew JP, Schmidt K. 85.  2001. Jacob's ladder of density functional approximations for the exchange-correlation energy. AIP Conf. Proc. 577:1–20 [Google Scholar]
  86. Perdew JP. 86.  2013. Climbing the ladder of density functional approximations. MRS Bull 38:743–50 [Google Scholar]
  87. Ziegler T. 87.  1991. Approximate density functional theory as a practical tool in molecular energetics and dynamics. Chem. Rev. 91:651–67 [Google Scholar]
  88. Jones RO, Gunnarsson O. 88.  1989. The density functional formalism, its applications and prospects. Rev. Mod. Phys. 61:689–746 [Google Scholar]
  89. Perdew JP, Wang Y. 89.  1986. Accurate and simple density functional for the electronic exchange energy-generalized gradient approximation. Phys. Rev. B 33:8800–2 [Google Scholar]
  90. Perdew JP. 90.  1986. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 33:8822–24 [Google Scholar]
  91. Becke AD. 91.  1986. Density functional calculations of molecular bond energies. J. Chem. Phys. 84:4524–29 [Google Scholar]
  92. Lieb E. 92.  1983. Density functionals for Coulomb-systems. Int. J. Quantum Chem. 24:243–77 [Google Scholar]
  93. Colle R, Salvetti D. 93.  1979. Approximate calculation of the correlation energy for the closed and open-shells. Theor. Chim. Acta 53:55–63 [Google Scholar]
  94. Engel E, Chevary JA, Macdonald LD, Vosko SH. 94.  1992. Asymptotic properties of the exchange energy density and the exchange potential of finite systems: relevance for generalized gradient approximations. Z. Phys. D 23:7–14 [Google Scholar]
  95. Becke AD. 95.  2014. Fifty years of density-functional theory in chemical physics. J. Chem. Phys. 140:18A301 [Google Scholar]
  96. Teale AM, Coriani S, Helgaker T. 96.  2010. Accurate calculation and modeling of the adiabatic connection in density functional theory. J. Chem. Phys. 132:164115 [Google Scholar]
  97. Levy M, March NH, Handy NC. 97.  1996. On the adiabatic connection method, and scaling of electron–electron interactions in the Thomas–Fermi limit. J. Chem. Phys. 104:1989–92 [Google Scholar]
  98. Jaramillo J, Scuseria GE, Ernzerhof M. 98.  2003. Local hybrid functionals. J. Phys. Chem. 118:1068–73 [Google Scholar]
  99. Leininger T, Stoll H, Werner H-J, Savin A. 99.  1997. Combining long-range configuration interaction with short-range density functionals. Chem. Phys. Lett. 275:151–60 [Google Scholar]
  100. Iikura H, Tsuneda T, Yanai T, Hirao K. 100.  2001. A long-range correction scheme for generalized-gradient-approximation exchange functionals. J. Chem. Phys. 115:3540–44 [Google Scholar]
  101. Baer R, Livshits E, Salzner U. 101.  2010. Tuned range-separated hybrids in density functional theory. Annu. Rev. Phys. Chem. 61:85–109 [Google Scholar]
  102. Ernzerhof M. 102.  1996. Construction of the adiabatic connection. Chem. Phys. Lett. 263:499–506 [Google Scholar]
  103. Zhang IY, Wu JM, Xu X. 103.  2010. Extending the reliability and applicability of B3LYP. Chem. Comm. 46:3057–70 [Google Scholar]
  104. Zhang IY, Xu X. 104.  2011. Doubly hybrid density functional for accurate description of thermochemistry, thermochemical kinetics and nonbonded interactions. Int. Rev. Phys. Chem. 30:115–60 [Google Scholar]
  105. Zhang IY, Xu X. 105.  2014. A New-Generation Density Functional: Towards Chemical Accuracy for Chemistry of Main Group Elements. Berlin: Springer
  106. Su NQ, Xu X. 106.  2015. Toward the construction of parameter-free doubly hybrid density functionals. Int. J. Quantum Chem. 115:589–95 [Google Scholar]
  107. Grimme S. 107.  2003. Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies. J. Chem. Phys. 118:9095–102 [Google Scholar]
  108. Jung YS, Lochan RC, Dutoi AD, Head-Gordon M. 108.  2004. Scaled opposite-spin second order Møller–Plesset correlation energy: an economical electronic structure method. J. Chem. Phys. 121:9793–802 [Google Scholar]
  109. Peverati R, Head-Gordon M. 109.  2013. Orbital optimized double-hybrid density functionals. J. Chem. Phys. 139:024110 [Google Scholar]
  110. Callen HB, Welton TA. 110.  1951. Irreversibility and generalized noise. Phys. Rev. 83:34–40 [Google Scholar]
  111. Eshuis H, Bates JE, Furche F. 111.  2012. Electron correlation methods based on the random phase approximation. Theor. Chem. Acc. 131:1084 [Google Scholar]
  112. Ren X, Rinke P, Joas C, Scheffler M. 112.  2012. Random-phase approximation and its applications in computational chemistry and materials science. J. Mater. Sci. 47:7447–71 [Google Scholar]
  113. Furche F. 113.  2017. Random-phase approximation models. Annu. Rev. Phys. Chem. 68:421–45 [Google Scholar]
  114. Wu JM, Xu X. 114.  2008. Improving the B3LYP bond energies by using the X1 method. J. Chem. Phys. 129:164103 [Google Scholar]
  115. Su NQ, Chen J, Sun ZG, Zhang DH, Xu X. 115.  2015. H + H2 quantum dynamics using potential energy surfaces based on the XYG3 type of doubly hybrid density functionals: validation of the density functionals. J. Chem. Phys. 142:084107 [Google Scholar]
  116. Kristyan K, Pulay P. 116.  1994. Can (semi)local density functional theory account for the London dispersion forces?. Chem. Phys. Lett. 229:175–80 [Google Scholar]
  117. Klimes J, Michaelides A. 117.  2012. Advances and challenges in treating van der Waals dispersion forces in density functional theory. J. Chem. Phys. 137:120901 [Google Scholar]
  118. Grimme S, Hansen A, Gerit Brandenburg J, Bannwarth C. 118.  2016. Dispersion-corrected mean-field electronic structure methods. Chem. Rev. 116:5105–54 [Google Scholar]
  119. Ilawe NV, Zimmerman JA, Wong BM. 119.  2015. Breaking badly: DFT-D2 gives sizeable errors for tensile strengths in palladium-hydride solids. J. Chem. Theory Comput. 11:5426–35 [Google Scholar]
  120. Su NQ, Xu X. 120.  2016. Beyond energies: geometry predictions with the XYG3 type of doubly hybrid density functionals. Chem. Comm. 52:13840–60 [Google Scholar]
  121. Brémond E, Savarese M, Su NQ, Pérez-Jiménez AJ, Xu X. 121.  et al. 2016. Benchmarking density functionals on structural parameters of small-/medium-sized organic molecules. J. Chem. Theory Comput. 12:459–65 [Google Scholar]
  122. Witte J, Goldey M, Neaton JB, Head-Gordon M. 122.  2015. Beyond energies: geometries of nonbonded molecular complexes as metrics for assessing electronic structure approaches. J. Chem. Theory Comput. 11:1481–92 [Google Scholar]
  123. Xu X, Alecu IM, Truhlar DG. 123.  2011. How well can modern density functionals predict internuclear distances at transition states?. J. Chem. Theory Comput. 7:1667–76 [Google Scholar]
  124. Su NQ, Zhang IY, Xu X. 124.  2013. Analytic derivatives for the XYG3 type of doubly hybrid density functionals: theory, implementation, and assessment. J. Comput. Chem. 34:1759–74 [Google Scholar]
  125. Su NQ, Adamo C, Xu X. 125.  2013. A comparison of geometric parameters from PBE-based doubly hybrid density functionals PBE0-DH, PBE0-2, and xDH-PBE0. J. Chem. Phys. 139:174106 [Google Scholar]
  126. Grüneis A, Marsman M, Kresse G. 126.  2010. Second-order Møller–Plesset perturbation theory applied to extended systems. II. Structural and energetic properties. J. Chem. Phys. 133:074107 [Google Scholar]
  127. Perdew JP, Zunger A. 127.  1981. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23:5048–79 [Google Scholar]
  128. Ruzsinszky A, Perdew JP, Csonka GI, Vydrov OA, Scuseria GE. 128.  2006. Spurious fractional charge on dissociated atoms: pervasive and resilient self-interaction error of common density functionals. J. Chem. Phys. 125:194112 [Google Scholar]
  129. Perdew JP, Parr RG, Levy M, Balduz JL Jr. 129.  1982. Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys. Rev. Lett. 49:1691–94 [Google Scholar]
  130. Mori-Sánchez P, Cohen AJ, Yang W. 130.  2008. Localization and delocalization errors in density functional theory and implications for band-gap prediction. Phys. Rev. Lett. 100:146401 [Google Scholar]
  131. Cohen AJ, Mori-Sánchez P, Yang W. 131.  2008. Fractional spins and static correlation error in density functional theory. J. Chem. Phys. 129:121104 [Google Scholar]
  132. Su NQ, Yang W, Mori-Sánchez P, Xu X. 132.  2014. Fractional charge behavior and band gap predictions with the XYG3 type of doubly hybrid density functionals. J. Phys. Chem. A 118:9201–11 [Google Scholar]
  133. Su NQ, Xu X. 133.  2015. Error accumulations in adhesive energies of dihydrogen molecular chains: performances of the XYG3 type of doubly hybrid density functionals. J. Phys. Chem. A 119:1590–99 [Google Scholar]
  134. Su NQ, Xu X. 134.  2016. Second-order perturbation theory for fractional occupation systems: applications to ionization potential and electron affinity calculations. J. Chem. Theory Comput. 12:2285–97 [Google Scholar]
  135. Su NQ, Xu X. 135.  2015. Integration approach at the second-order perturbation theory: applications to ionization potential and electron affinity calculations. J. Chem. Theory Comput. 11:4677–88 [Google Scholar]
  136. Becke AD. 136.  2005. Real-space post-Hartree–Fock correlation models. J. Chem. Phys. 122:064101 [Google Scholar]
  137. Becke AD. 137.  2013. Density functionals for static, dynamical, and strong correlation. J. Chem. Phys. 138:074109 [Google Scholar]
  138. Mardirossian N, Head-Gordon M. 138.  2016. ωB97M-V: a combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. J. Chem. Phys. 144:214110 [Google Scholar]
  139. Wu JM, Zhou YW, Xu X. 139.  2015. The X1 family of methods that combines B3LYP with neural network corrections for an accurate yet efficient prediction of thermochemistry. Int. J. Quantum Chem. 115:1021–31 [Google Scholar]
  140. Snyder JC, Rupp M, Hansen K, Mueller K-R, Burke K. 140.  2012. Finding density functionals with machine learning. Phys. Rev. Lett. 108:253002 [Google Scholar]
  141. Perdew JP, Staroverov VN, Tao JM, Scuseria GE. 141.  2008. Density functional with full exact exchange, balanced nonlocality of correlation, and constraint satisfaction. Phys. Rev. A 78:052513 [Google Scholar]
  142. Zheng X, Cohen AJ, Mori-Sánchez P, Hu X, Yang W. 142.  2011. Improving band gap prediction in density functional theory from molecules to solids. Phys. Rev. Lett. 107:026403 [Google Scholar]
  143. Li C, Zheng X, Cohen AJ, Mori-Sánchez P, Yang W. 143.  2015. Local scaling correction for reducing delocalization error in density functional approximations. Phys. Rev. Lett. 107:026403 [Google Scholar]
  144. Fromager E, Toulouse J, Jensen HJA. 144.  2007. On the universality of the long-/short-range separation in multiconfigurational density-functional theory. J. Chem. Phys. 126:074111 [Google Scholar]
  145. Odoh SO, Manni GL, Carlson RK, Truhlar DG, Gagliardi L. 145.  2016. Separated-pair approximation and separated-pair pair-density functional theory. Chem. Sci. 7:2399–413 [Google Scholar]
  146. Cohen AJ, Mori-Sánchez P, Yang W. 146.  2009. Second-order perturbation theory with fractional charges and fractional spins. J. Chem. Theory Comput. 5:786–92 [Google Scholar]
  147. Mori-Sánchez P, Cohen AJ, Yang W. 147.  2012. Failure of the random-phase-approximation correlation energy. Phys. Rev. A 85:042507 [Google Scholar]
  148. van Aggelen H, Yang Y, Yang W. 148.  2013. Exchange-correlation energy from pairing matrix fluctuation and the particle-particle random-phase approximation. Phys. Rev. A 88:030501 [Google Scholar]
  149. Bethe HA, Goldstone J. 149.  1957. Effect of a repulsive core in the theory of complex nuclei. Proc. R. Soc. A 238:551–67 [Google Scholar]
  150. Zhang IY, Rinke P, Scheffler M. 150.  2016. Wave-function inspired density functional applied to the H2/H2+ challenge. New J. Phys. 18:073026 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error