1932

Abstract

Chemical reactions at the gas–surface interface are ubiquitous in the chemical industry as well as in nature. Investigating these processes at a microscopic, quantum state–resolved level helps develop a predictive understanding of this important class of reactions. In this review, we present an overview of the field of quantum state–resolved gas–surface reactivity measurements that explore the role of the initial quantum state on the dissociative chemisorption of a gas-phase reactant incident on a solid surface. Using molecular beams and either quantum state–specific reactant preparation or product detection by laser excitation, these studies have observed mode specificity and bond selectivity as well as steric effects in chemisorption reactions, highlighting the nonstatistical and complex nature of gas–surface reaction dynamics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-052516-044910
2017-05-05
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/physchem/68/1/annurev-physchem-052516-044910.html?itemId=/content/journals/10.1146/annurev-physchem-052516-044910&mimeType=html&fmt=ahah

Literature Cited

  1. Jasinski JM, Meyerson BS, Scott BA. 1.  1987. Mechanistic studies of chemical vapor deposition. Annu. Rev. Phys. Chem. 38:109–40 [Google Scholar]
  2. Chorkendorff I, Niemantsverdriet JW. 2.  2003. Concepts of Modern Catalysis and Kinetics Weinheim, Ger.: Wiley [Google Scholar]
  3. Pakhare D, Spivey J. 3.  2014. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 43:7813–37 [Google Scholar]
  4. Ertl G. 4.  1983. Primary steps in catalytic synthesis of ammonia. J. Vac. Sci. Technol. A 1:1247–53 [Google Scholar]
  5. Rauscher H. 5.  2001. The interaction of silanes with silicon single crystal surfaces: microscopic processes and structures. Surf. Sci. Rep. 42:207–328 [Google Scholar]
  6. Born M, Oppenheimer R. 6.  1927. Quantum theory of molecules. Ann. Phys. 84:457–84 [Google Scholar]
  7. Bartels N, Golibrzuch K, Bartels C, Chen L, Auerbach DJ. 7.  et al. 2014. Dynamical steering in an electron transfer surface reaction: oriented NO(v=3, 0.08 < Ei < 0.89 eV) relaxation in collisions with a Au(111) surface. J. Chem. Phys. 140:054710 [Google Scholar]
  8. Golibrzuch K, Shirhatti PR, Rahinov I, Auerbach DJ, Wodtke AM, Bartels C. 8.  2014. Incidence energy dependent state-to-state time-of-flight measurements of NO(v=3) collisions with Au(111): the fate of incidence vibrational and translational energy. Phys. Chem. Chem. Phys. 16:7602–10 [Google Scholar]
  9. Huang Y, Rettner CT, Auerbach DJ, Wodtke AM. 9.  2000. Vibrational promotion of electron transfer. Science 290:111–14 [Google Scholar]
  10. Grätz F, Engelhart DP, Wagner RJV, Haak H, Meijer G. 10.  et al. 2013. Vibrational enhancement of electron emission in CO (a3Π) quenching at a clean metal surface. Phys. Chem. Chem. Phys. 15:14951–55 [Google Scholar]
  11. Schafer T, Bartels N, Golibrzuch K, Bartels C, Kockert H. 11.  et al. 2013. Observation of direct vibrational excitation in gas-surface collisions of CO with Au(111): a new model system for surface dynamics. Phys. Chem. Chem. Phys. 15:1863–67 [Google Scholar]
  12. Grätz F, Engelhart DP, Wagner RJV, Meijer G, Wodtke AM, Schäfer T. 12.  2014. CO (a3Π) quenching at a metal surface: evidence of an electron transfer mediated mechanism. J. Chem. Phys. 141:044712 [Google Scholar]
  13. Shirhatti PR, Werdecker J, Golibrzuch K, Wodtke AM, Bartels C. 13.  2014. Electron hole pair mediated vibrational excitation in CO scattering from Au(111): incidence energy and surface temperature dependence. J. Chem. Phys. 141:124704 [Google Scholar]
  14. Ran Q, Matsiev D, Auerbach DJ, Wodtke AM. 14.  2007. Observation of a change of vibrational excitation mechanism with surface temperature: HCl collisions with Au(111). Phys. Rev. Lett. 98:237601 [Google Scholar]
  15. Rahinov I, Cooper R, Yuan C, Yang X, Auerbach DJ, Wodtke AM. 15.  2008. Efficient vibrational and translational excitations of a solid metal surface: state-to-state time-of-flight measurements of HCl (v=2, J = 1) scattering from Au(111). J. Chem. Phys. 129:214708 [Google Scholar]
  16. Cooper R, Rahinov I, Yuan C, Yang X, Auerbach DJ, Wodtke AM. 16.  2009. Efficient translational excitation of a solid metal surface: state-to-state translational energy distributions of vibrational ground state HCl scattering from Au(111). J. Vac. Sci. Technol. A 27:907–12 [Google Scholar]
  17. Wodtke AM. 17.  2016. Electronically non-adiabatic influences in surface chemistry and dynamics. Chem. Soc. Rev. 45:3641–57 [Google Scholar]
  18. Golibrzuch K, Bartels N, Auerbach DJ, Wodtke AM. 18.  2015. The dynamics of molecular interactions and chemical reactions at metal surfaces: testing the foundations of theory. Annu. Rev. Phys. Chem. 66:399–425 [Google Scholar]
  19. Rahinov I, Cooper R, Matsiev D, Bartels C, Auerbach DJ, Wodtke AM. 19.  2011. Quantifying the breakdown of the Born–Oppenheimer approximation in surface chemistry. Phys. Chem. Chem. Phys. 13:12680–92 [Google Scholar]
  20. Jiang B, Ren X, Xie D, Guo H. 20.  2012. Enhancing dissociative chemisorption of H2O on Cu(111) via vibrational excitation. PNAS 109:10224–27 [Google Scholar]
  21. Diaz C, Olsen RA, Auerbach DJ, Kroes GJ. 21.  2010. Six-dimensional dynamics study of reactive and non reactive scattering of H2 from Cu(111) using a chemically accurate potential energy surface. Phys. Chem. Chem. Phys. 12:6499–519 [Google Scholar]
  22. Nattino F, Genova A, Guijt M, Muzas AS, Díaz C. 22.  et al. 2014. Dissociation and recombination of D2 on Cu(111): ab initio molecular dynamics calculations and improved analysis of desorption experiments. J. Chem. Phys. 141:124705 [Google Scholar]
  23. Nave S, Tiwari AK, Jackson B. 23.  2014. Dissociative chemisorption of methane on Ni and Pt surfaces: mode-specific chemistry and the effects of lattice motion. J. Phys. Chem. A 118:9615–31 [Google Scholar]
  24. Luntz AC. 24.  2000. A simple model for associative desorption and dissociative chemisorption. J. Chem. Phys. 113:6901–5 [Google Scholar]
  25. Utz AL. 25.  2009. Mode selective chemistry at surfaces. Curr. Opin. Solid State Mater. Sci. 13:4–12 [Google Scholar]
  26. Juurlink LBF, Killelea DR, Utz AL. 26.  2009. State-resolved probes of methane dissociation dynamics. Prog. Surf. Sci. 84:69–134 [Google Scholar]
  27. Beck RD, Utz AL. 27.  2013. Quantum-state resolved gas/surface reaction dynamics experiments. Dynamics of Gas-Surface Interactions: Atomic-Level Understanding of Scattering Processes at Surfaces R Díez Muiño, HF Busnengo 179–212 Berlin: Springer [Google Scholar]
  28. Chadwick H, Beck RD. 28.  2016. Quantum state resolved gas–surface reaction dynamics experiments: a tutorial review. Chem. Soc. Rev. 45:3576–94 [Google Scholar]
  29. Diño WA, Kasai H, Okiji A. 29.  2000. Orientational effects in dissociative adsorption/associative desorption dynamics of H2(D2) on Cu and Pd. Prog. Surf. Sci. 63:63–134 [Google Scholar]
  30. Kleyn AW. 30.  1992. Dissociation in molecule-surface collisions. J. Phys. Condens. Matter 4:8375 [Google Scholar]
  31. Michelsen HA, Auerbach DJ. 31.  1991. A critical examination of data on the dissociative adsorption and associative desorption of hydrogen at copper surfaces. J. Chem. Phys. 94:7502–20 [Google Scholar]
  32. Hodgson A. 32.  2000. State resolved desorption measurements as a probe of surface reactions. Prog. Surf. Sci. 63:1–61 [Google Scholar]
  33. Darling G, Hodgson A. 33.  2010. Surface scattering: molecular collisions at interfaces. Tutorials in Molecular Reaction Dynamics M Brouard, C Vallance 333–62 Cambridge, UK: R. Soc. Chem. [Google Scholar]
  34. Dürr M, Höfer U. 34.  2006. Dissociative adsorption of molecular hydrogen on silicon surfaces. Surf. Sci. Rep. 61:465–526 [Google Scholar]
  35. Dürr M, Höfer U. 35.  2013. Dynamics of Gas-Surface Interactions: Atomic-Level Understanding of Scattering Processes at Surfaces R Díez Muiño, HF Busnengo 239–66 Berlin: Springer [Google Scholar]
  36. McCabe PR, Juurlink LBF, Utz AL. 36.  2000. A molecular beam apparatus for eigenstate-resolved studies of gas-surface reactivity. Rev. Sci. Instrum. 71:42–53 [Google Scholar]
  37. Schmid MP, Maroni P, Beck RD, Rizzo TR. 37.  2003. Molecular-beam/surface-science apparatus for state-resolved chemisorption studies using pulsed-laser preparation. Rev. Sci. Instrum. 74:4110–20 [Google Scholar]
  38. Ran Q, Matsiev D, Wodtke AM, Auerbach DJ. 38.  2007. An advanced molecule-surface scattering instrument for study of vibrational energy transfer in gas-solid collisions. Rev. Sci. Instrum. 78:104104 [Google Scholar]
  39. Chen L, Ueta H, Bisson R, Beck RD. 39.  2013. Quantum state-resolved gas/surface reaction dynamics probed by reflection absorption infrared spectroscopy. Rev. Sci. Instrum. 84:053902 [Google Scholar]
  40. Scoles G. 40.  1988. Atomic and Molecular Beam Methods New York: Oxford Univ. Press [Google Scholar]
  41. Kleyn AW. 41.  2003. Molecular beams and chemical dynamics at surfaces. Chem. Soc. Rev. 32:87–95 [Google Scholar]
  42. Libuda J, Freund HJ. 42.  2005. Molecular beam experiments on model catalysts. Surf. Sci. Rep. 57:157–298 [Google Scholar]
  43. Rettner CT, Pfnür HE, Auerbach DJ. 43.  1985. Dissociative chemisorption of CH4 on W(110): dramatic activation by initial kinetic energy. Phys. Rev. Lett. 54:2716–19 [Google Scholar]
  44. Rettner CT, Pfnür HE, Auerbach DJ. 44.  1986. On the role of vibrational energy in the activated dissociative chemisorption of methane on tungsten and rhodium. J. Chem. Phys. 84:4163–67 [Google Scholar]
  45. Lee MB, Yang QY, Ceyer ST. 45.  1987. Dynamics of the activated dissociative chemisorption of CH4 and implication for the pressure gap in catalysis: a molecular beam–high resolution electron energy loss study. J. Chem. Phys. 87:2724–41 [Google Scholar]
  46. Holmblad PM, Wambach J, Chorkendorff I. 46.  1995. Molecular beam study of dissociative sticking of methane on Ni(100). J. Chem. Phys. 102:8255–63 [Google Scholar]
  47. Schoofs GR, Arumainayagam CR, McMaster MC, Madix RJ. 47.  1989. Dissociative chemisorption of methane on Pt(111). Surf. Sci. 215:1–28 [Google Scholar]
  48. Hayden BE, Lamont CLA. 48.  1989. Coupled translational-vibrational activation in dissociative hydrogen adsorption on Cu(110). Phys. Rev. Lett. 63:1823–25 [Google Scholar]
  49. Greg OS. 49.  2002. Gas surface interactions studied with state-prepared molecules. Rep. Prog. Phys. 65:1165 [Google Scholar]
  50. Wight AC, Miller RE. 50.  1998. Rainbow scattering of methane from LiF(100): probing the corrugation and anisotropy of the gas-surface potential. J. Chem. Phys. 109:1976–82 [Google Scholar]
  51. Chadwick H, Hundt PM, van Reijzen ME, Yoder BL, Beck RD. 51.  2014. Quantum state specific reactant preparation in a molecular beam by rapid adiabatic passage. J. Chem. Phys. 140:034321 [Google Scholar]
  52. Hundt PM, van Reijzen ME, Ueta H, Beck RD. 52.  2014. Vibrational activation of methane chemisorption: the role of symmetry. J. Phys. Chem. Lett. 5:1963–67 [Google Scholar]
  53. Maroni P, Papageorgopoulos D, Ruf A, Beck RD, Rizzo TR. 53.  2006. Efficient stimulated Raman pumping for quantum state resolved surface reactivity measurements. Rev. Sci. Instrum. 77:054103 [Google Scholar]
  54. Hamilton CE, Kinsey JL, Field RW. 54.  1986. Stimulated emission pumping: new methods in spectroscopy and molecular dynamics. Annu. Rev. Phys. Chem. 37:493–524 [Google Scholar]
  55. Vickerman JC, Gilmore IS. 55. , eds. 2009. Surface Analysis: The Principal Techniques Chichester, UK: Wiley [Google Scholar]
  56. Johnson AD, Daley SP, Utz AL, Ceyer ST. 56.  1992. The chemistry of bulk hydrogen: reaction of hydrogen embedded in nickel with adsorbed CH3. Science 257:223–25 [Google Scholar]
  57. Fairbrother DH, Peng XD, Viswanathan R, Stair PC, Trenary M, Fan J. 57.  1993. Carbon-carbon coupling of methyl groups on Pt(111). Surf. Sci. 285:L455–60 [Google Scholar]
  58. Fairbrother DH, Peng XD, Trenary M, Stair PC. 58.  1995. Surface chemistry of methyl groups adsorbed on Pt(111). J. Chem. Soc. Faraday Trans. 91:3619–25 [Google Scholar]
  59. Bisson R, Dang TT, Sacchi M, Beck RD. 59.  2008. Vibrational activation in direct and precursor-mediated chemisorption of SiH4 on Si(100). J. Chem. Phys. 129:081103 [Google Scholar]
  60. Westermann J, Nienhaus H, Mönch W. 60.  1994. Oxidation stages of clean and H-terminated Si(001) surfaces at room temperature. Surf. Sci. 311:101–6 [Google Scholar]
  61. Raval R. 61.  1995. Probing the nature of molecular chemisorption using RAIRS. Surf. Sci. 331–33:Part A1–10 [Google Scholar]
  62. Juurlink LBF, McCabe PR, Smith RR, DiCologero CL, Utz AL. 61.  1999. Eigenstate-resolved studies of gas-surface reactivity: CH43) dissociation on Ni(100). Phys. Rev. Lett. 83:868–71 [Google Scholar]
  63. Higgins J, Conjusteau A, Scoles G, Bernasek SL. 63.  2001. State selective vibrational (2ν3) activation of the chemisorption of methane on Pt (111). J. Chem. Phys. 114:5277–83 [Google Scholar]
  64. Schmid MP, Maroni P, Beck RD, Rizzo TR. 64.  2002. Surface reactivity of highly vibrationally excited molecules prepared by pulsed laser excitation: CH4(2ν3) on Ni(100). J. Chem. Phys. 117:8603–6 [Google Scholar]
  65. Beck RD, Maroni P, Papageorgopoulos DC, Dang TT, Schmid MP, Rizzo TR. 65.  2003. Vibrational mode-specific reaction of methane on a nickel surface. Science 302:98–100 [Google Scholar]
  66. Bisson R, Sacchi M, Beck RD. 66.  2010. Mode-specific reactivity of CH4 on Pt(110)-(1 × 2): the concerted role of stretch and bend excitation. Phys. Rev. B 82:121404 [Google Scholar]
  67. Bisson R, Sacchi M, Dang TT, Yoder B, Maroni P, Beck RD. 67.  2007. State-resolved reactivity of CH4(2ν3) on Pt(111) and Ni(111): effects of barrier height and transition state location. J. Phys. Chem. A 111:12679–83 [Google Scholar]
  68. Juurlink LBF, Smith RR, Killelea DR, Utz AL. 68.  2005. Comparative study of C–H stretch and bend vibrations in methane activation on Ni(100) and Ni(111). Phys. Rev. Lett. 94:208303 [Google Scholar]
  69. Smith RR, Killelea DR, Del Sesto DF, Utz AL. 69.  2004. Preference for vibrational over translational energy in a gas-surface reaction. Science 304:992–95 [Google Scholar]
  70. Chen N, Huang Y, Utz AL. 70.  2013. State-resolved reactivity of methane () on Ni(111). J. Phys. Chem. A 117:6250–55 [Google Scholar]
  71. Maroni P, Papageorgopoulos DC, Sacchi M, Dang TT, Beck RD, Rizzo TR. 71.  2005. State-resolved gas-surface reactivity of methane in the symmetric C–H stretch vibration on Ni(100). Phys. Rev. Lett. 94:246104 [Google Scholar]
  72. Ueta H, Chen L, Beck RD, Colon-Diaz I, Jackson B. 72.  2013. Quantum state-resolved CH4 dissociation on Pt(111): coverage dependent barrier heights from experiment and density functional theory. Phys. Chem. Chem. Phys. 15:20526–35 [Google Scholar]
  73. Higgins J, Conjusteau A, Scoles G, Bernasek SL. 73.  2001. State selective vibrational 2ν3 activation of the chemisorption of methane on Pt (111). J. Chem. Phys. 114:5277–83 [Google Scholar]
  74. Dombrowski E, Peterson E, Del Sesto D, Utz AL. 74.  2015. Precursor-mediated reactivity of vibrationally hot molecules: methane activation on Ir(111). Catal. Today 244:10–18 [Google Scholar]
  75. Abram I, de Martino A, Frey R. 75.  1982. Higher excited vibrational states of polyatomic molecules. J. Chem. Phys. 76:5727–38 [Google Scholar]
  76. Killelea DR, Utz AL. 76.  2013. On the origin of mode- and bond-selectivity in vibrationally mediated reactions on surfaces. Phys. Chem. Chem. Phys. 15:20545–54 [Google Scholar]
  77. Donald SB, Harrison I. 77.  2012. Dynamically biased RRKM model of activated gas-surface reactivity: vibrational efficacy and rotation as a spectator in the dissociative chemisorption of CH4 on Pt(111). Phys. Chem. Chem. Phys. 14:1784–95 [Google Scholar]
  78. Donald SB, Navin JK, Harrison I. 78.  2013. Methane dissociative chemisorption and detailed balance on Pt(111): dynamical constraints and the modest influence of tunneling. J. Chem. Phys. 139:214707 [Google Scholar]
  79. Ukraintsev VA, Harrison I. 79.  1994. A statistical model for activated dissociative adsorption: application to methane dissociation on Pt(111). J. Chem. Phys. 101:1564–81 [Google Scholar]
  80. DeWitt KM, Valadez L, Abbott HL, Kolasinski KW, Harrison I. 80.  2006. Using effusive molecular beams and microcanonical unimolecular rate theory to characterize CH4 dissociation on Pt(111). J. Phys. Chem. B 110:6705–13 [Google Scholar]
  81. Killelea DR, Campbell VL, Shuman NS, Utz AL. 81.  2008. Bond-selective control of a heterogeneously catalyzed reaction. Science 319:790–93 [Google Scholar]
  82. Chen L, Ueta H, Bisson R, Beck RD. 82.  2012. Vibrationally bond-selected chemisorption of methane isotopologues on Pt(111) studied by reflection absorption infrared spectroscopy. Faraday Discuss 157:285–95 [Google Scholar]
  83. Hundt PM, Ueta H, van Reijzen ME, Jiang B, Guo H, Beck RD. 83.  2015. Bond-selective and mode-specific dissociation of CH3D and CH2D2 on Pt(111). J. Phys. Chem. A 119:12442–48 [Google Scholar]
  84. Killelea DR, Campbell VL, Shuman NS, Utz AL. 84.  2008. Isotope-selective chemical vapor deposition via vibrational activation. J. Phys. Chem. C 112:9822–27 [Google Scholar]
  85. Juurlink LBF, Smith RR, Utz AL. 85.  2000. Controlling surface chemistry with light: spatially resolved deposition of rovibrational-state-selected molecules. J. Phys. Chem. B 104:3327–36 [Google Scholar]
  86. Juurlink LBF, Smith RR, Utz AL. 86.  2000. The role of rotational excitation in the activated dissociative chemisorption of vibrationally excited methane on Ni(100). Faraday Discuss 117:147–60 [Google Scholar]
  87. Yoder BL, Bisson R, Beck RD. 87.  2010. Steric effects in the chemisorption of vibrationally excited methane on Ni(100). Science 329:553–56 [Google Scholar]
  88. Yoder BL, Bisson R, Hundt PM, Beck RD. 88.  2011. Alignment dependent chemisorption of vibrationally excited CH43) on Ni(100), Ni(110), and Ni(111). J. Chem. Phys. 135:224703 [Google Scholar]
  89. Jiang B, Guo H. 89.  2016. Origin of steric effects in methane dissociative chemisorption. J. Phys. Chem. C 120:8220–26 [Google Scholar]
  90. Nave S, Tiwari AK, Jackson B. 90.  2010. Methane dissociation and adsorption on Ni(111), Pt(111), Ni(100), Pt(100), and Pt(110)-(1 × 2): energetic study. J. Chem. Phys. 132:054705 [Google Scholar]
  91. Bisson R, Sacchi M, Beck RD. 91.  2010. State-resolved reactivity of CH4 on Pt(110)-(1 × 2): the role of surface orientation and impact site. J. Chem. Phys. 132:094702 [Google Scholar]
  92. Killelea DR, Campbell VL, Shuman NS, Smith RR, Utz AL. 92.  2009. Surface temperature dependence of methane activation on Ni(111). J. Phys. Chem. C 113:20618–22 [Google Scholar]
  93. Campbell VL, Chen N, Guo H, Jackson B, Utz AL. 93.  2015. Substrate vibrations as promoters of chemical reactivity on metal surfaces. J. Phys. Chem. A 119:12434–41 [Google Scholar]
  94. Tiwari AK, Nave S, Jackson B. 94.  2010. The temperature dependence of methane dissociation on Ni(111) and Pt(111): mixed quantum-classical studies of the lattice response. J. Chem. Phys. 132:134702 [Google Scholar]
  95. Jackson B, Nave S. 95.  2013. The dissociative chemisorption of methane on Ni(111): the effects of molecular vibration and lattice motion. J. Chem. Phys. 138:174705–11 [Google Scholar]
  96. Walker AV, King DA. 96.  1999. Dynamics of the dissociative adsorption of methane on Pt{110}(1 × 2). Phys. Rev. Lett. 82:5156–59 [Google Scholar]
  97. Nave S, Jackson B. 97.  2009. Methane dissociation on Ni(111) and Pt(111): energetic and dynamical studies. J. Chem. Phys. 130:054701 [Google Scholar]
  98. Henkelman G, Jónsson H. 98.  2001. Theoretical calculations of dissociative adsorption of CH4 on an Ir(111) Surface. Phys. Rev. Lett. 86:664–67 [Google Scholar]
  99. Guo H, Jiang B. 99.  2014. The sudden vector projection model for reactivity: mode specificity and bond selectivity made simple. Acc. Chem. Res. 47:3679–85 [Google Scholar]
  100. Jiang B, Yang M, Xie D, Guo H. 100.  2016. Quantum dynamics of polyatomic dissociative chemisorption on transition metal surfaces: mode specificity and bond selectivity. Chem. Soc. Rev. 45:3621–40 [Google Scholar]
  101. Michelsen HA, Rettner CT, Auerbach DJ, Zare RN. 101.  1993. Effect of rotation on the translational and vibrational energy dependence of the dissociative adsorption of D2 on Cu(111). J. Chem. Phys. 98:8294–307 [Google Scholar]
  102. Michelsen HA, Rettner CT, Auerbach DJ. 102.  1992. State-specific dynamics of D2 desorption from Cu(111): the role of molecular rotational motion in activated adsorption-desorption dynamics. Phys. Rev. Lett. 69:2678–81 [Google Scholar]
  103. Rettner CT, Auerbach DJ, Michelsen HA. 103.  1992. Role of vibrational and translational energy in the activated dissociative adsorption of D2 on Cu(111). Phys. Rev. Lett. 68:1164–67 [Google Scholar]
  104. Hou H, Gulding SJ, Rettner CT, Wodtke AM, Auerbach DJ. 104.  1997. The stereodynamics of a gas-surface reaction. Science 277:80–82 [Google Scholar]
  105. Gulding SJ, Wodtke AM, Hou H, Rettner CT, Michelsen HA, Auerbach DJ. 105.  1996. Alignment of D2(v,J) desorbed from Cu(111): low sensitivity of activated dissociative chemisorption to approach geometry. J. Chem. Phys. 105:9702–5 [Google Scholar]
  106. Rettner CT, Michelsen HA, Auerbach DJ, Mullins CB. 106.  1991. Dynamics of recombinative desorption: angular distributions of H2, HD, and D2 desorbing from Cu(111). J. Chem. Phys. 94:7499–501 [Google Scholar]
  107. Rettner CT, Michelsen HA, Auerbach DJ. 107.  1995. Quantum‐state‐specific dynamics of the dissociative adsorption and associative desorption of H2 at a Cu(111) surface. J. Chem. Phys. 102:4625–41 [Google Scholar]
  108. Kubiak GD, Sitz GO, Zare RN. 108.  1985. Recombinative desorption dynamics: molecular hydrogen from Cu(110) and Cu(111). J. Chem. Phys. 83:2538–51 [Google Scholar]
  109. Rettner CT, Michelsen HA, Auerbach DJ. 109.  1993. Determination of quantum-state-specific gas–surface energy transfer and adsorption probabilities as a function of kinetic energy. Chem. Phys. 175:157–69 [Google Scholar]
  110. Murphy MJ, Hodgson A. 110.  1998. Adsorption and desorption dynamics of H2 and D2 on Cu(111): the role of surface temperature and evidence for corrugation of the dissociation barrier. J. Chem. Phys. 108:4199–211 [Google Scholar]
  111. Kroes G-J, Diaz C. 111.  2016. Quantum and classical dynamics of reactive scattering of H2 from metal surfaces. Chem. Soc. Rev. 45:3658–700 [Google Scholar]
  112. Gostein M, Sitz GO. 112.  1997. Rotational state-resolved sticking coefficients for H2 on Pd(111): testing dynamical steering in dissociative adsorption. J. Chem. Phys. 106:7378–90 [Google Scholar]
  113. Rettner CT, Auerbach DJ. 113.  1996. Search for oscillations in the translational energy dependence of the dissociation of H2 on Pd(100). Chem. Phys. Lett. 253:236–40 [Google Scholar]
  114. Wetzig D, Dopheide R, Rutkowski M, David R, Zacharias H. 114.  1996. Rotational alignment in associative desorption of D2 (v″=0 and 1) from Pd(100). Phys. Rev. Lett. 76:463–66 [Google Scholar]
  115. Cottrell C, Carter RN, Nesbitt A, Samson P, Hodgson A. 115.  1997. Vibrational state dependence of D2 dissociation on Ag(111). J. Chem. Phys. 106:4714–22 [Google Scholar]
  116. Murphy MJ, Hodgson A. 116.  1997. Role of surface thermal motion in the dissociative chemisorption and recombinative desorption of D2 on Ag(111). Phys. Rev. Lett. 78:4458–61 [Google Scholar]
  117. Murphy MJ, Hodgson A. 117.  1997. Translational energy release in the recombinative desorption of H2 from Ag(111). Surf. Sci. 390:29–34 [Google Scholar]
  118. Kolasinski KW, Shane SF, Zare RN. 118.  1991. Probing the dynamics of hydrogen recombination on Si(100). J. Chem. Phys. 95:5482–85 [Google Scholar]
  119. Kolasinski KW, Shane SF, Zare RN. 119.  1992. Internal‐state distribution of recombinative hydrogen desorption from Si(100). J. Chem. Phys. 96:3995–4006 [Google Scholar]
  120. Shane SF, Kolasinski KW, Zare RN. 120.  1992. Recombinative desorption of H2 on Si(100)-(2 × 1) and Si(111)-(7 × 7): comparison of internal state distributions. J. Chem. Phys. 97:1520–30 [Google Scholar]
  121. Shane SF, Kolasinski KW, Zare RN. 121.  1992. Internal‐state distributions of H2 desorbed from mono‐ and dihydride species on Si(100). J. Chem. Phys. 97:3704–9 [Google Scholar]
  122. Dürr M, Höfer U. 122.  2004. Molecular beam investigation of hydrogen dissociation on Si(001) and Si(111) surfaces. J. Chem. Phys. 121:8058–67 [Google Scholar]
  123. Bisson R, Dang TT, Sacchi M, Beck RD. 123.  2007. Cavity ring-down spectroscopy of jet-cooled silane isotopologues in the Si–H stretch overtone region. J. Chem. Phys. 127:244301 [Google Scholar]
  124. Hundt PM, Jiang B, van Reijzen ME, Guo H, Beck RD. 124.  2014. Vibrationally promoted dissociation of water on Ni(111). Science 344:504–7 [Google Scholar]
  125. Liu K. 125.  2016. Vibrational control of bimolecular reactions with methane by mode, bond, and stereo selectivity. Annu. Rev. Phys. Chem. 67:91–111 [Google Scholar]
  126. Sinha A, Hsiao MC, Crim FF. 126.  1991. Controlling bimolecular reactions: mode and bond selected reaction of water with hydrogen atoms. J. Chem. Phys. 94:4928–35 [Google Scholar]
  127. Bronikowski MJ, Simpson WR, Girard B, Zare RN. 127.  1991. Bond‐specific chemistry: OD:OH product ratios for the reactions H + HOD(100) and H + HOD(001). J. Chem. Phys. 95:8647–48 [Google Scholar]
  128. Kavulak DF, Abbott HL, Harrison I. 128.  2005. Nonequilibrium activated dissociative chemisorption: SiH4 on Si(100). J. Phys. Chem. B 109:685–88 [Google Scholar]
  129. Halonen L, Bernasek SL, Nesbitt DJ. 129.  2001. Reactivity of vibrationally excited methane on nickel surfaces. J. Chem. Phys. 115:5611–19 [Google Scholar]
  130. Guo H, Jackson B. 130.  2015. Mode- and bond-selective chemistry on metal surfaces: the dissociative chemisorption of CHD3 on Ni(111). J. Phys. Chem. C 119:14769–79 [Google Scholar]
  131. Nave S, Jackson B. 131.  2010. Vibrational mode-selective chemistry: methane dissociation on Ni(100). Phys. Rev. B 81:233408 [Google Scholar]
  132. Jackson B, Nave S. 132.  2011. The dissociative chemisorption of methane on Ni(100): reaction path description of mode-selective chemistry. J. Chem. Phys. 135:114701–12 [Google Scholar]
  133. Guo H, Jackson B. 133.  2016. Mode-selective chemistry on metal surfaces: the dissociative chemisorption of CH4 on Pt(111). J. Chem. Phys. 144:184709 [Google Scholar]
  134. Farjamnia A, Jackson B. 134.  2015. The dissociative chemisorption of water on Ni(111): mode- and bond-selective chemistry on metal surfaces. J. Chem. Phys. 142:234705 [Google Scholar]
  135. Polanyi JC. 135.  1972. Concepts in reaction dynamics. Acc. Chem. Res. 5:161–68 [Google Scholar]
  136. Jiang B, Guo H. 136.  2013. Mode and bond selectivities in methane dissociative chemisorption: quasi-classical trajectory studies on twelve-dimensional potential energy surface. J. Phys. Chem. C 117:16127–35 [Google Scholar]
  137. Jiang B, Guo H. 137.  2014. Prediction of mode specificity, bond selectivity, normal scaling, and surface lattice effects in water dissociative chemisorption on several metal surfaces using the sudden vector projection model. J. Phys. Chem. C 118:26851–58 [Google Scholar]
  138. Jiang B, Guo H. 138.  2015. Dynamics of water dissociative chemisorption on Ni(111): effects of impact sites and incident angles. Phys. Rev. Lett. 114:166101 [Google Scholar]
  139. Jackson B, Nattino F, Kroes G-J. 139.  2014. Dissociative chemisorption of methane on metal surfaces: tests of dynamical assumptions using quantum models and ab initio molecular dynamics. J. Chem. Phys. 141:054102 [Google Scholar]
  140. Nattino F, Díaz C, Jackson B, Kroes G-J. 140.  2012. Effect of surface motion on the rotational quadrupole alignment parameter of D2 reacting on Cu(111). Phys. Rev. Lett. 108:236104 [Google Scholar]
  141. Nattino F, Ueta H, Chadwick H, van Reijzen ME, Beck RD. 141.  et al. 2014. Ab initio molecular dynamics calculations versus quantum-state-resolved experiments on CHD3 + Pt(111): new insights into a prototypical gas–surface reaction. J. Phys. Chem. Lett. 5:1294–99 [Google Scholar]
  142. Fuchsel G, Thomas PS, den Uyl J, Ozturk Y, Nattino F. 142.  et al. 2016. Rotational effects on the dissociation dynamics of CHD3 on Pt(111). Phys. Chem. Chem. Phys. 18:8174–85 [Google Scholar]
  143. Nattino F, Migliorini D, Bonfanti M, Kroes G-J. 143.  2016. Methane dissociation on Pt(111): searching for a specific reaction parameter density functional. J. Chem. Phys. 144:044702 [Google Scholar]
  144. Nattino F, Migliorini D, Kroes G-J, Dombrowski E, High EA. 144.  et al. 2016. Chemically accurate simulation of a polyatomic molecule-metal surface reaction. J. Phys. Chem. Lett. 7:2402–6 [Google Scholar]
  145. Shirhatti PR, Geweke J, Steinsiek C, Bartels C, Rahinov I. 145.  et al. 2016. Activated dissociation of HCl on Au(111). J. Phys. Chem. Lett. 7:1346–50 [Google Scholar]
  146. Liu T, Fu B, Zhang DH. 146.  2013. Six-dimensional quantum dynamics study for the dissociative adsorption of HCl on Au(111) surface. J. Chem. Phys. 139:184705 [Google Scholar]
  147. Schindler B, Diesing D, Hasselbrink E. 147.  2011. Electronic excitations induced by hydrogen surface chemical reactions on gold. J. Chem. Phys. 134:034705 [Google Scholar]
  148. Schindler B, Diesing D, Hasselbrink E. 148.  2013. Electronically nonadiabatic processes in the interaction of H with a Au surface revealed using MIM junctions: the temperature dependence. J. Phys. Chem. C 117:6337–45 [Google Scholar]
  149. Diesing D, Hasselbrink E. 149.  2016. Chemical energy dissipation at surfaces under UHV and high pressure conditions studied using metal–insulator–metal and similar devices. Chem. Soc. Rev. 45:3747–55 [Google Scholar]
/content/journals/10.1146/annurev-physchem-052516-044910
Loading
/content/journals/10.1146/annurev-physchem-052516-044910
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error