We review the recent advances in the investigation of the dynamics of ion–molecule reactions. During the past decade, the combination of single-collision experiments in crossed ion and neutral beams with the velocity map ion imaging detection technique has enabled a wealth of studies on ion–molecule reactions. These methods, in combination with chemical dynamics simulations, have uncovered new and unexpected reaction mechanisms, such as the roundabout mechanism and the subtle influence of the leaving group in anion–molecule nucleophilic substitution reactions. For this important class of reactions, as well as for many fundamental cation–molecule reactions, the information obtained with crossed-beam imaging is discussed. The first steps toward understanding micro-solvation of ion–molecule reaction dynamics are presented. We conclude with the presentation of several interesting directions for future research.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Smith D, Spanel P. 1.  1995. Ions in the terrestrial atmosphere and in interstellar clouds. Mass Spectrom. Rev. 14:255–78 [Google Scholar]
  2. Schöttler J, Toennies JP. 2.  1968. Vibrational excitation of H2-molecules in central collisions with Li+-ions. Z. Phys. 214:472–502 [Google Scholar]
  3. Vestal ML, Blakley CR, Ryan PW, Futrell JH. 3.  1976. New crossed-beam apparatus for the study of ion–molecule collision processes. Rev. Sci. Instrum. 47:15–26 [Google Scholar]
  4. Krutein J, Linder F. 4.  1977. Differential scattering experiments on vibrational excitation in low-energy H+–CO2 collisions. J. Phys. B 10:1363 [Google Scholar]
  5. Gerlich D. 5.  1977. Reaktionen von Protonen mit Wasserstoff bei Stossenergien von 0.4 eV bis 10 eV (Winkelverteilungen, Rotations- und Schwingungsanregung) Ph.D. Thesis, Univ. Freiburg [Google Scholar]
  6. Bilotta R, Preuninger F, Farrar J. 6.  1980. Crossed beam studies of low energy proton transfer reactions: H+2 (Ar, H) HAr+ from 0.4 to 7.8 eV (c.m.). J. Chem. Phys. 73:1637–48 [Google Scholar]
  7. Futrell JH. 7.  1992. Crossed-molecular beam studies of state-to-state reaction dynamics. Adv. Chem. Phys. 82:501–52 [Google Scholar]
  8. Farrar JM. 8.  1995. Ion reaction dynamics. Annu. Rev. Phys. Chem. 46:525–54 [Google Scholar]
  9. Whitaker B. 9.  2003. Imaging in Molecular Dynamics: Technology and Applications Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  10. Reichert EL, Thurau G, Weishaar JC. 10.  2002. Velocity map imaging of ion–molecule reaction products: Co+(3F4) + isobutane. J. Chem. Phys. 117:653–65 [Google Scholar]
  11. Reichert EL, Thurau G, Weishaar JC. 11.  2002. Nonstatistical translational energy distribution of H2 elimination products from Co+(3F4) + propane. J. Phys. Chem. A 106:5563–76 [Google Scholar]
  12. Mikosch J, Frühling U, Trippel S, Schwalm D, Weidemüller M, Wester R. 12.  2006. Velocity map imaging of ion–molecule reactive scattering: the Ar+ + N2 charge transfer reaction. Phys. Chem. Chem. Phys. 8:2990–99 [Google Scholar]
  13. Wester R, Bragg AE, Davis AV, Neumark DM. 13.  2003. Time-resolved study of the symmetric SN2-reaction I + CH3I. J. Chem. Phys. 119:10032–39 [Google Scholar]
  14. Sanov A, Lineberger WC. 14.  2004. Cluster anions: structure, interactions, and dynamics in the sub-nanoscale regime. Phys. Chem. Chem. Phys. 6:2018–32 [Google Scholar]
  15. Hertel I, Radloff W. 15.  2006. Ultrafast dynamics in isolated molecules and molecular clusters. Rep. Prog. Phys. 69:1897 [Google Scholar]
  16. Heck AJR, Chandler DW. 16.  1995. Imaging techniques for the study of chemical reaction dynamics. Annu. Rev. Phys. Chem. 46:335–72 [Google Scholar]
  17. Eppink ATJB, Parker DH. 17.  1997. Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 68:3477–84 [Google Scholar]
  18. Parker DH, Eppink ATJB. 18.  1997. Photoelectron and photofragment velocity map imaging of state-selected molecular oxygen: dissociation and ionization dynamics. J. Chem. Phys. 107:2357–62 [Google Scholar]
  19. Ashfold M, Nahler N, Orr-Ewing A, Vieuxmaire O, Toomes R. 19.  et al. 2006. Imaging the dynamics of gas phase reactions. Phys. Chem. Chem. Phys. 8:26–53 [Google Scholar]
  20. Lin JJ, Zhou J, Shiu W, Liu K. 20.  2003. State-specific correlation of coincident product pairs in the F + CH4 reaction. Science 300:966–69 [Google Scholar]
  21. Li W, Huang CS, Patel M, Wilson D, Suits A. 21.  2006. State-resolved reactive scattering by slice imaging: a new view of the Cl + C2H6 reaction. J. Chem. Phys. 124:011102 [Google Scholar]
  22. von Zastrow A, Onvlee J, Vogels SN, Groenenboom GC, van der Avoird A, van de Meerakker SY. 22.  2014. State-resolved diffraction oscillations imaged for inelastic collisions of NO radicals with He, Ne and Ar. Nat. Chem. 6:216–21 [Google Scholar]
  23. Mikosch J, Trippel S, Otto R, Eichhorn C, Hlavenka P. 23.  et al. 2007. Kinematically complete reaction dynamics of slow ions. J. Phys. Conf. Ser. 88:012025 [Google Scholar]
  24. Mikosch J, Trippel S, Eichhorn C, Otto R, Lourderaj U. 24.  et al. 2008. Imaging nucleophilic substitution dynamics. Science 319:183–86 [Google Scholar]
  25. Mikosch J, Zhang J, Trippel S, Eichhorn C, Otto R. 25.  et al. 2013. Indirect dynamics in a highly exoergic substitution reaction. J. Am. Chem. Soc. 135:4250–59 [Google Scholar]
  26. Pei L, Farrar JM. 26.  2012. Imaging ion–molecule reactions: charge transfer and C–N bond formation in the C+ + NH3 system. J. Chem. Phys. 136:204305 [Google Scholar]
  27. Otto R, Xie J, Brox J, Trippel S, Stei M. 27.  et al. 2012. Reaction dynamics of temperature-variable anion water clusters studied with crossed beams and by direct dynamics. Faraday Discuss. 157:41–57 [Google Scholar]
  28. Trippel S, Stei M, Otto R, Hlavenka P, Mikosch J. 28.  et al. 2009. Kinematically complete chemical reaction dynamics. J. Phys. Conf. Ser. 194:012046 [Google Scholar]
  29. Wester R. 29.  2014. Velocity map imaging of ion–molecule reactions. Phys. Chem. Chem. Phys. 16:396–405 [Google Scholar]
  30. Hase WL. 30.  1994. Simulations of gas-phase chemical reactions: applications to SN2 nucleophilic substitution. Science 266:998–1002 [Google Scholar]
  31. Sun L, Song K, Hase WL. 31.  2002. A SN2 reaction that avoids its deep potential energy minimum. Science 296:875–78 [Google Scholar]
  32. Xie J, Otto R, Mikosch J, Zhang J, Wester R, Hase WL. 32.  2014. Identification of atomic-level mechanisms for gas-phase X + CH3Y SN2 reactions by combined experiments and simulations. Acc. Chem. Res. 47:2960–69 [Google Scholar]
  33. Stei M, Carrascosa E, Kainz MA, Kelkar AK, Meyer J. 33.  et al. 2016. Influence of the leaving group on the dynamics of a gas phase SN2 reaction. Nat. Chem. 8:151–56 [Google Scholar]
  34. Lourderaj U, Sun R, Kohale SC, Barnes GL, deJong WA. 34.  et al. 2014. The VENUS/NWChem software package. Tight coupling between chemical dynamics simulations and electronic structure theory. Comput. Phys. Commun. 185:1074–80 [Google Scholar]
  35. Xie J, Otto R, Wester R, Hase WL. 35.  2015. Chemical dynamics simulations of the monohydrated OH(H2O) + CH3I reaction. Atomic-level mechanisms and comparison with experiment. J. Chem. Phys. 142:244308 [Google Scholar]
  36. Clary DC. 36.  1998. Quantum theory of chemical reaction dynamics. Science 279:1879–82 [Google Scholar]
  37. Zhang DH, Guo H. 37.  2016. Recent advances in quantum dynamics of bimolecular reactions. Annu. Rev. Phys. Chem. 67:135–58 [Google Scholar]
  38. Palma J, Clary DC. 38.  2000. A quantum model Hamiltonian to treat reactions of the type X + YCZ3→ XY + CZ3: application to O(3P) + CH4→ OH + CH3. J. Chem. Phys. 112:1859–67 [Google Scholar]
  39. Song H, Lu Y, Li J, Yang M, Guo H. 39.  2016. Mode specificity in the OH + CHD3 reaction: reduced-dimensional quantum and quasi-classical studies on an ab initio based full-dimensional potential energy surface. J. Chem. Phys. 144:164303 [Google Scholar]
  40. Qi J, Song H, Yang M, Palma J, Manthe U, Guo H. 40.  2016. Mode specific quantum dynamics of the F + CHD3 → HF + CD3 reaction. J. Chem. Phys. 144:171101 [Google Scholar]
  41. Wang Y, Song H, Szabó I, Czakó G, Guo H, Yang H. 41.  2016. Mode-specific SN2 reaction dynamics. J. Phys. Chem. Lett. 7:3322–27 [Google Scholar]
  42. Pei L, Farrar JM. 42.  2012. Ion imaging study of reaction dynamics in the N+ + CH4 system. J. Chem. Phys. 137:154312 [Google Scholar]
  43. Pei L, Farrar JM. 43.  2013. Ion imaging study of dissociative charge transfer in the N2+ + CH4 system. J. Chem. Phys. 138:124304 [Google Scholar]
  44. Pei L, Carrascosa E, Yang N, Falcinelli S, Farrar JM. 44.  2015. Velocity map imaging study of charge-transfer and proton-transfer reactions of CH3 radicals with H3+. J. Phys. Chem. Lett. 6:1684–89 [Google Scholar]
  45. Candori R, Cavalli S, Pirani F, Volpi A, Cappelletti D. 45.  et al. 2001. Structure and charge transfer dynamics of the (Ar–N2)+ molecular cluster. J. Chem. Phys. 115:8888–98 [Google Scholar]
  46. Rockwood AL, Howard SL, Du WH, Tosi P, Lindinger W, Futrell JH. 46.  1985. Observation of collision-energy, product state, and angular scattering specificity in the charge transfer reaction of Ar+ (2P3/2) with N2 (X1Σg, ψ=0). Chem. Phys. Lett. 114:486–90 [Google Scholar]
  47. Birkinshaw K, Shukla A, Howard SL, Futrell JH. 47.  1987. A crossed-beam study of the reactive and unreactive scattering of Ar+ (2P3/2) and Ar+ (2P1/2) by N2 at low energies. Chem. Phys. 113:149–58 [Google Scholar]
  48. Howard SL. 48.  1990. Analysis of the energy window for the quantum state and angular scattering specificity in Ar+ charge transfer with N2. Chem. Phys. Lett. 178:65–68 [Google Scholar]
  49. Trippel S, Stei M, Cox JA, Wester R. 49.  2013. Differential scattering cross-sections for the different product vibrational states in the ion–molecule reaction Ar++N2. Phys. Rev. Lett. 110:163201 [Google Scholar]
  50. Pei L, Farrar JM. 50.  2015. Imaging ion–molecule reactions: charge transfer and halide transfer reactions of O+ with CH3Cl, CH3Br, and CH3I. Int. J. Mass. Spectrom. 377:93–100 [Google Scholar]
  51. Laerdahl JK, Uggerud E. 51.  2002. Gas phase nucleophilic substitution. Int. J. Mass Spectrom. 214:277–314 [Google Scholar]
  52. Mikosch J, Weidemüller M, Wester R. 52.  2010. On the dynamics of chemical reactions of negative ions. Int. Rev. Phys. Chem. 29:589–617 [Google Scholar]
  53. Olmstead WN, Brauman JI. 53.  1977. Gas-phase nucleophilic displacement reactions. J. Am. Chem. Soc. 99:4219–28 [Google Scholar]
  54. Chabinyc ML, Craig SL, Regan CK, Brauman JI. 54.  1998. Gas-phase ionic reactions: dynamics and mechanism of nucleophilic displacements. Science 279:1882–86 [Google Scholar]
  55. Angel LA, Ervin KM. 55.  2001. Dynamics of the gas-phase reactions of fluoride ions with chloromethane. J. Phys. Chem. A 105:4042–51 [Google Scholar]
  56. Liu S, Hu H, Pedersen LG. 56.  2010. Steric, quantum, and electrostatic effects on SN2 reaction barriers in gas phase. J. Phys. Chem. A 114:5913–18 [Google Scholar]
  57. Schmatz S. 57.  2004. Quantum dynamics of gas-phase SN2 reactions. Chem. Phys. Chem. 5:600–17 [Google Scholar]
  58. Su T, Morris RA, Viggiano AA, Paulson JF. 58.  1990. Kinetic energy and temperature dependences for the reactions of fluoride with halogenated methanes: experiment and theory. J. Phys. Chem. 94:8426–30 [Google Scholar]
  59. Ayotte P, Kim J, Kelley JA, Johnson MA. 59.  1999. Photoactivation of the Cl+CH3Br SN2 reaction via rotationally resolved C–H stretch excitation of the Cl·CH3Br entrance channel complex. J. Am. Chem. Soc. 121:6950–51 [Google Scholar]
  60. Zhang J, Mikosch J, Trippel S, Otto R, Weidemueller M. 60.  et al. 2010. F+CH3I→FCH3+I reaction dynamics. Nontraditional atomistic mechanisms and formation of a hydrogen-bonded complex. J. Phys. Chem. Lett. 1:2747–52 [Google Scholar]
  61. Bento AP, Bickelhaupt FM. 61.  2008. Nucleophilicity and leaving-group ability in frontside and backside SN2 reactions. J. Org. Chem. 73:7290–99 [Google Scholar]
  62. Hennig C, Schmatz S. 62.  2015. Mechanisms of SN2 reactions: insights from a nearside/farside analysis. Phys. Chem. Chem. Phys. 17:26670–76 [Google Scholar]
  63. Szabó I, Czakó G. 63.  2015. Revealing a double-inversion mechanism for the F + CH3Cl SN2 reaction. Nat. Comm. 6:5972 [Google Scholar]
  64. Otto R, Brox J, Stei M, Trippel S, Best T, Wester R. 64.  2012. Single solvent molecules can affect the dynamics of substitution reactions. Nat. Chem. 4:534–38 [Google Scholar]
  65. Xie J, Sun R, Siebert MR, Otto R, Wester R, Hase WL. 65.  2013. Direct dynamics simulations of the product channels and atomistic mechanisms for the OH+CH3I reaction. Comparison with experiment. J. Phys. Chem. A 117:7162–78. [Google Scholar]
  66. Zhang J, Lourderaj U, Sun R, Mikosch J, Wester R, Hase WL. 66.  2013. Simulation studies of the Cl + CH3I SN2 nucleophilic substitution reaction: comparison with ion imaging experiments. J. Chem. Phys. 138:114309 [Google Scholar]
  67. Szabó I, Csaszar AG, Czakó G. 67.  2013. Dynamics of the F+CH3Cl→Cl+CH3F SN2 reaction on a chemically accurate potential energy surface. Chem. Sci. 4:4362–70 [Google Scholar]
  68. Carrascosa E, Bawart M, Stei M, Linden F, Carelli F. 68.  et al. 2015. Nucleophilic substitution with two reactive centers: the CN +CH3I case. J. Chem. Phys. 143:184309 [Google Scholar]
  69. Sun R, Davda CJ, Zhang J, Hase WL. 69.  2015. Comparison of direct dynamics simulations with different electronic structure methods. F + CH3I with MP2 and DFT/B97-1. Phys. Chem. Chem. Phys. 17:2589–97 [Google Scholar]
  70. Xie J, Kohale SC, Hase WL, Ard SG, Melko JJ. 70.  et al. 2013. Temperature dependence of the OH +CH3I reaction kinetics. Experimental and simulation studies and atomic-level dynamics. J. Phys. Chem. A 117:14019–27 [Google Scholar]
  71. Xie J, Hase WL. 71.  2016. Rethinking the SN2 reaction. Science 352:32–33 [Google Scholar]
  72. Li Y, Farrar JM. 72.  2004. Reaction dynamics of H2O+(D2O+)+NH3 studied with crossed molecular beams and density functional theory calculations. J. Phys. Chem. A 108:9876–86 [Google Scholar]
  73. Li Y, Farrar JM. 73.  2004. Proton transfer dynamics of the reaction H3O+(NH3, H2O)NH4+ studied using the crossed molecular beam technique. J. Chem. Phys. 120:199–205 [Google Scholar]
  74. Liu L, Li Y, Farrar JM. 74.  2006. Dynamics study of the reaction OH+C2H2→C2H+H2O with crossed beams and density-functional theory calculations. J. Chem. Phys. 124:124317 [Google Scholar]
  75. Liu L, Martin C, Farrar JM. 75.  2006. Reaction dynamics of OH+(3Σ)+C2H2 studied with crossed beams and density functional theory calculations. J. Chem. Phys. 125:133117 [Google Scholar]
  76. Carrascosa E, Stei M, Kainz MA, Wester R. 76.  2015. Isomer-specific product formation in the proton transfer reaction of HOCO+ with CO. Mol. Phys. 113:3955–63 [Google Scholar]
  77. Carrascosa E, Michaelsen T, Stei M, Bastian B, Meyer J. 77.  et al. 2016. Imaging proton transfer and dihalide formation pathways in reactions of F + CH3I. J. Phys. Chem. A 120:4711–19 [Google Scholar]
  78. Carrascosa E, Kainz MA, Stei M, Wester R. 78.  2016. Preferential isomer formation observed in H+3+CO by crossed beam imaging. J. Phys. Chem. Lett. 7:2742–47 [Google Scholar]
  79. Paniagua M, Martínez R, Gamallo P, González M. 79.  2014. Potential energy surfaces and quasiclassical trajectory study of the O+H2+→OH++H, OH+H+ proton and hydrogen atom transfer reactions and isotopic variants (D2+, HD+). Phys. Chem. Chem. Phys. 16:23594–603 [Google Scholar]
  80. Ard SG, Li A, Martinez O Jr., Shuman NS, Viggiano AA, Guo H. 80.  2014. Experimental and theoretical kinetics for the H2O++H2/D2→H3O+/H2DO++H/D reactions: observation of the rotational effect in the temperature dependence. J. Phys. Chem. A 118:11485–89 [Google Scholar]
  81. Martinez O Jr., Ard SG, Li A, Shuman NS, Guo H, Viggiano AA. 81.  2015. Temperature-dependent kinetic measurements and quasi-classical trajectory studies for the OH++H2/D2→H2O+/HDO++H/D reactions. J. Chem. Phys. 143:114310 [Google Scholar]
  82. Rheinecker J, Xie T, Bowman JM. 82.  2004. A reduced dimensionality quasiclassical and quantum study of the proton transfer reaction H3O++H2O→H2O+H3O+. J. Chem. Phys. 120:7018–23 [Google Scholar]
  83. Zhang J, Xie J, Hase WL. 83.  2015. Dynamics of the F+CH3I→HF+CH2I proton transfer reaction. J. Phys. Chem. A 119:12517–25 [Google Scholar]
  84. Li H, Hirano T, Amano T, Le Roy RJ. 84.  2008. Pathways and reduced-dimension five-dimensional potential energy surface for the reactions H3++CO→H2+HCO+ and H3++CO→H2+HOC+. J. Chem. Phys. 129:244306 [Google Scholar]
  85. Ramazani S, Frankcombe TJ, Andersson S, Collins MA. 85.  2009. The dynamics of the H2+CO+ reaction on an interpolated potential energy surface. J. Chem. Phys. 130:244302 [Google Scholar]
  86. Klippenstein SJ, Georgievskii Y, McCall BJ. 86.  2010. Temperature dependence of two key interstellar reactions of H3+: O(3P) + H3+ and CO + H3+. J. Phys. Chem. A 114:278–90 [Google Scholar]
  87. Yu HG. 87.  2009. Product branching ratios of the reaction of CO with H3+ and H2D+. Astrophys. J. Lett. 706:L52–55 [Google Scholar]
  88. Le HA, Frankcombe TJ, Collins MA. 88.  2010. Reaction dynamics of H3++CO on an interpolated potential energy surface. J. Phys. Chem. A 114:10783–88 [Google Scholar]
  89. Cyr DM, Scarton G, Wiberg KR, Johnson MA, Nonose S. 89.  et al. 1995. Observation of the XY abstraction products in the ion–molecule reactions X+RY→XY+R: competition with the SN2 mechanism at supra-thermal collision energies. J. Am. Chem. Soc. 117:1828–32 [Google Scholar]
  90. Orr-Ewing AJ. 90.  2015. Dynamics of bimolecular reactions in solution. Annu. Rev. Phys. Chem. 66:119–41 [Google Scholar]
  91. Bohme DK, Mackay GI. 91.  1981. Bridging the gap between the gas-phase and solution—transition in the kinetics of nucleophilic displacement-reactions. J. Am. Chem. Soc. 103:978–79 [Google Scholar]
  92. Hierl P, Ahrens A, Henchman M, Viggiano A, Paulson J, Clary D. 92.  1988. Chemistry as a function of solvation number. Solvated-ion reactions in the gas phase and comparison with solution. Faraday Discuss. 85:37–51 [Google Scholar]
  93. Hierl PM, Ahrens AF, Henchman M, Viggiano AA, Paulson JF, Clary DC. 93.  1986. Nucleophilic displacement as a function of hydration number and temperature—rate constants and product distributions for OD(D2O)0,1,2 + CH3Cl at 200–500K. J. Am. Chem. Soc. 108:3142–43 [Google Scholar]
  94. Viggiano AA, Arnold ST, Morris RA, Ahrens AF, Hierl PM. 94.  1996. Temperature dependences of the rate constants and branching ratios for the reactions of OH(H2O)0−4 + CH3Br. J. Phys. Chem. 100:14397–402 [Google Scholar]
  95. Thomsen DL, Reece JN, Nichols CM, Hammerum S, Bierbaum VM. 95.  2013. Investigating the α-effect in gas-phase SN2 reactions of microsolvated anions. J. Am. Chem. Soc. 135:15508–14 [Google Scholar]
  96. Seeley JV, Morris RA, Viggiano AA. 96.  1997. Temperature dependences of the rate constants and branching ratios for the reactions of F(H2O)0−5 with CH3Br. J. Phys. Chem. A 101:4598–601 [Google Scholar]
  97. Seeley JV, Morris RA, Viggiano AA, Wang HB, Hase WL. 97.  1997. Temperature dependence of the rate constants and branching ratios for the reactions of Cl(D2O)1−3 with CH3Br and thermal dissociation rates for Cl(CH3Br). J. Am. Chem. Soc. 119:577–84 [Google Scholar]
  98. Raugei S, Cardini G, Schettino V. 98.  2001. Microsolvation effect on chemical reactivity: the case of the Cl + CH3Br SN2 reaction. J. Chem. Phys. 114:4089–98 [Google Scholar]
  99. Tachikawa H, Igarashi M, Ishibashi T. 99.  2002. A direct ab initio trajectory study on a microsolvated SN2 reaction F(H2O) + CH3Cl at hyperthermal collision energy. Chem. Phys. Lett. 363:355–61 [Google Scholar]
  100. Mo SJ, Vreven T, Mennucci B, Morokuma K, Tomasi J. 100.  2004. Theoretical study of the SN2 reaction of Cl(H2O) + CH3Cl using our own N-layered integrated molecular orbital and molecular mechanics polarizable continuum model method (ONIOM, PCM). Theor. Chem. Acc. 111:154–61 [Google Scholar]
  101. Adamovic I, Gordon MS. 101.  2005. Solvent effects on the SN2 reaction: application of the density functional theory–based effective fragment potential method. J. Phys. Chem. A 109:1629–36 [Google Scholar]
  102. Tachikawa H. 102.  2006. Direct ab initio molecular dynamics study on a microsolvated SN2 reaction of OH(H2O) with CH3Cl. J. Chem. Phys. 125:133119 [Google Scholar]
  103. Xie J, Scott MJ, Hase WL, Hierl PM, Viggiano AA. 103.  2015. Determination of the temperature-dependent OH(H2O) + CH3I rate constant by experiment and simulation. Z. Phys. Chem. 229:1747–63 [Google Scholar]
  104. Otto R, Brox J, Trippel S, Stei M, Best T, Wester R. 104.  2013. Exit channel dynamics in a micro-hydrated SN2-reaction of the hydroxyl anion. J. Phys. Chem. A 117:8139–44 [Google Scholar]
  105. Zhang J, Yang L, Xie J, Hase WL. 105.  2016. Microsolvated F(H2O) + CH3I SN2 reaction dynamics. Insight into the suppressed formation of solvated products. J. Phys. Chem. Lett. 7:660–65 [Google Scholar]
  106. Crim FF. 106.  1996. Bond-selected chemistry: vibrational state control of photodissociation and bimolecular reaction. J. Phys. Chem. 100:12725–34 [Google Scholar]
  107. Yan S, Wu Y, Zhang B, Yue X, Liu K. 107.  2007. Do vibrational excitations of CHD3 preferentially promote reactivity toward the chlorine atom?. Science 316:1723–26 [Google Scholar]
  108. Zhang W, Kawamata H, Liu K. 108.  2009. CH stretching excitation in the early barrier F + CHD3 reaction inhibits CH bond cleavage. Science 325:303–6 [Google Scholar]
  109. Wladkowski B, Brauman J. 109.  1992. Substitution versus elimination in gas-phase ionic reactions. J. Am. Chem. Soc. 114:10643–44 [Google Scholar]
  110. Bento P, Sola M, Bickelhaupt FM. 110.  2008. E2 and SN2 reactions of X + CH3CH2X (X=F, Cl); an ab initio and DFT benchmark study. J. Chem. Theory Comput. 4:929–40 [Google Scholar]
  111. Garver JM, Fang YR, Eyet N, Villano SM, Bierbaum VM, Westaway KC. 111.  2010. A direct comparison of reactivity and mechanism in the gas phase and in solution. J. Am. Chem. Soc. 132:3808–14 [Google Scholar]
  112. Nettey S, Swift CA, Joviliano R, Noin DO, Gronert S. 112.  2012. The impact of substituents on the transition states of SN2 and E2 reactions in aliphatic and vinylic systems: remarkably facile vinylic eliminations. J. Am. Chem. Soc. 134:9303–10 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error