1932

Abstract

The story told in this autobiographical perspective begins 50 years ago, at the 1967 Gordon Research Conference on the Physics and Chemistry of Liquids. It traces developments in liquid-state science from that time, including contributions from the author, and especially in the study of liquid water. It emphasizes the importance of fluctuations and the challenges of far-from-equilibrium phenomena.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-052516-044941
2017-05-05
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/physchem/68/1/annurev-physchem-052516-044941.html?itemId=/content/journals/10.1146/annurev-physchem-052516-044941&mimeType=html&fmt=ahah

Literature Cited

  1. Landau LD, Lifshitz EM. 1.  1958. Statistical Physics London: Pergamon [Google Scholar]
  2. Onsager L. 2.  1944. Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65:3117–49 [Google Scholar]
  3. Widom B. 3.  1965. Equation of state in the neighborhood of the critical point. J. Chem. Phys. 43113898–905 [Google Scholar]
  4. Kadanoff LP. 4.  1966. Scaling laws for Ising models near Tc. Physics 2:6263–72 [Google Scholar]
  5. Wilson KG. 5.  1971. Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture. Phys. Rev. B 4:93174–83 [Google Scholar]
  6. Wilson KG. 6.  1971. Renormalization group and critical phenomena. II. Phase-space cell analysis of critical behavior. Phys. Rev. B 4:93184–205 [Google Scholar]
  7. Wilson KG, Fisher ME. 7.  1972. Critical exponents in 3.99 dimensions. Phys. Rev. Lett. 28:4240–43 [Google Scholar]
  8. Fixman M. 8.  1962. Correlations at a critical point. J. Chem. Phys. 36:81965–68 [Google Scholar]
  9. Fisher ME. 9.  1964. Correlation functions and the critical region of simple fluids. J. Math. Phys. 5:7944–62 [Google Scholar]
  10. Kadanoff LP, Gotze W, Hamblen D, Hecht R, Lewis EAS. 10.  et al. 1967. Static phenomena near critical points: theory and experiment.. Rev. Mod. Phys. 39:2395–431 [Google Scholar]
  11. Fermi E, Pasta J, Ulam S. 11.  1955. Studies of non-linear problems. Rep. LA-1940, Los Alamos Sci. Lab., Los Alamos, NM [Google Scholar]
  12. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. 12.  1953. Equation of state calculations by fast computing machines. J. Chem. Phys. 21:61087–92 [Google Scholar]
  13. Wood WW, Jacobson JD. 13.  1957. Preliminary results from a recalculation of the Monte Carlo equation of state of hard spheres. J. Chem. Phys. 27:1207–8 [Google Scholar]
  14. Alder BJ, Wainwright TE. 14.  1957. Phase transition for a hard sphere system. J. Chem. Phys. 27:1208–9 [Google Scholar]
  15. Wood WW. 15.  1986. Early history of computer simulations in statistical mechanics. In Molecular-Dynamics Simulation of Statistical-Mechanical Systems G Ciccotti, WG Hoover 3–14 Amsterdam: Elsevier [Google Scholar]
  16. Rahman A. 16.  1964. Correlations in the motion of atoms in liquid argon. Phys. Rev. 136:2A405–11 [Google Scholar]
  17. Verlet L. 17.  1968. Computer “experiments” on classical fluids. II. Equilibrium correlation functions. Phys. Rev. 165:1201–14 [Google Scholar]
  18. Widom B. 18.  1967. Intermolecular forces and the nature of the liquid state. Science 157:3787375–82 [Google Scholar]
  19. Alder BJ, Wainwright TE. 19.  1959. Studies in molecular dynamics. I. General method. J. Chem. Phys. 31:2459–66 [Google Scholar]
  20. Alder BJ, Wainwright TE. 20.  1970. Decay of the velocity autocorrelation function. Phys. Rev. A 1:118–21 [Google Scholar]
  21. Weeks JD, Chandler D, Andersen HC. 21.  1971. Role of repulsive forces in forming the equilibrium structure of simple liquids. J. Chem. Phys. 54:125237–47 [Google Scholar]
  22. Chandler D, Weeks JD, Andersen HC. 22.  1983. Van der Waals picture of liquids, solids, and phase transformations. Science 220:4599787–94 [Google Scholar]
  23. Callen HB, Welton TA. 23.  1951. Irreversibility and generalized noise. Phys. Rev. 83134–40 [Google Scholar]
  24. Green MS. 24.  1954. Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys. 22:3398–413 [Google Scholar]
  25. Kubo R. 25.  1957. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12:6570–86 [Google Scholar]
  26. Onsager L. 26.  1931. Reciprocal relations in irreversible processes. I. Phys. Rev. 37:4405–26 [Google Scholar]
  27. Onsager L. 27.  1931. Reciprocal relations in irreversible processes. II. Phys. Rev. 38:122265–79 [Google Scholar]
  28. Jarzynski C. 28.  1997. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78:142690–93 [Google Scholar]
  29. Crooks GE. 29.  1999. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60:32721–26 [Google Scholar]
  30. Lebowitz JL, Spohn H. 30.  1999. A Gallavotti–Cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95:1–2333–65 [Google Scholar]
  31. Berne BJ, Boon JP, Rice SA. 31.  1966. On the calculation of autocorrelation functions of dynamical variables. J. Chem. Phys. 45:41086–96 [Google Scholar]
  32. Zwanzig R. 32.  1961. Memory effects in irreversible thermodynamics. Phys. Rev. 124:4983–92 [Google Scholar]
  33. Mori H. 33.  1965. Transport, collective motion, and Brownian motion. Prog. Theor. Phys. 33:3423–55 [Google Scholar]
  34. Prigogine I. 34.  1962. Non-Equilibrium Statistical Mechanics New York: Interscience [Google Scholar]
  35. Martin PC. 35.  1968. Measurements and Correlation Functions. New York: Gordon and Breach [Google Scholar]
  36. Kadanoff LP, Martin PC. 36.  1963. Hydrodynamic equations and correlation functions. Ann. Phys. 24:10419–69 [Google Scholar]
  37. Kadanoff LP. 37.  1993. From Order to Chaos Singapore: World Sci. [Google Scholar]
  38. Berne BJ, Pecora R. 38.  1976. Dynamic Light Scattering, with Applications to Chemistry, Biology and Physics. Reading, MA: Wiley-Interscience [Google Scholar]
  39. Bernal JD, Fowler RH. 39.  1933. Theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1:8515–48 [Google Scholar]
  40. Pople JA. 40.  1951. Molecular association in liquids. II. Theory of the structure of water. Proc. R. Soc. A 205:1081163–78 [Google Scholar]
  41. Stillinger FH. 41.  1975. Theory of molecular models for water. Adv. Chem. Phys. 31:1–101 [Google Scholar]
  42. Rahman A, Stillinger FH. 42.  1971. Molecular dynamics study of liquid water. J. Chem. Phys. 55:73336–59 [Google Scholar]
  43. Rahman A. 43.  1974. Report on Workshop, Electrolytes and Molten Salts K Singer 263 Orsay, Fr.: Cent. Eur. Calc. At. Mol. [Google Scholar]
  44. Geiger A, Rahman A, Stillinger FH. 44.  1979. Molecular dynamics study of the hydration of Lennard-Jones solutes. J. Chem. Phys. 70:1263–76 [Google Scholar]
  45. Rossky PJ, Karplus M, Rahman A. 45.  1979. A model for the simulation of an aqueous dipeptide solution. Biopolymers 18:4825–54 [Google Scholar]
  46. Nilsson A, Pettersson LGM. 46.  2015. The structural origin of anomalous properties of liquid water. Nat. Commun. 6:8998 [Google Scholar]
  47. Geissler PL. 47.  2005. Temperature dependence of inhomogeneous broadening: the meaning of isosbestic points. J. Am. Chem. Soc. 1274214930–35 [Google Scholar]
  48. Chandler D. 48.  1993. Gaussian field model of fluids with an application to polymeric fluids. Phys. Rev. E 48:42898–905 [Google Scholar]
  49. Wertheim MS. 49.  1963. Exact solution of the Percus–Yevick integral equation for hard spheres. Phys. Rev. Lett. 10:8321–23 [Google Scholar]
  50. Chandler D, Andersen HC. 50.  1972. Optimized cluster expansions for classical fluids. II. Theory of molecular liquids. J. Chem. Phys. 57:51930–37 [Google Scholar]
  51. Moore EB, Molinero V. 51.  2009. Water modeled as an intermediate element between carbon and silicon. J. Phys. Chem. B 113:134008–16 [Google Scholar]
  52. Marcus RA. 52.  1993. Electron transfer reactions in chemistry. Theory and experiment. Rev. Mod. Phys. 65:3599–610 [Google Scholar]
  53. Maroncelli M, MacInnis J, Fleming GR. 53.  1989. Polar solvation dynamics and electron transfer dynamics. Science 243:48991674–81 [Google Scholar]
  54. Kuharski RA, Bader JS, Chandler D, Sprik M, Klein ML, Impey RW. 54.  1988. Molecular model for aqueous ferrous–ferric electron transfer. J. Chem. Phys. 89:53248–57 [Google Scholar]
  55. Pratt LR, Chandler D. 55.  1977. Theory of the hydrophobic effect. J. Chem. Phys. 67:83683–704 [Google Scholar]
  56. Hummer G, Garde S, Garcia AE, Pohorille A, Pratt LR. 56.  1996. An information theory model of hydrophobic interactions. PNAS 93:178951–55 [Google Scholar]
  57. Chandler D. 57.  2005. Interfaces and the driving force of hydrophobic assembly. Nature 437:7059640–47 [Google Scholar]
  58. Lum K, Chandler D, Weeks JD. 58.  1999. Hydrophobicity at small and large length scales. J. Phys. Chem. B 103:224570–77 [Google Scholar]
  59. Katira S, Mandadapu KK, Vaikuntanathan S, Smit B, Chandler D. 59.  2016. Pre-transition effects mediate forces of assembly between transmembrane proteins. eLife 5:e13150 [Google Scholar]
  60. Eigen M, de Maeyer L. 60.  1985. Self-dissociation and protonic charge transport in water and ice. Proc. R. Soc. A 2471251505–33 [Google Scholar]
  61. Natzle WC, Moore CB. 61.  1985. Recombination of hydrogen ion (H+) and hydroxide in pure liquid water. J. Phys. Chem. 89:122605–12 [Google Scholar]
  62. Chandler D. 62.  1978. Statistical mechanics of isomerization dynamics in liquids and the transition state approximation. J. Chem. Phys. 68:62959–70 [Google Scholar]
  63. Gillan MJ. 63.  Alfè D, Michaelides A. 2016. How good is DFT for water?. J. Chem. Phys. 14413130901 [Google Scholar]
  64. Bolhuis PG, Chandler D, Dellago C, Geissler PL. 64.  2002. Transition path sampling: throwing ropes over rough mountain passes, in the dark. Annu. Rev. Phys. Chem. 53:291–318 [Google Scholar]
  65. Geissler PL, Dellago C, Chandler D, Hutter J, Parrinello M. 65.  2001. Autoionization in liquid water. Science 291:55112121–24 [Google Scholar]
  66. Hedges LO, Jack RL, Garrahan JP, Chandler D. 66.  2009. Dynamic order-disorder in atomistic models of structural glass formers. Science 323:59191309–13 [Google Scholar]
  67. Van Erp TS, Moroni D, Bolhuis PG. 67.  2003. A novel path sampling method for the calculation of rate constants. J. Chem. Phys. 118:177762–74 [Google Scholar]
  68. Allen RJ, Warren PB, ten Wolde PR. 68.  2005. Sampling rare switching events in biochemical networks. Phys. Rev. Lett. 94:1018104 [Google Scholar]
  69. Limmer DT, Chandler D. 69.  2014. Theory of amorphous ices. PNAS 111:269413–18 [Google Scholar]
  70. Limmer DT, Chandler D. 70.  2015. Comment on “Spontaneous liquid-liquid phase separation of water.”. Phys. Rev. E 911016301 [Google Scholar]
  71. Poole PH, Sciortino F, Essmann U, Stanely HE. 71.  1992. Phase behaviour of metastable water. Nature 360:6402324–28 [Google Scholar]
  72. Binder K. 72.  2014. Simulations clarify when supercooled water freezes into glassy structures. PNAS 111:269374–75 [Google Scholar]
  73. Limmer DT, Chandler D. 73.  2015. Time scales of supercooled water and implications for reversible polyamorphism. Mol. Phys. 113:17–182799–804 [Google Scholar]
  74. Franks F. 74.  1981. Polywater Cambridge, MA: MIT Press [Google Scholar]
  75. Kohl I, Bachmann L, Hallbrucker A, Mayer E, Loerting T. 75.  2005. Liquid-like relaxation in hyperquenched water at <140 K. Phys. Chem. Chem. Phys. 7:173210–20 [Google Scholar]
  76. Mishima O, Calvert LD, Whalley E. 76.  1985. An apparently first-order transition between two amorphous phases of ice induced by pressure. Nature 314:600676–78 [Google Scholar]
  77. Garrahan JP, Jack RL, Lecomte V, Pitard E, van Duijvendijk K, van Wijland F. 77.  2009. First-order dynamical phase transition in models of glasses: an approach based on ensembles of histories. J. Phys. A 42:7075007 [Google Scholar]
  78. Merolle M, Garrahan JP, Chandler D. 78.  2005. Space-time thermodynamics of the glass transition. PNAS 102:3110837–40 [Google Scholar]
/content/journals/10.1146/annurev-physchem-052516-044941
Loading
/content/journals/10.1146/annurev-physchem-052516-044941
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error