The story told in this autobiographical perspective begins 50 years ago, at the 1967 Gordon Research Conference on the Physics and Chemistry of Liquids. It traces developments in liquid-state science from that time, including contributions from the author, and especially in the study of liquid water. It emphasizes the importance of fluctuations and the challenges of far-from-equilibrium phenomena.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Landau LD, Lifshitz EM. 1.  1958. Statistical Physics London: Pergamon [Google Scholar]
  2. Onsager L. 2.  1944. Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65:3117–49 [Google Scholar]
  3. Widom B. 3.  1965. Equation of state in the neighborhood of the critical point. J. Chem. Phys. 43113898–905 [Google Scholar]
  4. Kadanoff LP. 4.  1966. Scaling laws for Ising models near Tc. Physics 2:6263–72 [Google Scholar]
  5. Wilson KG. 5.  1971. Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture. Phys. Rev. B 4:93174–83 [Google Scholar]
  6. Wilson KG. 6.  1971. Renormalization group and critical phenomena. II. Phase-space cell analysis of critical behavior. Phys. Rev. B 4:93184–205 [Google Scholar]
  7. Wilson KG, Fisher ME. 7.  1972. Critical exponents in 3.99 dimensions. Phys. Rev. Lett. 28:4240–43 [Google Scholar]
  8. Fixman M. 8.  1962. Correlations at a critical point. J. Chem. Phys. 36:81965–68 [Google Scholar]
  9. Fisher ME. 9.  1964. Correlation functions and the critical region of simple fluids. J. Math. Phys. 5:7944–62 [Google Scholar]
  10. Kadanoff LP, Gotze W, Hamblen D, Hecht R, Lewis EAS. 10.  et al. 1967. Static phenomena near critical points: theory and experiment.. Rev. Mod. Phys. 39:2395–431 [Google Scholar]
  11. Fermi E, Pasta J, Ulam S. 11.  1955. Studies of non-linear problems. Rep. LA-1940, Los Alamos Sci. Lab., Los Alamos, NM [Google Scholar]
  12. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. 12.  1953. Equation of state calculations by fast computing machines. J. Chem. Phys. 21:61087–92 [Google Scholar]
  13. Wood WW, Jacobson JD. 13.  1957. Preliminary results from a recalculation of the Monte Carlo equation of state of hard spheres. J. Chem. Phys. 27:1207–8 [Google Scholar]
  14. Alder BJ, Wainwright TE. 14.  1957. Phase transition for a hard sphere system. J. Chem. Phys. 27:1208–9 [Google Scholar]
  15. Wood WW. 15.  1986. Early history of computer simulations in statistical mechanics. In Molecular-Dynamics Simulation of Statistical-Mechanical Systems G Ciccotti, WG Hoover 3–14 Amsterdam: Elsevier [Google Scholar]
  16. Rahman A. 16.  1964. Correlations in the motion of atoms in liquid argon. Phys. Rev. 136:2A405–11 [Google Scholar]
  17. Verlet L. 17.  1968. Computer “experiments” on classical fluids. II. Equilibrium correlation functions. Phys. Rev. 165:1201–14 [Google Scholar]
  18. Widom B. 18.  1967. Intermolecular forces and the nature of the liquid state. Science 157:3787375–82 [Google Scholar]
  19. Alder BJ, Wainwright TE. 19.  1959. Studies in molecular dynamics. I. General method. J. Chem. Phys. 31:2459–66 [Google Scholar]
  20. Alder BJ, Wainwright TE. 20.  1970. Decay of the velocity autocorrelation function. Phys. Rev. A 1:118–21 [Google Scholar]
  21. Weeks JD, Chandler D, Andersen HC. 21.  1971. Role of repulsive forces in forming the equilibrium structure of simple liquids. J. Chem. Phys. 54:125237–47 [Google Scholar]
  22. Chandler D, Weeks JD, Andersen HC. 22.  1983. Van der Waals picture of liquids, solids, and phase transformations. Science 220:4599787–94 [Google Scholar]
  23. Callen HB, Welton TA. 23.  1951. Irreversibility and generalized noise. Phys. Rev. 83134–40 [Google Scholar]
  24. Green MS. 24.  1954. Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys. 22:3398–413 [Google Scholar]
  25. Kubo R. 25.  1957. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12:6570–86 [Google Scholar]
  26. Onsager L. 26.  1931. Reciprocal relations in irreversible processes. I. Phys. Rev. 37:4405–26 [Google Scholar]
  27. Onsager L. 27.  1931. Reciprocal relations in irreversible processes. II. Phys. Rev. 38:122265–79 [Google Scholar]
  28. Jarzynski C. 28.  1997. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78:142690–93 [Google Scholar]
  29. Crooks GE. 29.  1999. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60:32721–26 [Google Scholar]
  30. Lebowitz JL, Spohn H. 30.  1999. A Gallavotti–Cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95:1–2333–65 [Google Scholar]
  31. Berne BJ, Boon JP, Rice SA. 31.  1966. On the calculation of autocorrelation functions of dynamical variables. J. Chem. Phys. 45:41086–96 [Google Scholar]
  32. Zwanzig R. 32.  1961. Memory effects in irreversible thermodynamics. Phys. Rev. 124:4983–92 [Google Scholar]
  33. Mori H. 33.  1965. Transport, collective motion, and Brownian motion. Prog. Theor. Phys. 33:3423–55 [Google Scholar]
  34. Prigogine I. 34.  1962. Non-Equilibrium Statistical Mechanics New York: Interscience [Google Scholar]
  35. Martin PC. 35.  1968. Measurements and Correlation Functions. New York: Gordon and Breach [Google Scholar]
  36. Kadanoff LP, Martin PC. 36.  1963. Hydrodynamic equations and correlation functions. Ann. Phys. 24:10419–69 [Google Scholar]
  37. Kadanoff LP. 37.  1993. From Order to Chaos Singapore: World Sci. [Google Scholar]
  38. Berne BJ, Pecora R. 38.  1976. Dynamic Light Scattering, with Applications to Chemistry, Biology and Physics. Reading, MA: Wiley-Interscience [Google Scholar]
  39. Bernal JD, Fowler RH. 39.  1933. Theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1:8515–48 [Google Scholar]
  40. Pople JA. 40.  1951. Molecular association in liquids. II. Theory of the structure of water. Proc. R. Soc. A 205:1081163–78 [Google Scholar]
  41. Stillinger FH. 41.  1975. Theory of molecular models for water. Adv. Chem. Phys. 31:1–101 [Google Scholar]
  42. Rahman A, Stillinger FH. 42.  1971. Molecular dynamics study of liquid water. J. Chem. Phys. 55:73336–59 [Google Scholar]
  43. Rahman A. 43.  1974. Report on Workshop, Electrolytes and Molten Salts K Singer 263 Orsay, Fr.: Cent. Eur. Calc. At. Mol. [Google Scholar]
  44. Geiger A, Rahman A, Stillinger FH. 44.  1979. Molecular dynamics study of the hydration of Lennard-Jones solutes. J. Chem. Phys. 70:1263–76 [Google Scholar]
  45. Rossky PJ, Karplus M, Rahman A. 45.  1979. A model for the simulation of an aqueous dipeptide solution. Biopolymers 18:4825–54 [Google Scholar]
  46. Nilsson A, Pettersson LGM. 46.  2015. The structural origin of anomalous properties of liquid water. Nat. Commun. 6:8998 [Google Scholar]
  47. Geissler PL. 47.  2005. Temperature dependence of inhomogeneous broadening: the meaning of isosbestic points. J. Am. Chem. Soc. 1274214930–35 [Google Scholar]
  48. Chandler D. 48.  1993. Gaussian field model of fluids with an application to polymeric fluids. Phys. Rev. E 48:42898–905 [Google Scholar]
  49. Wertheim MS. 49.  1963. Exact solution of the Percus–Yevick integral equation for hard spheres. Phys. Rev. Lett. 10:8321–23 [Google Scholar]
  50. Chandler D, Andersen HC. 50.  1972. Optimized cluster expansions for classical fluids. II. Theory of molecular liquids. J. Chem. Phys. 57:51930–37 [Google Scholar]
  51. Moore EB, Molinero V. 51.  2009. Water modeled as an intermediate element between carbon and silicon. J. Phys. Chem. B 113:134008–16 [Google Scholar]
  52. Marcus RA. 52.  1993. Electron transfer reactions in chemistry. Theory and experiment. Rev. Mod. Phys. 65:3599–610 [Google Scholar]
  53. Maroncelli M, MacInnis J, Fleming GR. 53.  1989. Polar solvation dynamics and electron transfer dynamics. Science 243:48991674–81 [Google Scholar]
  54. Kuharski RA, Bader JS, Chandler D, Sprik M, Klein ML, Impey RW. 54.  1988. Molecular model for aqueous ferrous–ferric electron transfer. J. Chem. Phys. 89:53248–57 [Google Scholar]
  55. Pratt LR, Chandler D. 55.  1977. Theory of the hydrophobic effect. J. Chem. Phys. 67:83683–704 [Google Scholar]
  56. Hummer G, Garde S, Garcia AE, Pohorille A, Pratt LR. 56.  1996. An information theory model of hydrophobic interactions. PNAS 93:178951–55 [Google Scholar]
  57. Chandler D. 57.  2005. Interfaces and the driving force of hydrophobic assembly. Nature 437:7059640–47 [Google Scholar]
  58. Lum K, Chandler D, Weeks JD. 58.  1999. Hydrophobicity at small and large length scales. J. Phys. Chem. B 103:224570–77 [Google Scholar]
  59. Katira S, Mandadapu KK, Vaikuntanathan S, Smit B, Chandler D. 59.  2016. Pre-transition effects mediate forces of assembly between transmembrane proteins. eLife 5:e13150 [Google Scholar]
  60. Eigen M, de Maeyer L. 60.  1985. Self-dissociation and protonic charge transport in water and ice. Proc. R. Soc. A 2471251505–33 [Google Scholar]
  61. Natzle WC, Moore CB. 61.  1985. Recombination of hydrogen ion (H+) and hydroxide in pure liquid water. J. Phys. Chem. 89:122605–12 [Google Scholar]
  62. Chandler D. 62.  1978. Statistical mechanics of isomerization dynamics in liquids and the transition state approximation. J. Chem. Phys. 68:62959–70 [Google Scholar]
  63. Gillan MJ. 63.  Alfè D, Michaelides A. 2016. How good is DFT for water?. J. Chem. Phys. 14413130901 [Google Scholar]
  64. Bolhuis PG, Chandler D, Dellago C, Geissler PL. 64.  2002. Transition path sampling: throwing ropes over rough mountain passes, in the dark. Annu. Rev. Phys. Chem. 53:291–318 [Google Scholar]
  65. Geissler PL, Dellago C, Chandler D, Hutter J, Parrinello M. 65.  2001. Autoionization in liquid water. Science 291:55112121–24 [Google Scholar]
  66. Hedges LO, Jack RL, Garrahan JP, Chandler D. 66.  2009. Dynamic order-disorder in atomistic models of structural glass formers. Science 323:59191309–13 [Google Scholar]
  67. Van Erp TS, Moroni D, Bolhuis PG. 67.  2003. A novel path sampling method for the calculation of rate constants. J. Chem. Phys. 118:177762–74 [Google Scholar]
  68. Allen RJ, Warren PB, ten Wolde PR. 68.  2005. Sampling rare switching events in biochemical networks. Phys. Rev. Lett. 94:1018104 [Google Scholar]
  69. Limmer DT, Chandler D. 69.  2014. Theory of amorphous ices. PNAS 111:269413–18 [Google Scholar]
  70. Limmer DT, Chandler D. 70.  2015. Comment on “Spontaneous liquid-liquid phase separation of water.”. Phys. Rev. E 911016301 [Google Scholar]
  71. Poole PH, Sciortino F, Essmann U, Stanely HE. 71.  1992. Phase behaviour of metastable water. Nature 360:6402324–28 [Google Scholar]
  72. Binder K. 72.  2014. Simulations clarify when supercooled water freezes into glassy structures. PNAS 111:269374–75 [Google Scholar]
  73. Limmer DT, Chandler D. 73.  2015. Time scales of supercooled water and implications for reversible polyamorphism. Mol. Phys. 113:17–182799–804 [Google Scholar]
  74. Franks F. 74.  1981. Polywater Cambridge, MA: MIT Press [Google Scholar]
  75. Kohl I, Bachmann L, Hallbrucker A, Mayer E, Loerting T. 75.  2005. Liquid-like relaxation in hyperquenched water at <140 K. Phys. Chem. Chem. Phys. 7:173210–20 [Google Scholar]
  76. Mishima O, Calvert LD, Whalley E. 76.  1985. An apparently first-order transition between two amorphous phases of ice induced by pressure. Nature 314:600676–78 [Google Scholar]
  77. Garrahan JP, Jack RL, Lecomte V, Pitard E, van Duijvendijk K, van Wijland F. 77.  2009. First-order dynamical phase transition in models of glasses: an approach based on ensembles of histories. J. Phys. A 42:7075007 [Google Scholar]
  78. Merolle M, Garrahan JP, Chandler D. 78.  2005. Space-time thermodynamics of the glass transition. PNAS 102:3110837–40 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error