Surface plasmons have recently been harnessed to carry out processes such as photovoltaic current generation, redox photochemistry, photocatalysis, and photodetection, all of which are enabled by separating energetic (hot) electrons and holes—processes that, previously, were the domain of semiconductor junctions. Currently, the power conversion efficiencies of systems using plasmon excitation are low. However, the very large electron/hole per photon quantum efficiencies observed for plasmonic devices fan the hope of future improvements through a deeper understanding of the processes involved and through better device engineering, especially of critical interfaces such as those between metallic and semiconducting nanophases (or adsorbed molecules). In this review, we focus on the physics and dynamics governing plasmon-derived hot charge carrier transfer across, and the electronic structure at, metal–semiconductor (molecule) interfaces, where we feel the barriers contributing to low efficiencies reside. We suggest some areas of opportunity that deserve early attention in the still-evolving field of hot carrier transmission from plasmonic nanostructures to neighboring phases.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Gramotnev DK, Bozhevolnyi SI. 1.  2010. Plasmonics beyond the diffraction limit. Nat. Photonics 4:83–91 [Google Scholar]
  2. Brongersma ML, Halas NJ, Nordlander P. 2.  2015. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10:25–34 [Google Scholar]
  3. Knight MW, Sobhani H, Nordlander P, Halas NJ. 3.  2011. Photodetection with active optical antennas. Science 332:702–4 [Google Scholar]
  4. Mubeen S, Hernandez-Sosa G, Moses D, Lee J, Moskovits M. 4.  2011. Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers. Nano Lett 11:5548–52 [Google Scholar]
  5. Lee YK, Jung CH, Park J, Seo H, Somorjai GA, Park JY. 5.  2011. Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes. Nano Lett 11:4251–55 [Google Scholar]
  6. Mubeen S, Lee J, Singh N, Kramer S, Stucky GD, Moskovits M. 6.  2013. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol. 8:247–51 [Google Scholar]
  7. Christopher P, Xin H, Linic S. 7.  2011. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3:467–72 [Google Scholar]
  8. Christopher P, Xin H, Marimuthu A, Linic S. 8.  2012. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater. 11:1044–50 [Google Scholar]
  9. Kim KH, Watanabe K, Mulugeta D, Freund H-J, Menzel D. 9.  2011. Enhanced photoinduced desorption from metal nanoparticles by photoexcitation of confined hot electrons using femtosecond laser pulses. Phys. Rev. Lett. 107:047401 [Google Scholar]
  10. Mulugeta D, Kim KH, Watanabe K, Menzel D, Freund H-J. 10.  2008. Size effects in thermal and photochemistry of (NO)2 on Ag nanoparticles. Phys. Rev. Lett. 101:146103 [Google Scholar]
  11. Chen X, Zhu H-Y, Zhao J-C, Zheng Z-F, Gao X-P. 11.  2008. Visible-light-driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports. Angew. Chem. 120:5433–36 [Google Scholar]
  12. Zhu H, Ke X, Yang X, Sarina S, Liu H. 12.  2010. Reduction of nitroaromatic compounds on supported gold nanoparticles by visible and ultraviolet light. Angew. Chem. 122:9851–55 [Google Scholar]
  13. Mukherjee S, Libisch F, Large N, Neumann O, Brown LV. 13.  et al. 2013. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett 13:240–47 [Google Scholar]
  14. Xiong Y, McLellan JM, Chen J, Yin Y, Li Z-Y, Xia Y. 14.  2005. Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties. J. Am. Chem. Soc. 127:17118–27 [Google Scholar]
  15. Tian Z-Q, Ren B. 15.  2004. Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy. Annu. Rev. Phys. Chem. 55:197–229 [Google Scholar]
  16. Akemann W, Otto A. 16.  1995. Vibrational frequencies of C2H4 and C2H6 adsorbed on potassium, indium, and noble metal films. Langmuir 11:1196–200 [Google Scholar]
  17. Knight MW, Liu L, Wang Y, Brown L, Mukherjee S. 17.  et al. 2012. Aluminum plasmonic nanoantennas. Nano Lett 12:6000–4 [Google Scholar]
  18. Langhammer C, Schwind M, Kasemo B, Zorić I. 18.  2008. Localized surface plasmon resonances in aluminum nanodisks. Nano Lett 8:1461–71 [Google Scholar]
  19. Knight MW, King NS, Liu L, Everitt HO, Nordlander P, Halas NJ. 19.  2014. Aluminum for plasmonics. ACS Nano 8:834–40 [Google Scholar]
  20. Luther JM, Jain PK, Ewers T, Alivisatos AP. 20.  2011. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 10:361–66 [Google Scholar]
  21. Garcia G, Buonsanti R, Runnerstrom EL, Mendelsberg RJ, Llordes A. 21.  et al. 2011. Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. Nano Lett 11:4415–20 [Google Scholar]
  22. Boltasseva A, Atwater HA. 22.  2011. Low-loss plasmonic metamaterials. Science 331:290–91 [Google Scholar]
  23. West PR, Ishii S, Naik GV, Emani NK, Shalaev VM, Boltasseva A. 23.  2010. Searching for better plasmonic materials. Laser Photonics Rev 4:795–808 [Google Scholar]
  24. Moskovits M. 24.  2015. The case for plasmon-derived hot carrier devices. Nat. Nanotechnol. 10:6–8 [Google Scholar]
  25. Brus L. 25.  2008. Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Acc. Chem. Res. 41:1742–49 [Google Scholar]
  26. Langhammer C, Kasemo B, Zorić I. 26.  2007. Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios. J. Chem. Phys. 126:194702 [Google Scholar]
  27. Brown AM, Sundararaman R, Narang P, Goddard WA, Atwater HA. 27.  2016. Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry. ACS Nano 10:957–66 [Google Scholar]
  28. Zheng BY, Zhao H, Manjavacas A, McClain M, Nordlander P, Halas NJ. 28.  2015. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nat. Commun. 6:7797 [Google Scholar]
  29. Zhu X-Y. 29.  2002. Electron transfer at molecule-metal interfaces: a two-photon photoemission study. Annu. Rev. Phys. Chem. 53:221–47 [Google Scholar]
  30. Stuckless JT, Moskovits M. 30.  1989. Enhanced two-photon photoemission from coldly deposited silver films. Phys. Rev. B 40:9997–98 [Google Scholar]
  31. Douketis C, Haslett TL, Stuckless JT, Moskovits M, Shalaev VM. 31.  1993. Direct and roughness-induced indirect transitions in photoemission from silver films. Surf. Sci. 297:L84–L90 [Google Scholar]
  32. Shalaev VM, Douketis C, Haslett T, Stuckless T, Moskovits M. 32.  1996. Two-photon electron emission from smooth and rough metal films in the threshold region. Phys. Rev. B 53:11193–206 [Google Scholar]
  33. Merschdorf M, Pfeiffer W, Thon A, Voll S, Gerber G. 33.  2000. Photoemission from multiply excited surface plasmons in Ag nanoparticles. Appl. Phys. A 71:547–52 [Google Scholar]
  34. Evers F, Rakete C, Watanabe K, Menzel D, Freund H-J. 34.  2005. Two-photon photoemission from silver nanoparticles on thin alumina films: role of plasmon excitation. Surf. Sci. 593:43–48 [Google Scholar]
  35. Govorov AO, Zhang H, Gun'ko YK. 35.  2013. Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. J. Phys. Chem. C 117:16616–31 [Google Scholar]
  36. Ladstädter F, Hohenester U, Puschnig P, Ambrosch-Draxl C. 36.  2004. First-principles calculation of hot-electron scattering in metals. Phys. Rev. B 70:235125 [Google Scholar]
  37. Bernardi M, Mustafa J, Neaton JB, Louie SG. 37.  2015. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals. Nat. Commun. 6:7044 [Google Scholar]
  38. Sundararaman R, Narang P, Jermyn AS, III Goddard WA, Atwater HA. 38.  2014. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun.55788 [Google Scholar]
  39. Manjavacas A, Liu JG, Kulkarni V, Nordlander P. 39.  2014. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 8:7630–38 [Google Scholar]
  40. Zhang H, Govorov AO. 40.  2014. Optical generation of hot plasmonic carriers in metal nanocrystals: the effects of shape and field enhancement. J. Phys. Chem. C 118:7606–14 [Google Scholar]
  41. Carpene E. 41.  2006. Ultrafast laser irradiation of metals: beyond the two-temperature model. Phys. Rev. B 74:024301 [Google Scholar]
  42. Avanesian T, Christopher P. 42.  2014. Adsorbate specificity in hot electron driven photochemistry on catalytic metal surfaces. J. Phys. Chem. C 118:28017–31 [Google Scholar]
  43. Merschdorf M, Kennerknecht C, Pfeiffer W. 43.  2004. Collective and single-particle dynamics in time-resolved two-photon photoemission. Phys. Rev. B 70:193401 [Google Scholar]
  44. Linic S, Christopher P, Ingram DB. 44.  2011. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10:911–21 [Google Scholar]
  45. Clavero C. 45.  2014. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 8:95–103 [Google Scholar]
  46. Narang P, Sundararaman R, Atwater HA. 46.  2016. Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion. Nanophotonics 5:96–111 [Google Scholar]
  47. Zhang Z, Yates JT. 47.  2012. Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem. Rev. 112:5520–51 [Google Scholar]
  48. Schottky W. 48.  1939. Zur Halbleitertheorie der Sperrschicht- und Spitzengleichrichter. Z. Phys. 113:367–414 [Google Scholar]
  49. Schottky W. 49.  1938. Halbleitertheorie der Sperrschicht. Naturwissenschaften 26:843 [Google Scholar]
  50. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q. 50.  et al. 2010. Solar water splitting cells. Chem. Rev. 110:6446–73 [Google Scholar]
  51. Matsubu JC, Lin ET, Gunther KL, Bozhilov KN, Jiang Y, Christopher P. 51.  2016. Critical role of interfacial effects on the reactivity of semiconductor-cocatalyst junctions for photocatalytic oxygen evolution from water. Catal. Sci. Technol. 6:6836–44 [Google Scholar]
  52. McFarland EW, Tang J. 52.  2003. A photovoltaic device structure based on internal electron emission. Nature 421:616–18 [Google Scholar]
  53. Gergen B, Nienhaus H, Weinberg WH, McFarland EW. 53.  2001. Chemically induced electronic excitations at metal surfaces. Science 294:2521–23 [Google Scholar]
  54. Zhao G, Kozuka H, Yoko T. 54.  1996. Sol–gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles. Thin Solid Films 277:147–54 [Google Scholar]
  55. Tian Y, Tatsuma T. 55.  2004. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem. Commun. 2004:1810–1 [Google Scholar]
  56. Tian Y, Tatsuma T. 56.  2005. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 127:7632–37 [Google Scholar]
  57. Furube A, Du L, Hara K, Katoh R, Tachiya M. 57.  2007. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc. 129:14852–53 [Google Scholar]
  58. Mubeen S, Lee J, Lee W-R, Singh N, Stucky GD, Moskovits M. 58.  2014. On the plasmonic photovoltaic. ACS Nano 8:6066–73 [Google Scholar]
  59. Wang F, Melosh NA. 59.  2011. Plasmonic energy collection through hot carrier extraction. Nano Lett 11:5426–30 [Google Scholar]
  60. White TP, Catchpole KR. 60.  2012. Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits. Appl. Phys. Lett. 101:073905 [Google Scholar]
  61. Barad H-N, Ginsburg A, Cohen H, Rietwyk KJ, Keller DA. 61.  et al. 2016. Hot electron-based solid state TiO2|Ag solar cells. Adv. Mater. Interfaces 3:1500789 [Google Scholar]
  62. Arinze ES, Qiu B, Nyirjesy G, Thon SM. 62.  2016. Plasmonic nanoparticle enhancement of solution-processed solar cells: practical limits and opportunities. ACS Photonics 3:158–73 [Google Scholar]
  63. Wu K, Chen J, McBride JR, Lian T. 63.  2015. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 349:632–35 [Google Scholar]
  64. Long R, Prezhdo OV. 64.  2014. Instantaneous generation of charge-separated state on TiO2 surface sensitized with plasmonic nanoparticles. J. Am. Chem. Soc. 136:4343–54 [Google Scholar]
  65. Kale MJ, Christopher P. 65.  2015. Plasmons at the interface. Science 349:587–88 [Google Scholar]
  66. Qian K, Sweeny BC, Johnston-Peck AC, Niu W, Graham JO. 66.  et al. 2014. Surface plasmon-driven water reduction: gold nanoparticle size matters. J. Am. Chem. Soc. 136:9842–45 [Google Scholar]
  67. Ding D, Liu K, He S, Gao C, Yin Y. 67.  2014. Ligand-exchange assisted formation of Au/TiO2 Schottky contact for visible-light photocatalysis. Nano Lett 14:6731–36 [Google Scholar]
  68. Tanaka A, Hashimoto K, Kominami H. 68.  2014. Visible-light-induced hydrogen and oxygen formation over Pt/Au/WO3 photocatalyst utilizing two types of photoabsorption due to surface plasmon resonance and band-gap excitation. J. Am. Chem. Soc. 136:586–89 [Google Scholar]
  69. Bai S, Li X, Kong Q, Long R, Wang C. 69.  et al. 2015. Toward enhanced photocatalytic oxygen evolution: synergetic utilization of plasmonic effect and Schottky junction via interfacing facet selection. Adv. Mater. 27:3444–52 [Google Scholar]
  70. Robatjazi H, Bahauddin SM, Doiron C, Thomann I. 70.  2015. Direct plasmon-driven photoelectrocatalysis. Nano Lett 15:6155–61 [Google Scholar]
  71. Zheng Z, Tachikawa T, Majima T. 71.  2014. Single-particle study of Pt-modified Au nanorods for plasmon-enhanced hydrogen generation in visible to near-infrared region. J. Am. Chem. Soc. 136:6870–73 [Google Scholar]
  72. Zheng Z, Tachikawa T, Majima T. 72.  2015. Plasmon-enhanced formic acid dehydrogenation using anisotropic Pd–Au nanorods studied at the single-particle level. J. Am. Chem. Soc. 137:948–57 [Google Scholar]
  73. Watanabe K, Menzel D, Nilius N, Freund H-J. 73.  2006. Photochemistry on metal nanoparticles. Chem. Rev. 106:4301–20 [Google Scholar]
  74. Sarina S, Waclawik ER, Zhu H. 74.  2013. Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation. Green Chem 15:1814–33 [Google Scholar]
  75. Kale MJ, Avanesian T, Christopher P. 75.  2014. Direct photocatalysis by plasmonic nanostructures. ACS Catal 4:116–28 [Google Scholar]
  76. Linic S, Aslam U, Boerigter C, Morabito M. 76.  2015. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 14:567–76 [Google Scholar]
  77. Redhead PA. 77.  1964. Interaction of slow electrons with chemisorbed oxygen. Can. J. Phys. 42:886–905 [Google Scholar]
  78. Menzel D, Gomer R. 78.  1964. Desorption from metal surfaces by low‐energy electrons. J. Chem. Phys. 41:3311–28 [Google Scholar]
  79. Metiu H, Gadzuk JW. 79.  1981. Theory of rate processes at metal surfaces. II. The role of substrate electronic excitations. J. Chem. Phys. 74:2641–53 [Google Scholar]
  80. Antoniewicz PR. 80.  1980. Model for electron- and photon-stimulated desorption. Phys. Rev. B 21:3811–15 [Google Scholar]
  81. Prybyla JA, Heinz TF, Misewich JA, Loy MMT, Glownia JH. 81.  1990. Desorption induced by femtosecond laser pulses. Phys. Rev. Lett. 64:1537–40 [Google Scholar]
  82. Dai H-L, Ho W. 82.  1995. Laser Spectroscopy and Photochemistry on Metal Surfaces Singapore: World Sci. [Google Scholar]
  83. Buntin SA, Richter LJ, Cavanagh RR, King DS. 83.  1988. Optically driven surface reactions: evidence for the role of hot electrons. Phys. Rev. Lett. 61:1321–24 [Google Scholar]
  84. Gadzuk JW. 84.  1996. Resonance-assisted hot electron femtochemistry at surfaces. Phys. Rev. Lett. 76:4234–37 [Google Scholar]
  85. Her T-H, Finlay RJ, Wu C, Mazur E. 85.  1998. Surface femtochemistry of CO/O2/Pt(111): the importance of nonthermalized substrate electrons. J. Chem. Phys. 108:8595–98 [Google Scholar]
  86. Misewich JA, Heinz TF, Newns DM. 86.  1992. Desorption induced by multiple electronic transitions. Phys. Rev. Lett. 68:3737–40 [Google Scholar]
  87. Busch DG, Ho W. 87.  1996. Direct observation of the crossover from single to multiple excitations in femtosecond surface photochemistry. Phys. Rev. Lett. 77:1338–41 [Google Scholar]
  88. Gadzuk JW. 88.  2000. Hot-electron femtochemistry at surfaces: on the role of multiple electron processes in desorption. Chem. Phys. 251:87–97 [Google Scholar]
  89. Olsen T, Gavnholt J, Schiøtz J. 89.  2009. Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces. Phys. Rev. B 79:035403 [Google Scholar]
  90. Bonn M, Funk S, Hess C, Denzler DN, Stampfl C. 90.  et al. 1999. Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001). Science 285:1042–45 [Google Scholar]
  91. Funk S, Bonn M, Denzler DN, Hess C, Wolf M, Ertl G. 91.  2000. Desorption of CO from Ru(001) induced by near-infrared femtosecond laser pulses. J. Chem. Phys. 112:9888–97 [Google Scholar]
  92. Madey TE, Yates JT, King DA, Uhlaner CJ. 92.  1970. Isotope effect in electron stimulated desorption: oxygen chemisorbed on tungsten. J. Chem. Phys. 52:5215–20 [Google Scholar]
  93. Denzler DN, Frischkorn C, Hess C, Wolf M, Ertl G. 93.  2003. Electronic excitation and dynamic promotion of a surface reaction. Phys. Rev. Lett. 91:226102 [Google Scholar]
  94. Marimuthu A, Zhang J, Linic S. 94.  2013. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 339:1590–93 [Google Scholar]
  95. Ke X, Sarina S, Zhao J, Zhang X, Chang J, Zhu H. 95.  2012. Tuning the reduction power of supported gold nanoparticle photocatalysts for selective reductions by manipulating the wavelength of visible light irradiation. Chem. Commun. 48:3509–11 [Google Scholar]
  96. Hövel H, Fritz S, Hilger A, Kreibig U, Vollmer M. 96.  1993. Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. Phys. Rev. B 48:18178–88 [Google Scholar]
  97. Iline A, Simon M, Stietz F, Träger F. 97.  1999. Adsorption of molecules on the surface of small metal particles studied by optical spectroscopy. Surf. Sci. 436:51–62 [Google Scholar]
  98. Petek H, Weida MJ, Nagano H, Ogawa S. 98.  2000. Real-time observation of adsorbate atom motion above a metal surface. Science 288:1402–4 [Google Scholar]
  99. Kale MJ, Avanesian T, Xin H, Yan J, Christopher P. 99.  2014. Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate–metal bonds. Nano Lett 14:5405–12 [Google Scholar]
  100. Boerigter C, Aslam U, Linic S. 100.  2016. Mechanism of charge transfer from plasmonic nanostructures to chemically attached materials. ACS Nano 10:6108–15 [Google Scholar]
  101. Boerigter C, Campana R, Morabito M, Linic S. 101.  2016. Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis. Nat. Commun. 7:10545 [Google Scholar]
  102. Yan L, Wang F, Meng S. 102.  2016. Quantum mode selectivity of plasmon-induced water splitting on gold nanoparticles. ACS Nano 10:5452–58 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error