1932

Abstract

We review the role of self-consistency in density functional theory (DFT). We apply a recent analysis to both Kohn–Sham and orbital-free DFT, as well as to partition DFT, which generalizes all aspects of standard DFT. In each case, the analysis distinguishes between errors in approximate functionals versus errors in the self-consistent density. This yields insights into the origins of many errors in DFT calculations, especially those often attributed to self-interaction or delocalization error. In many classes of problems, errors can be substantially reduced by using better densities. We review the history of these approaches, discuss many of their applications, and give simple pedagogical examples.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-052516-044957
2017-05-05
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/physchem/68/1/annurev-physchem-052516-044957.html?itemId=/content/journals/10.1146/annurev-physchem-052516-044957&mimeType=html&fmt=ahah

Literature Cited

  1. Pribram-Jones A, Gross DA, Burke K. 1.  2015. DFT: a theory full of holes. Annu. Rev. Phys. Chem. 66:283–304 [Google Scholar]
  2. Mori-Sánchez P, Cohen AJ, Yang W. 2.  2008. Localization and delocalization errors in density functional theory and implications for band-gap prediction. Phys. Rev. Lett. 100:146401 [Google Scholar]
  3. Cohen MH, Wasserman A. 3.  2007. On the foundations of chemical reactivity theory. J. Phys. Chem. A 111:2229–42 [Google Scholar]
  4. Thomas LH. 4.  1927. The calculation of atomic fields. Math. Proc. Camb. Phil. Soc. 23:542–48 [Google Scholar]
  5. Fermi E. 5.  1928. A statistical method for the determination of some atomic properties and the application of this method to the theory of the periodic system of elements. Z. Phys. A 48:73–79 [Google Scholar]
  6. Perdew JP, Burke K, Ernzerhof M. 6.  1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77:3865–68. [Google Scholar]
  7. Perdew JP, Burke K, Ernzerhof M. 7.  1997. Errata to “Generalized gradient approximation made simple.”. Phys. Rev. Lett. 78:1396 [Google Scholar]
  8. Engel E, Dreizler RM. 8.  2011. Density Functional Theory: An Advanced Course Berlin: Springer [Google Scholar]
  9. Hohenberg P, Kohn W. 9.  1964. Inhomogeneous electron gas. Phys. Rev. 136:B864–71 [Google Scholar]
  10. Levy M. 10.  1979. Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. PNAS 76:6062–65 [Google Scholar]
  11. Lieb EH. 11.  1983. Density functionals for Coulomb systems. Int. J. Quantum Chem. 24:243–77 [Google Scholar]
  12. Kohn W, Sham LJ. 12.  1965. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140:A1133–38 [Google Scholar]
  13. Umrigar CJ, Gonze X. 13.  1994. Accurate exchange-correlation potentials and total-energy components for the helium isoelectronic series. Phys. Rev. A 50:3827–37 [Google Scholar]
  14. Perdew JP. 14.  1986. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 33:8822–24 [Google Scholar]
  15. Becke AD. 15.  1988. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38:3098–100 [Google Scholar]
  16. Lee C, Yang W, Parr RG. 16.  1988. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37:785–89 [Google Scholar]
  17. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR. 17.  et al. 1992. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46:6671–87 [Google Scholar]
  18. Becke AD. 18.  1993. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98:5648–52 [Google Scholar]
  19. Perdew JP, Ernzerhof M, Burke K. 19.  1996. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105:9982–85 [Google Scholar]
  20. Adamo C, Barone V. 20.  1999. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110:6158–70 [Google Scholar]
  21. Heyd J, Scuseria GE, Ernzerhof M. 21.  2003. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118:8207–15 [Google Scholar]
  22. von Barth U, Hedin L. 22.  1972. A local exchange-correlation potential for the spin polarized case. J. Phys. C 5:1629 [Google Scholar]
  23. Baerends EJ. 23.  2001. Exact exchange-correlation treatment of dissociated H2 in density functional theory. Phys. Rev. Lett. 87:133004 [Google Scholar]
  24. Li C, Zheng X, Cohen AJ, Mori-Sánchez P, Yang W. 24.  2015. Local scaling correction for reducing delocalization error in density functional approximations. Phys. Rev. Lett. 114:053001 [Google Scholar]
  25. Zheng X, Li C, Zhang D, Yang W. 25.  2015. Scaling correction approaches for reducing delocalization error in density functional approximations. Sci. China Chem. 58:1825–44 [Google Scholar]
  26. Dale SG, Johnson ER. 26.  2015. Counterintuitive electron localisation from density-functional theory with polarisable solvent models. J. Chem. Phys. 143:184112 [Google Scholar]
  27. Soniat M, Rogers DM, Rempe SB. 27.  2015. Dispersion- and exchange-corrected density functional theory for sodium ion hydration. J. Chem. Theory Comput. 11:2958–67 [Google Scholar]
  28. Görling A. 28.  1999. New KS method for molecules based on an exchange charge density generating the exact local KS exchange potential. Phys. Rev. Lett. 83:5459–62 [Google Scholar]
  29. Sham LJ, Kohn W. 29.  1966. One-particle properties of an inhomogeneous interacting electron gas. Phys. Rev. 145:561–67 [Google Scholar]
  30. Yip SK. 30.  1991. Magneto-optical absorption by electrons in the presence of parabolic confinement potentials. Phys. Rev. B 43:1707–18 [Google Scholar]
  31. Netzloff HM, Gordon MS. 31.  2004. Fast fragments: the development of a parallel effective fragment potential method. J. Comput. Chem. 25:1926–36 [Google Scholar]
  32. Fedorov DG, Kitaura K. 32.  2007. Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. J. Phys. Chem. A 111:6904–14 [Google Scholar]
  33. Wang YA, Carter EA. 33.  2002. Orbital-free kinetic-energy density functional theory. Theoretical Methods in Condensed Phase Chemistry SD Schwartz 117–84 Dordrecht, Neth.: Springer [Google Scholar]
  34. Hung L, Carter EA. 34.  2009. Accurate simulations of metals at the mesoscale: explicit treatment of 1 million atoms with quantum mechanics. Chem. Phys. Lett. 475:163–70 [Google Scholar]
  35. Peng Q, Zhang X, Hung L, Carter EA, Lu G. 35.  2008. Quantum simulation of materials at micron scales and beyond. Phys. Rev. B 78:054118 [Google Scholar]
  36. Choly N, Lu G, E W, Kaxiras E. 36.  2005. Multiscale simulations in simple metals: a density-functional-based methodology. Phys. Rev. B 71:094101 [Google Scholar]
  37. Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S. 37.  et al. 1996. ONIOM: a multilayered integrated MO + MM method for geometry optimizations and single point energy predictions. A test for Diels–Alder reactions and Pt(P(t-Bu)3)2 + H2 oxidative addition. J. Phys. Chem. 100:19357–63 [Google Scholar]
  38. Gao J, Truhlar DG. 38.  2002. Quantum mechanical methods for enzyme kinetics. Annu. Rev. Phys. Chem. 53:467–505 [Google Scholar]
  39. Friesner RA, Guallar V. 39.  2005. Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis. Annu. Rev. Phys. Chem. 56:389–427 [Google Scholar]
  40. Chen M, Jiang X-W, Zhuang H, Wang L-W, Carter EA. 40.  2016. Petascale orbital-free density functional theory enabled by small-box algorithms. J. Chem. Theory Comput. 12:2950–63 [Google Scholar]
  41. Elliott P, Burke K, Cohen MH, Wasserman A. 41.  2010. Partition density-functional theory. Phys. Rev. A 82:024501 [Google Scholar]
  42. Cohen MH, Wasserman A. 42.  2003. Revisiting N-continuous density-functional theory: chemical reactivity and “atoms” in “molecules.”. Isr. J. Chem. 43:219–27 [Google Scholar]
  43. Jacob CR, Neugebauer J. 43.  2014. Subsystem density-functional theory. WIREs Comput. Mol. Sci. 4:325–62 [Google Scholar]
  44. Krishtal A, Sinha D, Genova A, Pavanello M. 44.  2015. Subsystem density-functional theory as an effective tool for modeling ground and excited states, their dynamics and many-body interactions. J. Phys. Condens. Matter 27:183202 [Google Scholar]
  45. Wesolowski TA, Shedge S, Zhou X. 45.  2015. Frozen-density embedding strategy for multilevel simulations of electronic structure. Chem. Rev. 115:5891–928 [Google Scholar]
  46. Gordon RG, Kim YS. 46.  1972. Theory for the forces between closed shell atoms and molecules. J. Chem. Phys. 56:3122–33 [Google Scholar]
  47. Wood C, Pyper N. 47.  1981. Electron gas predictions of interatomic potentials tested by ab initio calculations. Mol. Phys. 43:1371–83 [Google Scholar]
  48. Harris J. 48.  1984. Adiabatic-connection approach to Kohn–Sham theory. Phys. Rev. A 29:1648–59 [Google Scholar]
  49. Senatore G, Subbaswamy KR. 49.  1986. Density dependence of the dielectric constant of rare-gas crystals. Phys. Rev. B 34:5754–57 [Google Scholar]
  50. Cortona P. 50.  1991. Self-consistently determined properties of solids without band-structure calculations. Phys. Rev. B 44:8454–58 [Google Scholar]
  51. Wesolowski TA, Warshel A. 51.  1993. Frozen density functional approach for ab initio calculations of solvated molecules. J. Phys. Chem. 97:8050–53 [Google Scholar]
  52. Boyer LL, Mehl MJ. 52.  1993. A self consistent atomic deformation model for total energy calculations: application to ferroelectrics. Ferroelectrics 150:13–24 [Google Scholar]
  53. Wesolowski TA, Weber J. 53.  1996. Kohn–Sham equations with constrained electron density: an iterative evaluation of the ground-state electron density of interacting molecules. Chem. Phys. Lett. 248:71–76 [Google Scholar]
  54. Huang P, Carter EA. 54.  2008. Advances in correlated electronic structure methods for solids, surfaces, and nanostructures. Annu. Rev. Phys. Chem. 59:261–90 [Google Scholar]
  55. Trail JR, Bird DM. 55.  2000. Density-functional embedding using a plane-wave basis. Phys. Rev. B 62:16402–11 [Google Scholar]
  56. Casida ME, Wesolowski TA. 56.  2004. Generalization of the Kohn–Sham equations with constrained electron density formalism and its time-dependent response theory formulation. Int. J. Quantum Chem. 96:577–88 [Google Scholar]
  57. Wesolowski TA. 57.  2004. Hydrogen-bonding-induced shifts of the excitation energies in nucleic acid bases: an interplay between electrostatic and electron density overlap effects. J. Am. Chem. Soc. 126:11444–45 [Google Scholar]
  58. Neugebauer J, Louwerse MJ, Baerends EJ, Wesolowski TA. 58.  2005. The merits of the frozen-density embedding scheme to model solvatochromic shifts. J. Chem. Phys. 122:094115 [Google Scholar]
  59. Neugebauer J. 59.  2007. Couplings between electronic transitions in a subsystem formulation of time-dependent density functional theory. J. Chem. Phys. 126:134116 [Google Scholar]
  60. Klüner T, Govind N, Wang YA, Carter EA. 60.  2002. Periodic density functional embedding theory for complete active space self-consistent field and configuration interaction calculations: ground and excited states. J. Chem. Phys. 116:42–54 [Google Scholar]
  61. Kamerlin SCL, Haranczyk M, Warshel A. 61.  2009. Progress in ab initio QM/MM free-energy simulations of electrostatic energies in proteins: accelerated QM/MM studies of pKa, redox reactions and solvation free energies. J. Phys. Chem. B 113:1253–72 [Google Scholar]
  62. Fux S, Jacob CR, Neugebauer J, Visscher L, Reiher M. 62.  2010. Accurate frozen-density embedding potentials as a first step towards a subsystem description of covalent bonds. J. Chem. Phys. 132:164101 [Google Scholar]
  63. Manby FR, Stella M, Goodpaster JD, Miller TF. 63.  2012. A simple, exact density-functional-theory embedding scheme. J. Chem. Theory Comput. 8:2564–68 [Google Scholar]
  64. Pavanello M, Neugebauer J. 64.  2011. Modelling charge transfer reactions with the frozen density embedding formalism. J. Chem. Phys. 135:234103 [Google Scholar]
  65. Pavanello M, Van Voorhis T, Visscher L, Neugebauer J. 65.  2013. An accurate and linear-scaling method for calculating charge-transfer excitation energies and diabatic couplings. J. Chem. Phys. 138:054101 [Google Scholar]
  66. Kevorkyants R, Eshuis H, Pavanello M. 66.  2014. FDE-vdW: a van der Waals inclusive subsystem density-functional theory. J. Chem. Phys. 141:044127 [Google Scholar]
  67. Schluns D, Klahr K, Muck-Lichtenfeld C, Visscher L, Neugebauer J. 67.  2015. Subsystem-DFT potential-energy curves for weakly interacting systems. Phys. Chem. Chem. Phys. 17:14323–41 [Google Scholar]
  68. Goodpaster JD, Barnes TA, Manby FR, Miller TF III. 68.  2014. Accurate and systematically improvable density functional theory embedding for correlated wavefunctions. J. Chem. Phys. 140:18A507 [Google Scholar]
  69. Mosquera MA, Jensen D, Wasserman A. 69.  2013. Fragment-based time-dependent density functional theory. Phys. Rev. Lett. 111:023001 [Google Scholar]
  70. Mosquera MA, Wasserman A. 70.  2014. Current density partitioning in time-dependent current density functional theory. J. Chem. Phys. 140:18A525 [Google Scholar]
  71. Mosquera MA, Wasserman A. 71.  2015. Non-analytic spin-density functionals. Density Functionals: Thermochemistry ER Johnson 145–74 Cham, Switz.: Springer [Google Scholar]
  72. Cohen MH, Wasserman A. 72.  2006. On hardness and electronegativity equalization in chemical reactivity theory. J. Stat. Phys. 125:1121–39 [Google Scholar]
  73. Mosquera MA, Wasserman A. 73.  2013. Partition density functional theory and its extension to the spin-polarized case. Mol. Phys. 111:505–15 [Google Scholar]
  74. Nafziger J, Wasserman A. 74.  2014. Density-based partitioning methods for ground-state molecular calculations. J. Phys. Chem. A 118:7623–39 [Google Scholar]
  75. Perdew JP, Parr RG, Levy M, Balduz JL. 75.  1982. Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys. Rev. Lett. 49:1691–94 [Google Scholar]
  76. Wesolowski TA, Ellinger Y, Weber J. 76.  1998. Density functional theory with an approximate kinetic energy functional applied to study structure and stability of weak van der Waals complexes. J. Chem. Phys. 108:6078–83 [Google Scholar]
  77. Goodpaster JD, Ananth N, Manby FR, Miller TF. 77.  2010. Exact nonadditive kinetic potentials for embedded density functional theory. J. Chem. Phys. 133:084103 [Google Scholar]
  78. Rychlewski J, Parr RG. 78.  1986. The atom in a molecule: a wave function approach. J. Chem. Phys. 84:1696–703 [Google Scholar]
  79. Nafziger J. 79.  2015. Partition density functional theory PhD Thesis, Purdue Univ. [Google Scholar]
  80. Nafziger J, Wu Q, Wasserman A. 80.  2011. Molecular binding energies from partition density functional theory. J. Chem. Phys. 135:234101 [Google Scholar]
  81. Nafziger J, Wasserman A. 81.  2015. Fragment-based treatment of delocalization and static correlation errors in density-functional theory. J. Chem. Phys. 143:234105 [Google Scholar]
  82. Burke K. 82.  2007. The ABC of DFT Work. Pap., Univ. Calif., Irvine, CA [Google Scholar]
  83. Heilmann OJ, Lieb EH. 83.  1995. Electron density near the nucleus of a large atom. Phys. Rev. A 52:3628–43 [Google Scholar]
  84. Lieb E, Simon B. 84.  1973. Thomas–Fermi theory revisited. Phys. Rev. Lett. 31:681–83 [Google Scholar]
  85. Xia J, Carter EA. 85.  2015. Single-point kinetic energy density functionals: a pointwise kinetic energy density analysis and numerical convergence investigation. Phys. Rev. B 91:045124 [Google Scholar]
  86. Snyder JC, Rupp M, Hansen K, Mueller KR, Burke K. 86.  2012. Finding density functionals with machine learning. Phys. Rev. Lett. 108:253002 [Google Scholar]
  87. Li L, Snyder JC, Pelaschier IM, Huang J, Niranjan UN. 87.  et al. 2015. Understanding machine-learned density functionals. Int. J. Quantum Chem. 116:819–33 [Google Scholar]
  88. Vu K, Snyder JC, Li L, Rupp M, Chen BF. 88.  et al. 2015. Understanding kernel ridge regression: common behaviors from simple functions to density functionals. Int. J. Quantum. Chem. 115:1115–28 [Google Scholar]
  89. Snyder JC, Rupp M, Hansen K, Blooston L, Müller KR, Burke K. 89.  2013. Orbital-free bond breaking via machine learning. J. Chem. Phys. 139:224104 [Google Scholar]
  90. Snyder JC, Mika S, Burke K, Müller KR. 90.  2013. Kernels, pre-images, and optimization. Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik B Schoelkopf, Z Luo, V Vovk 245–59 Heidelberg, Ger.: Springer [Google Scholar]
  91. Brockherde F, Li L, Burke K, Müller KR. 91.  2016. By-passing the Kohn–Sham equations with machine-learning. arXiv:1609.02815 [physics.comp-ph]
  92. Tong BY, Sham LJ. 92.  1966. Application of a self-consistent scheme including exchange and correlation effects to atoms. Phys. Rev. 144:1–4 [Google Scholar]
  93. Dreizler RM, Gross EKU. 93.  1990. Density Functional Theory: An Approach to the Quantum Many-Body Problem Berlin: Springer [Google Scholar]
  94. Shore H, Rose J, Zaremba E. 94.  1977. Failure of the local exchange approximation in the evaluation of the H ground state. Phys. Rev. B 15:2858–61 [Google Scholar]
  95. Savin A, Stoll H, Preuss H. 95.  1986. An application of correlation energy density functionals to atoms and molecules. Theor. Chim. Acta 70:407–19 [Google Scholar]
  96. Murray CW, Laming GJ, Handy NC, Amos RD. 96.  1992. Kohn–Sham bond lengths and frequencies calculated with accurate quadrature and large basis sets. Chem. Phys. Lett. 199:551–56 [Google Scholar]
  97. Gill PMW, Johnson BG, Pople JA, Frisch MJ. 97.  1992. An investigation of the performance of a hybrid of Hartree–Fock and density functional theory. Int. J. Quant. Chem. 44:319–31 [Google Scholar]
  98. Oliphant N, Bartlett RJ. 98.  1994. A systematic comparison of molecular properties obtained using Hartree–Fock, a hybrid Hartree–Fock density-functional-theory, and coupled-cluster methods. J. Chem. Phys. 100:6550–61 [Google Scholar]
  99. Sadeghpour HR. 99.  1992. Resonant electron-hydrogen atom scattering using hyperspherical coordinate method. J. Phys. B 25:L29 [Google Scholar]
  100. Janesko BG, Scuseria GE. 100.  2008. Hartree–Fock orbitals significantly improve the reaction barrier heights predicted by semilocal density functionals. J. Chem. Phys. 128:244112 [Google Scholar]
  101. Verma P, Perera A, Bartlett RJ. 101.  2012. Increasing the applicability of DFT I: non-variational correlation corrections from Hartree–Fock DFT for predicting transition states. Chem. Phys. Lett. 524:10–15 [Google Scholar]
  102. Baerends EJ, Gritsenko OV, van Meer R. 102.  2013. The Kohn–Sham gap, the fundamental gap and the optical gap: the physical meaning of occupied and virtual Kohn–Sham orbital energies. Phys. Chem. Chem. Phys. 15:16408–25 [Google Scholar]
  103. Rienstra-Kiracofe JC, Tschumper GS, Schaefer HF, Nandi S, Ellison GB. 103.  2002. Atomic and molecular electron affinities: photoelectron experiments and theoretical computations. Chem. Rev. 102:231–82 [Google Scholar]
  104. Duncan Lyngdoh RH, Schaefer HF. 104.  2009. Elementary lesions in DNA subunits: electron, hydrogen atom, proton, and hydride transfers. Acc. Chem. Res. 42:563–72 [Google Scholar]
  105. Gu J, Xie Y, Schaefer HF. 105.  2010. Electron attachment to hydrated oligonucleotide dimers: guanylyl-3′, 5′-cytidine and cytidylyl-3′, 5′-guanosine. Chem. Eur. J. 16:5089–96 [Google Scholar]
  106. Gu J, Xie Y, Schaefer HF. 106.  2010. Guanine nucleotides: base-centered and phosphate-centered valence-bound radical anions in aqueous solution. J. Phys. Chem. B 114:1221–24 [Google Scholar]
  107. Cheng Q, Gu J, Compaan KR, Schaefer HF. 107.  2010. Hydroxyl radical reactions with adenine: reactant complexes, transition states, and product complexes. Chem. Eur. J. 16:11848–58 [Google Scholar]
  108. Kim S, Schaefer HF. 108.  2010. Vertical detachment energies of anionic thymidine: microhydration effects. J. Chem. Phys. 133:144305 [Google Scholar]
  109. Rösch N, Trickey SB. 109.  1997. Comment on “Concerning the applicability of density functional methods to atomic and molecular negative ions.”. J. Chem. Phys. 106:8940–41 [Google Scholar]
  110. Lee D, Burke K. 110.  2010. Finding electron affinities with approximate density functionals. Mol. Phys. 108:2687–701 [Google Scholar]
  111. Lee D, Furche F, Burke K. 111.  2010. Accuracy of electron affinities of atoms in approximate density functional theory. J. Phys. Chem. Lett. 1:2124–29 [Google Scholar]
  112. Kim MC, Sim E, Burke K. 112.  2011. Communication: avoiding unbound anions in density functional calculations. J. Chem. Phys. 134:171103 [Google Scholar]
  113. Kim MC, Sim E, Burke K. 113.  2013. Understanding and reducing errors in density functional calculations. Phys. Rev. Lett. 111:073003 [Google Scholar]
  114. Kim MC, Sim E, Burke K. 114.  2014. Ions in solution: density corrected density functional theory (DC-DFT). J. Chem. Phys. 140:18A528 [Google Scholar]
  115. Peach MJG, De Proft F, Tozer DJ. 115.  2010. Negative electron affinities from DFT: fluorination of ethylene. J. Phys. Chem. Lett. 1:2826–31 [Google Scholar]
  116. Mirtschink A, Umrigar CJ, Morgan JD, Gori-Giorgi P. 116.  2014. Energy density functionals from the strong-coupling limit applied to the anions of the He isoelectronic series. J. Chem. Phys. 140:18A532 [Google Scholar]
  117. Grabowski PE, Burke K. 117.  2015. Quantum critical benchmark for electronic structure theory. Phys. Rev. A 91:032501 [Google Scholar]
  118. Csonka GI, Perdew JP, Ruzsinszky A. 118.  2010. Global hybrid functionals: a look at the engine under the hood. J. Chem. Theory Comput. 6:3688–703 [Google Scholar]
  119. Hao P, Sun J, Xiao B, Ruzsinszky A, Csonka GI. 119.  et al. 2013. Performance of meta-GGA functionals on general main group thermochemistry, kinetics, and noncovalent interactions. J. Chem. Theory Comput. 9:355–63 [Google Scholar]
  120. Choi S, Hong K, Kim J, Kim WY. 120.  2015. Accuracy of Lagrange-sinc functions as a basis set for electronic structure calculations of atoms and molecules. J. Chem. Phys. 142:094116 [Google Scholar]
  121. Cook A, Frankel G, Davenport A, Hughes T, Gibbon S. 121.  et al. 2015. Corrosion control: general discussion. Faraday Discuss. 180:543–76 [Google Scholar]
  122. Teale AM, De Proft F, Geerlings P, Tozer DJ. 122.  2014. Atomic electron affinities and the role of symmetry between electron addition and subtraction in a corrected Koopmans approach. Phys. Chem. Chem. Phys. 16:14420–34 [Google Scholar]
  123. Peach MJG, Teale AM, Helgaker T, Tozer DJ. 123.  2015. Fractional electron loss in approximate DFT and Hartree–Fock theory. J. Chem. Theory Comput. 11:5262–68 [Google Scholar]
  124. Falcetta MF, DiFalco LA, Ackerman DS, Barlow JC, Jordan KD. 124.  2014. Assessment of various electronic structure methods for characterizing temporary anion states: application to the ground state anions of N2, C2H2, C2H4, and C6H6. J. Phys. Chem. A 118:7489–97 [Google Scholar]
  125. Ruzsinszky A, Perdew JP, Csonka GI, Vydrov OA, Scuseria GE. 125.  2006. Spurious fractional charge on dissociated atoms: pervasive and resilient self-interaction error of common density functionals. J. Chem. Phys. 125:194112 [Google Scholar]
  126. Ernzerhof M, Scuseria GE. 126.  1999. Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys 110:5029–36 [Google Scholar]
  127. Kim MC, Park H, Son S, Sim E, Burke K. 127.  2015. Improved DFT potential energy surfaces via improved densities. J. Phys. Chem. Lett. 6:3802–7 [Google Scholar]
  128. Biglari Z, Shayesteh A, Maghari A. 128.  2014. Ab initio potential energy curves and transition dipole moments for the low-lying states of CH+. Comput. Theor. Chem. 1047:22–29 [Google Scholar]
  129. Whittleton SR, Vazquez XAS, Isborn CM, Johnson ER. 129.  2015. Density-functional errors in ionization potential with increasing system size. J. Chem. Phys. 142:184106 [Google Scholar]
  130. Kruse H, Mladek A, Gkionis K, Hansen A, Grimme S, Sponer J. 130.  2015. Quantum chemical benchmark study on 46 RNA backbone families using a dinucleotide unit. J. Chem. Theory Comput. 11:4972–91 [Google Scholar]
  131. Gillan MJ. 131.  2014. Many-body exchange-overlap interactions in rare gases and water. J. Chem. Phys. 141:224106 [Google Scholar]
  132. Govender PP, Navizet I, Perry CB, Marques HM. 132.  2013. DFT studies of trans and cis influences in the homolysis of the Co–C bond in models of the alkylcobalamins. J. Phys. Chem. A 117:3057–68 [Google Scholar]
  133. Wang YF, Li Y, Zhou ZJ, Li ZR, Wu D. 133.  et al. 2012. Intercage electron transfer driven by electric field in Robin–Day-type molecules. ChemPhysChem 13:756–61 [Google Scholar]
  134. Johnson ER, Otero de la Roza A, Dale SG. 134.  2013. Extreme density-driven delocalization error for a model solvated-electron system. J. Chem. Phys. 139:184116 [Google Scholar]
  135. Gong ZY, Duan S, Tian G, Jiang J, Xu X, Luo Y. 135.  2015. Infrared spectra of small anionic water clusters from density functional theory and wavefunction theory calculations. Phys. Chem. Chem. Phys. 17:12698–707 [Google Scholar]
  136. Shubina TE, Sharapa DI, Schubert C, Zahn D, Halik M. 136.  et al. 2014. Fullerene van der Waals oligomers as electron traps. J. Am. Chem. Soc. 136:10890–93 [Google Scholar]
  137. Wykes M, Pérez-Jiménez AJ, Adamo C, Sancho-García JC. 137.  2015. The diene isomerization energies dataset: a difficult test for double-hybrid density functionals. J. Chem. Phys. 142:224105 [Google Scholar]
  138. Phillips JJ, Peralta JE. 138.  2012. Magnetic exchange couplings from semilocal functionals evaluated nonself-consistently on hybrid densities: insights on relative importance of exchange, correlation, and delocalization. J. Chem. Theory Comput. 8:3147–58 [Google Scholar]
  139. Ko KC, Cho D, Lee JY. 139.  2013. Scaling approach for intramolecular magnetic coupling constants of organic diradicals. J. Phys. Chem. A 117:3561–68 [Google Scholar]
  140. Jinich A, Rappoport D, Dunn I, Sanchez-Lengeling B, Olivares-Amaya R. 140.  et al. 2014. Quantum chemical approach to estimating the thermodynamics of metabolic reactions. Sci. Rep. 4:7022 [Google Scholar]
  141. Su NQ, Xu X. 141.  2015. Error accumulations in adhesive energies of dihydrogen molecular chains: performances of the XYG3 type of doubly hybrid density functionals. J. Phys. Chem. A 119:1590–99 [Google Scholar]
  142. Mezei PD, Csonka GI, Ruzsinszky A, Sun J. 142.  2015. Accurate, precise, and efficient theoretical methods to calculate anion–π interaction energies in model structures. J. Chem. Theory Comput. 11:360–71 [Google Scholar]
  143. Smith JM, Alahmadi YJ, Rowley CN. 143.  2013. Range-separated DFT functionals are necessary to model thio-Michael additions. J. Chem. Theory Comput. 9:4860–65 [Google Scholar]
  144. Gidopoulos NI, Lathiotakis NN. 144.  2012. Constraining density functional approximations to yield self-interaction free potentials. J. Chem. Phys. 136:224109 [Google Scholar]
  145. Dabo I, Ferretti A, Park CH, Poilvert N, Li Y. 145.  et al. 2013. Donor and acceptor levels of organic photovoltaic compounds from first principles. Phys. Chem. Chem. Phys. 15:685–95 [Google Scholar]
  146. Johnson ER, Clarkin OJ, Dale SG, DiLabio GA. 146.  2015. Kinetics of the addition of olefins to Si-centered radicals: the critical role of dispersion interactions revealed by theory and experiment. J. Phys. Chem. A 119:5883–88 [Google Scholar]
  147. Eshuis H, Bates J, Furche F. 147.  2012. Electron correlation methods based on the random phase approximation. Theor. Chem. Acc. 131:1–18 [Google Scholar]
  148. Becke AD. 148.  1993b. Density-functional thermochemistry. III. the role of exact exchange. J. Chem. Phys. 98:5648–52 [Google Scholar]
  149. Burke K, Cruz FG, Lam KC. 149.  1998. Unambiguous exchange-correlation energy density. J. Chem. Phys. 109:8161–67 [Google Scholar]
  150. Johnson ER. 150.  2014. Local-hybrid functional based on the correlation length. J. Chem. Phys. 141:124120 [Google Scholar]
  151. Kraisler E, Schmidt T, Kümmel S, Kronik L. 151.  2015. Effect of ensemble generalization on the highest-occupied Kohn–Sham eigenvalue. J. Chem. Phys. 143:104105 [Google Scholar]
  152. Goodpaster JD, Barnes TA, Manby FR, Miller TF III. 152.  2012. Density functional theory embedding for correlated wavefunctions: improved methods for open-shell systems and transition metal complexes. J. Chem. Phys. 137:224113 [Google Scholar]
  153. Wesolowski TA, Savin A. 153.  2013. Non-additive kinetic energy and potential in analytically solvable systems and their approximated counterparts. Recent Progress in Orbital-Free Density Functional Theory TA Wesolowski, A Savin 275–95 Singapore: World Sci. [Google Scholar]
  154. Emerson RW. 154.  1841. Essays: First Series Boston: J. Munroe [Google Scholar]
/content/journals/10.1146/annurev-physchem-052516-044957
Loading
/content/journals/10.1146/annurev-physchem-052516-044957
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error