Water oxidation is an essential reaction of an artificial photosystem for solar fuel generation because it provides electrons needed to reduce carbon dioxide or protons to a fuel. Earth-abundant metal oxides are among the most attractive catalytic materials for this reaction because of their robustness and scalability, but their efficiency poses a challenge. Knowledge of catalytic surface intermediates gained by vibrational spectroscopy under reaction conditions plays a key role in uncovering kinetic bottlenecks and provides a basis for catalyst design improvements. Recent dynamic infrared and Raman studies reveal the molecular identity of transient surface intermediates of water oxidation on metal oxides. Combined with ultrafast infrared observations of how charges are delivered to active sites of the metal oxide catalyst and drive the multielectron reaction, spectroscopic advances are poised to play a key role in accelerating progress toward improved catalysts for artificial photosynthesis.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Lewis NS, Nocera DG. 1.  2006. Powering the planet: chemical challenges in solar energy utilization. PNAS 103:15729–35 [Google Scholar]
  2. Alstrum-Acevedo JH, Brennaman MK, Meyer TJ. 2.  2005. Chemical approaches to artificial photosynthesis. Inorg. Chem. 44:6802–27 [Google Scholar]
  3. Gray HB. 3.  2009. Powering the planet with solar fuel. Nat. Chem. 1:7 [Google Scholar]
  4. Yano J, Yachandra VK. 4.  2014. Mn4Ca cluster in photosynthesis: where and how water is oxidized to dioxygen. Chem. Rev. 114:4175–205 [Google Scholar]
  5. Blakemore JD, Crabtree RH, Budvig GW. 5.  2015. Molecular catalysts for water oxidation. Chem. Rev. 115:12974–3005 [Google Scholar]
  6. Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P. 6.  2010. The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem 2:724–61 [Google Scholar]
  7. Nocera DG. 7.  2012. The artificial leaf. Acc. Chem. Res. 45:767–76 [Google Scholar]
  8. Jiao F, Frei H. 8.  2009. Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. Angew. Chem. Int. Ed. 48:1841–44 [Google Scholar]
  9. Kanan MW, Nocera DG. 9.  2008. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 231:1072–75 [Google Scholar]
  10. Esswein AJ, McMurdo MJ, Ross PN, Bell AT, Tilley TD. 10.  2009. Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis. J. Phys. Chem. C 113:15068–72 [Google Scholar]
  11. Gorlin Y, Jaramillo TF. 11.  2010. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 132:13612–14 [Google Scholar]
  12. Jiao F, Frei H. 12.  2010. Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ. Sci. 3:1018–27 [Google Scholar]
  13. Jiao F, Frei H. 13.  2010. Nanostructured manganese oxide clusters supported on mesoporous silica as efficient oxygen-evolving catalysts. Chem. Commun. 46:2920–22 [Google Scholar]
  14. Boppana VBR, Jiao F. 14.  2011. Nanostructured MnO2: an efficient and robust water oxidation catalyst. Chem. Commun. 47:8973–75 [Google Scholar]
  15. Shevchenko D, Anderlund MF, Thapper A, Styring S. 15.  2011. Photochemical water oxidation with visible light using a cobalt containing catalyst. Energy Environ. Sci. 4:1284–87 [Google Scholar]
  16. Sa YJ, Kwon K, Cheon JY, Kleitz F, Joo SH. 16.  2013. Ordered mesoporous Co3O4 spinels as stable, bifunctional, noble metal-free oxygen electrocatalysts. J. Mater. Chem. A 1:9992–10001 [Google Scholar]
  17. Yusuf S, Jiao F. 17.  2012. Effect of the support on the photocatalytic water oxidation activity of cobalt oxide nanoclusters. ACS Catal 2:2753–60 [Google Scholar]
  18. Grzelczak M, Zhang J, Pfrommer J, Hartmann J, Driess M. 18.  et al. 2013. Electro- and photochemical water oxidation on ligand-free Co3O4 nanoparticles with tunable sizes. ACS Catal 3:383–88 [Google Scholar]
  19. Tuysuz H, Hwang YJ, Khan SB, Asiri AM, Yang P. 19.  2013. Mesoporous Co3O4 as an electrocatalyst for water oxidation. Nano Res 6:47–54 [Google Scholar]
  20. Blakemore JD, Gray HB, Winkler JR, Mueller AM. 20.  2013. Co3O4 nanoparticle water-oxidation catalysts made by pulsed-laser ablation in liquids. ACS Catal 3:2497–500 [Google Scholar]
  21. Hutchings GS, Zhang Y, Li J, Yonemoto BT, Zhou X. 21.  et al. 2015. In situ formation of cobalt oxide nanocubanes as efficient oxygen evolution catalysts. J. Am. Chem. Soc. 137:4223–29 [Google Scholar]
  22. Menezes PW, Indra A, Gonzalez-Flores D, Saharaie NR, Zaharieva I. 22.  et al. 2015. High-performance oxygen redox catalysis with multifunctional cobalt oxide nanochains: morphology-dependent activity. ACS Catal 5:2017–27 [Google Scholar]
  23. Zhang M, Frei H. 23.  2015. Towards a molecular level understanding of the multi-electron catalysis of water oxidation on metal oxide surfaces. Catal. Lett. 145:420–35 [Google Scholar]
  24. Kim W, McClure BA, Edri E, Frei H. 24.  2016. Coupling carbon dioxide reduction with water oxidation in nanoscale photocatalytic assemblies. Chem. Soc. Rev. 45:3221–43 [Google Scholar]
  25. Frei H. 25.  2016. Water oxidation investigated by rapid-scan FT-IR spectroscopy. Curr. Opin. Chem. Eng. 12:91–97 [Google Scholar]
  26. Rocheleau RE, Miller EL, Misra A. 26.  1998. High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes. Energy Fuels 12:3–10 [Google Scholar]
  27. Reece SY, Hamel JA, Sung K, Jarvi TD, Esswein AJ. 27.  et al. 2011. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334:645–48 [Google Scholar]
  28. Khaselev O, Turner JA. 28.  1998. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280:425–27 [Google Scholar]
  29. Verlage E, Hu S, Liu R, Jones RJR, Sun K. 29.  et al. 2015. A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III-V light absorbers protected by amorphous TiO2 films. Energy Environ. Sci. 8:3166–72 [Google Scholar]
  30. Brillet J, Yum JH, Cornuz M, Hisatomi T, Solarska R. 30.  et al. 2012. Highly efficient water splitting by a dual-absorber tandem cell. Nat. Photonics 6:824–28 [Google Scholar]
  31. Abdi FF, Han L, Smets AHM, Zeman M, Dam B, van de Krol R. 31.  2013. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 4:2195 [Google Scholar]
  32. Liu C, Tang J, Chen HM, Liu B, Yang P. 32.  2013. A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. Nano Lett 13:2989–92 [Google Scholar]
  33. Liu B, Wu CH, Miao J, Yang P. 33.  2014. All inorganic semiconductor nanowire mesh for direct solar water splitting. ACS Nano 8:11739–44 [Google Scholar]
  34. Shaner MR, Fountaine KT, Ardo S, Coridan RH, Atwater HA, Lewis NS. 34.  2014. Photoelectrochemistry of core-shell tandem junction n-p+-Si/n-WO3 microwire array photoelectrodes. Energy Environ. Sci. 7:779–90 [Google Scholar]
  35. Jang JW, Du C, Ye Y, Lin Y, Yao X. 35.  et al. 2015. Enabling unassisted solar water splitting by iron oxide and silicon. Nat. Commun. 6:7447 [Google Scholar]
  36. Luo J, Im JH, Mayer MT, Schreier M, Nazeeruddin MK. 36.  et al. 2014. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345:1593–96 [Google Scholar]
  37. Maeda K, Teramura K, Lu D, Takata T, Saito N. 37.  et al. 2006. Photocatalyst releasing hydrogen from water. Nature 440:295 [Google Scholar]
  38. Sasaki Y, Nemoto H, Saito K, Kudo A. 38.  2009. Solar water splitting using powered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. J. Phys. Chem. C 113:17536–42 [Google Scholar]
  39. Hisatomi T, Kubota J, Domen K. 39.  2014. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43:7520–35 [Google Scholar]
  40. Zhou P, Yu J, Jaroniec M. 40.  2014. All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 26:4920–35 [Google Scholar]
  41. Iwashina K, Iwase A, Ng YH, Amal R, Kudo A. 41.  2015. Z-schematic water splitting into H2 and O2 using metal sulfide as a hydrogen-evolving photocatalyst and reduced graphene oxide as a solid-state electron monitor. J. Am. Chem. Soc. 137:604–7 [Google Scholar]
  42. Kim Y, Shin D, Chang WJ, Jang HL, Lee CW. 42.  et al. 2015. Hybrid Z-scheme using photosystem I and BiVO4 for hydrogen production. Adv. Funct. Mater. 25:2369–77 [Google Scholar]
  43. Hemminger JC, Carr R, Somorjai GA. 43.  1978. The photoassisted reaction of gaseous water and carbon dioxide adsorbed on the SrTiO3(111) crystal face to form methane. Chem. Phys. Lett. 57:100–4 [Google Scholar]
  44. Inoue T, Fujishima A, Konishi S, Honda K. 44.  1979. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277:637–38 [Google Scholar]
  45. Sayama K, Arakawa H. 45.  1993. Photocatalytic decomposition of water and photocatalytic reduction of carbon dioxide over zirconia catalyst. J. Phys. Chem. 97:531–33 [Google Scholar]
  46. Iizuka K, Wato T, Miseki Y, Saito K, Kudo A. 46.  2011. Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. J. Am. Chem. Soc. 133:20863–68 [Google Scholar]
  47. Hamdy MS, Amrollahi R, Sinev I, Mei B, Mul G. 47.  2014. Strategies to design efficient silica-supported photocatalysts for reduction of CO2. J. Am. Chem. Soc. 136:594–97 [Google Scholar]
  48. Dhakshinamoorthy A, Navalon S, Corma A, Garcia H. 48.  2012. Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ. Sci. 5:9217–33 [Google Scholar]
  49. Kim W, Seok T, Choi W. 49.  2012. Nafion layer-enhanced photosynthetic conversion of CO2 into hydrocarbons on TiO2 nanoparticles. Energy Environ. Sci. 5:6066–70 [Google Scholar]
  50. Xie S, Wang Y, Zhang Q, Deng W, Wang Y. 50.  2014. MgO- and Pt-promoted TiO2 as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water. ACS Catal 4:3644–53 [Google Scholar]
  51. Arai T, Sato S, Morikawa T. 51.  2015. A monolithic device for CO2 photoreduction to generate liquid organic substances in a single-compartment reactor. Energy Environ. Sci. 8:1998–2002 [Google Scholar]
  52. Schreier M, Curvat L, Giordano F, Steier L, Abate A. 52.  et al. 2015. Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics. Nat. Commun. 6:7326 [Google Scholar]
  53. Anpo M, Takeuchi M. 53.  2003. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J. Catal. 216:505–16 [Google Scholar]
  54. Lin W, Han H, Frei H. 54.  2004. CO2 splitting by H2O to CO and O2 under UV light in TiMCM-41 silicate sieve. J. Phys. Chem. B 108:18269–73 [Google Scholar]
  55. Kim W, Yuan G, McClure BA, Frei H. 55.  2014. Light induced carbon dioxide reduction by water at binuclear ZrOCoII unit coupled to Ir oxide nanocluster catalyst. J. Am. Chem. Soc. 136:11034–42 [Google Scholar]
  56. Yeom YH, Frei H. 56.  2004. Time-resolved step-scan and rapid-scan Fourier-transform infrared spectroscopy. In-Situ Spectroscopy of Catalysts BM Weckhuysen 32–46 New York: Am. Sci. [Google Scholar]
  57. Yuan G, Agiral A, Pellet N, Kim W, Frei H. 57.  2014. Inorganic core-shell assemblies for closing the artificial photosynthetic cycle. Faraday Discuss 176:233–49 [Google Scholar]
  58. Zhang M, de Respinis M, Frei H. 58.  2014. Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nat. Chem. 6:362–67 [Google Scholar]
  59. Somorjai GA, Li Y. 59.  2010. Introduction to Surface Chemistry and Catalysis. New York: Wiley, 2nd ed..
  60. Mirabella FM. 60.  1993. Principles, theory, and practice of internal reflection spectroscopy. Internal Reflection Spectroscopy: Theory and Applications FM Mirabella 17–52 New York: Marcel Dekker [Google Scholar]
  61. Morris ND, Suzuki M, Mallouk TE. 61.  2004. Kinetics of electron transfer and oxygen evolution in the reaction of [Ru(bpy)3]3+ with colloidal iridium oxide. J. Phys. Chem. A 108:9115–19 [Google Scholar]
  62. Kaledin AL, Huang Z, Geletii YV, Lian T, Hill CL, Musaev DG. 62.  2010. Insights into photoinduced electron transfer between [Ru(bpy)3]2+ and [S2O8]2- in water: computational and experimental studies. J. Phys. Chem. A 114:73–80 [Google Scholar]
  63. Huang Z, Geletii YV, Musaev DG, Hill CL, Lian T. 63.  2012. Spectroscopic studies of light driven water oxidation catalyzed by polyoxometalates. Ind. Eng. Res. 51:11850–59 [Google Scholar]
  64. Lewandowska-Andralojc A, Polyansky DE. 64.  2013. Mechanism of the quenching of the tris(bipyridine)ruthenium(II) emission by persulfate: implications for photoinduced oxidation reactions. J. Phys. Chem. A 117:10311–19 [Google Scholar]
  65. Helveg S, Kisielowski CF, Jinschek JR, Specht P, Yuan G, Frei H. 65.  2014. Observing gas-catalyst dynamics at atomic resolution and single-atom sensitivity. Micron 68:176–85 [Google Scholar]
  66. Kalyanansundaram K. 66.  1982. Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues. Coord. Chem. Rev. 46:159–244 [Google Scholar]
  67. Ullman AM, Nocera DG. 67.  2013. Mechanism of cobalt self-exchange electron transfer. J. Am. Chem. Soc. 135:15053–61 [Google Scholar]
  68. Zecchina A, Spoto G, Coluccia S. 68.  1982. Surface dioxygen adducts on MgO-CoO solid solutions: analogy with cobalt-based homogeneous oxygen carriers. J. Mol. Catal. 14:351–55 [Google Scholar]
  69. Ahn HS, Bard AJ. 69.  2015. Surface interrogation of CoP(i) water oxidation catalyst by scanning electrochemical microscopy. J. Am. Chem. Soc. 137:612–15 [Google Scholar]
  70. Ahn HS, Bard AJ. 70.  2015. Switching transient generation in surface interrogation scanning electrochemical microscopy and time-of-flight techniques. Anal. Chem. 87:12276–80 [Google Scholar]
  71. Yeo BS, Bell AT. 71.  2011. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 133:5587–93 [Google Scholar]
  72. Bajdich M, Garcia-Mota M, Vojvodic A, Norskov JK, Bell AT. 72.  2013. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 135:13521–30 [Google Scholar]
  73. Gerken JB, McAlpin JG, Chen JYC, Rigsby ML, Casey WH. 73.  et al. 2011. Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: the thermodynamic basis for catalyst structure, stability, and activity. J. Am. Chem. Soc. 133:14431–42 [Google Scholar]
  74. Xu XL, Chen ZH, Li Y, Chen WK, Li JQ. 74.  2009. Bulk and surface properties of spinel Co3O4 by density functional calculations. Surf. Sci. 603:653–58 [Google Scholar]
  75. Chen J, Selloni A. 75.  2012. Water adsorption and oxidation at the Co3O4(110) surface. J. Phys. Chem. Lett. 3:2808–14 [Google Scholar]
  76. Bergmann A, Martinez-Moreno E, Teschner D, Chernev P, Gliech M. 76.  et al. 2015. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat. Commun. 6:8625 [Google Scholar]
  77. Friebel D, Bajdich M, Yeo BS, Louie MW, Miller DJ. 77.  et al. 2013. On the chemical state of Co oxide electrocatalysts during alkaline water splitting. Phys. Chem. Chem. Phys. 15:17460–67 [Google Scholar]
  78. Gonzalez-Flores D, Sanchez I, Zaharieva I, Klingan K, Heidkamp J. 78.  et al. 2015. Heterogeneous water oxidation: surface activity versus amorphization activation in cobalt phosphate catalysts. Angew. Chem. Int. Ed. 54:2472–76 [Google Scholar]
  79. Lee SW, Carlton C, Risch M, Surendranath Y, Chen S. 79.  et al. 2012. The nature of lithium battery materials under oxygen evolution reaction conditions. J. Am. Chem. Soc. 134:16959–62 [Google Scholar]
  80. Chivot J, Mendoza L, Mansour C, Pauporte T. 80.  Cassir M; 2008. New insight in the behaviour of Co-H2O system at 25–150°C. based on revised Pourbaix diagrams. Corros. Sci. 50:62–69 [Google Scholar]
  81. Ullman AM, Brodsky CN, Li N, Zheng SL, Nocera DG. 81.  2016. Probing edge site reactivity of oxidic cobalt water oxidation catalysts. J. Am. Chem. Soc. 138:4229–36 [Google Scholar]
  82. Plaisance CP, van Santen RA. 82.  2015. Structure sensitivity of the oxygen evolution reaction catalyzed by cobalt (II, III) oxide. J. Am. Chem. Soc. 137:14660–72 [Google Scholar]
  83. Garcia-Mota M, Bajdich M, Viswanathan V, Vojvodic A, Bell AT, Norskov JK. 83.  2012. Importance of correlation in determining electrocatalytic oxygen evolution activity on cobalt oxides. J. Phys. Chem. C 116:21077–82 [Google Scholar]
  84. Surendranath Y, Kanan MW, Nocera DG. 84.  2010. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 132:16501–9 [Google Scholar]
  85. Kanan MW, Yano J, Surendranath Y, Dinca M, Yachandra VK, Nocera DG. 85.  2010. Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J. Am. Chem. Soc. 132:13692–701 [Google Scholar]
  86. McAlpin JG, Surendranath Y, Dinca M, Stich TA, Stoian SA. 86.  et al. 2010. EPR evidence for Co(IV) species produced during water oxidation at neutral pH. J. Am. Chem. Soc. 132:6882–83 [Google Scholar]
  87. Bediako DK, Ullman AM, Nocera DG. 87.  2016. Catalytic oxygen evolution by cobalt oxido thin films. Top. Curr. Chem. 371:173–214 [Google Scholar]
  88. Koroidov S, Anderlund MF, Styring S, Thapper A, Messinger J. 88.  2015. First turnover analysis of water-oxidation catalyzed by Co-oxide nanoparticles. Energy Environ. Sci. 8:2492–503 [Google Scholar]
  89. Siegbahn PEM, Li X. 89.  2013. Substrate water exchange for the oxygen evolving complex in PSII in the S1, S2, and S3 states. J. Am. Chem. Soc. 135:13804–13 [Google Scholar]
  90. Wang LP, van Voorhis T. 90.  2011. Direct coupling O2 bond forming pathway in cobalt oxide water oxidation catalysts. J. Phys. Chem. Lett. 2:2200–4 [Google Scholar]
  91. Fernando A, Aikens CM. 91.  2015. Reaction pathways for water oxidation to molecular oxygen mediated by model cobalt oxide dimer and cubane catalysts. J. Phys. Chem. C 119:11072–85 [Google Scholar]
  92. Mattioli G, Giannozzi P, Bonapasta AA, Guidoni L. 92.  2013. Reaction pathways for oxygen evolution promoted by cobalt catalyst. J. Am. Chem. Soc. 135:15353–63 [Google Scholar]
  93. Nguyen AI, Ziegler MS, Ona-Burgos P, Sturzbecher-Hohne M, Kim W. 93.  et al. 2015. Mechanistic investigations of water oxidation by a molecular cobalt oxide analogue: evidence for a highly oxidized intermediate and exclusive terminal oxo participation. J. Am. Chem. Soc. 137:12865–72 [Google Scholar]
  94. Smith PF, Hunt L, Laursen AB, Sagar V, Kaushik S. 94.  et al. 2015. Water oxidation by the [Co4O4(OAc)4(py)4]+ cubium is initiated by OH addition. J. Am. Chem. Soc. 137:15460–68 [Google Scholar]
  95. Evangelisti F, Guettinger R, More R, Luber S, Patzke GR. 95.  2013. Closer to photosystem II: a Co4O4 cubane catalyst with flexible ligand architecture. J. Am. Chem. Soc. 135:18734–37 [Google Scholar]
  96. Hodel FH, Luber S. 96.  2016. What influences the water oxidation activity of a bioinspired molecular CoII4O4 cubane? An in-depth exploration of catalytic pathways. ACS Catal 6:1505–17 [Google Scholar]
  97. Kay A, Cesar I, Graetzel M. 97.  2006. New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128:15714–21 [Google Scholar]
  98. Young KMH, Klahr BM, Zandi O, Hamann TW. 98.  2013. Photocatalytic water oxidation with hematite electrodes. Catal. Sci. Technol. 3:1660–71 [Google Scholar]
  99. Klahr B, Gimenez S, Zandi O, Fabregat-Santiago F, Hamann TW. 99.  2015. Competitive photoelectrochemical methanol and water oxidation with hematite electrodes. ACS Appl. Mater. Interfaces 7:7653–60 [Google Scholar]
  100. Barroso M, Pendlebury SR, Cowan AJ, Durrant JR. 100.  2013. Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes. Chem. Sci. 4:2724–34 [Google Scholar]
  101. Peter LM. 101.  2013. Energetics and kinetics of light-driven oxygen evolution at semiconductor electrodes: the example of hematite. J. Solid State Electrochem. 17:315–26 [Google Scholar]
  102. Huang Z, Lin Y, Rodriguez-Cordoba W, McDonald KJ, Hagen KS. 102.  et al. 2012. In situ probe of photocarrier dynamics in water-splitting hematite (α-Fe2O3) electrode. Energy Environ. Sci. 5:8923–26 [Google Scholar]
  103. Klahr B, Gimenez S, Fabregat-Santiago F, Bisquert J, Hamann TW. 103.  2012. Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes. Energy Environ. Sci. 5:7626–36 [Google Scholar]
  104. Le Formal F, Sivula K, Graetzel M. 104.  2012. The transient photocurrent and photovoltage behavior of a hematite photoanode under working conditions and the influence of surface treatments. J. Phys. Chem. C 116:26707–20 [Google Scholar]
  105. Cummings CY, Marken F, Peter LM, Wijayantha KGU, Tahir AA. 105.  2012. New insights into water splitting at mesoporous α-Fe2O3 films: a study by modulated transmittance and impedance spectroscopies. J. Am. Chem. Soc. 134:1228–34 [Google Scholar]
  106. Barroso M, Mesa CA, Pendlebury SR, Cowan AJ, Hisatomi T. 106.  et al. 2012. Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting. PNAS 109:15640–45 [Google Scholar]
  107. Klahr B, Hamann TW. 107.  2014. Water oxidation on hematite photoelectrodes: insight into the nature of surface states through in situ spectroelectrochemistry. J. Phys. Chem. C 118:10393–99 [Google Scholar]
  108. Zandi O, Hamann TW. 108.  2016. Determination of photoelectrochemical water oxidation intermediates on hematite electrode surfaces using operando infrared spectroscopy. Nat. Chem. 8:778–83 [Google Scholar]
  109. Le Formal F, Pastor E, Tilley SD, Mesa CA, Pendlebury SR. 109.  et al. 2015. Rate law analysis of water oxidation on a hematite surface. J. Am. Chem. Soc. 137:6629–37 [Google Scholar]
  110. Matsumoto Y, Sato E. 110.  1986. Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Mater. Chem. Phys. 14:397–426 [Google Scholar]
  111. Doyle RL, Godwin IJ, Brandon MP, Lyons MEG. 111.  2013. Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes. Phys. Chem. Chem. Phys. 15:13737–83 [Google Scholar]
  112. Gong M, Li Y, Wang H, Liang Y, Wu JZ. 112.  et al. 2013. An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 135:8452–55 [Google Scholar]
  113. Lu Z, Xu W, Zhu W, Yang Q, Lei X. 113.  et al. 2014. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem. Commun. 50:6479–82 [Google Scholar]
  114. Bediako DK, Surendranath Y, Nocera DG. 114.  2013. Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst. J. Am. Chem. Soc. 135:3662–74 [Google Scholar]
  115. Diaz-Morales O, Ferrus-Suspedra D, Koper MTM. 115.  2016. The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation. Chem. Sci. 7:2639–45 [Google Scholar]
  116. Merril M, Worsley M, Wittstock A, Biener J, Stadermann M. 116.  2014. Determination of the “NiOOH” charge and discharge mechanisms at ideal activity. J. Electroanal. Chem. 717:177–88 [Google Scholar]
  117. Nakamoto K. 117.  1997. Infrared and Raman Spectra of Inorganic and Coordination Compounds. New York: Wiley, 5th ed..
  118. Shibahara T, Mori M. 118.  1978. Raman and infrared spectra of μ-O2 dicobalt(III) complexes. Bull. Chem. Soc. Jpn. 51:1374–79 [Google Scholar]
  119. Barraclough CG, Lawrance GA, Lay PA. 119.  1978. Characterization of binuclear μ-peroxo and μ-superoxo cobalt(III) amine complexes from Raman spectroscopy. Inorg. Chem. 17:3317–22 [Google Scholar]
  120. McCrory C, Jung S, Peters JC, Jaramillo TF. 120.  2013. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135:16977–87 [Google Scholar]
  121. Trasatti S. 121.  1984. Electrocatalysis in the evolution of oxygen and chlorine. Electrochim. Acta 29:1503–12 [Google Scholar]
  122. Sivasankar N, Weare WW, Frei H. 122.  2011. Direct observation of a hydroperoxide surface intermediate upon visible light-driven water oxidation at an Ir oxide nanocluster catalyst by rapid-scan FT-IR spectroscopy. J. Am. Chem. Soc. 133:12976–79 [Google Scholar]
  123. Nagakawa T, Beasley CA, Murray RW. 123.  2009. Efficient electro-oxidation of water near its reversible potential by a mesoporous IrOx nanoparticle film. J. Phys. Chem. C 113:12958–61 [Google Scholar]
  124. Kuwabara T, Tomita E, Sakita S, Hasegawa D, Sone K, Yagi M. 124.  2008. Characterization and analysis of self-assembly of a highly active colloidal catalyst for water oxidation onto transparent conducting oxide substrates. J. Phys. Chem. C 112:3774–79 [Google Scholar]
  125. Giguere PA, Harvey KB. 125.  1956. On the infrared absorption of water and heavy water in condensed states. Can. J. Chem. 34:798–808 [Google Scholar]
  126. Sanchez-Casalongue HG, Ng ML, Kaya S, Friebel D, Ogasawara H, Nilsson A. 126.  2014. In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction. Angew. Chem. Int. Ed. 53:7169–72 [Google Scholar]
  127. Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Norskov JK. 127.  2007. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607:83–89 [Google Scholar]
  128. Fujishima A, Honda K. 128.  1972. Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38 [Google Scholar]
  129. Thompson TL, Yates JT. 129.  2006. Surface science studies of the photoactivation of TiO2-new photochemical processes. Chem. Rev. 106:4428–53 [Google Scholar]
  130. Yamakata A, Ishibashi T, Onishi H. 130.  2001. Water- and oxygen-induced decay kinetics of photogenerated electrons in TiO2 and Pt/TiO2: a time-resolved infrared absorption study. J. Phys. Chem. B 105:7258–62 [Google Scholar]
  131. Yoshihara T, Katoh R, Furube A, Tamaki Y, Murai M. 131.  et al. 2004. Identification of reactive species in photoexcited nanocrystalline TiO2 films by wide-wavelength-range (400–2500 nm) transient absorption spectroscopy. J. Phys. Chem. B 108:3817–23 [Google Scholar]
  132. Tamaki Y, Furube A, Murai M, Hara K, Katoh R, Tachiya M. 132.  2005. Direct observation of reactive trapped holes in TiO2 undergoing photocatalytic oxidation of adsorbed alcohols: evaluation of the reaction rates and yields. J. Am. Chem. Soc. 128:416–17 [Google Scholar]
  133. Henderson MA. 133.  2011. A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 66:185–297 [Google Scholar]
  134. Nakamura R, Nakato Y. 134.  2004. Primary intermediates of oxygen photoevolution reaction on TiO2 (rutile) particles, revealed by in situ FT-IR adsorption and photoluminescence measurements. J. Am. Chem. Soc. 126:1290–98 [Google Scholar]
  135. Cowan AJ, Tang J, Leng W, Durrant JR, Klug DR. 135.  2010. Water splitting by nanocrystalline TiO2 in a complete photoelectrochemical cell exhibits efficiencies limited by charge recombination. J. Phys. Chem. C 114:4208–14 [Google Scholar]
  136. Cowan AJ, Barnett CJ, Pendlebury SR, Barroso M, Sivula K. 136.  et al. 2011. Activation energies for the rate-limiting step in water photooxidation by nanostructured α-Fe2O3 and TiO2. J. Am. Chem. Soc. 133:10134–40 [Google Scholar]
  137. Herlihy DM, Waegele MM, Chen X, Pemmaraju CD, Prendergast D, Cuk T. 137.  2016. Detecting the oxyl radical of photocatalytic water oxidation at an n-SrTiO3/aqueous interface through its subsurface vibration. Nat. Chem. 8:549–55 [Google Scholar]
  138. Fano U. 138.  1961. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124:1866–78 [Google Scholar]
  139. Sheng H, Frei H. 139.  2016. Direct observation of 2-electron reduced intermediate of tetraaza [CoIIN4H(MeCN)]2+ catalyst converting CO2 to CO by rapid-scan FT-IR spectroscopy. J. Am. Chem. Soc. 138:9959–67 [Google Scholar]
  140. Bergmann U, Yachandra V, Yano J. 140.  eds; 2017. X-Ray Free Electron Laser Spectroscopy. London: R. Soc. Chem. In press
  141. 141. Nat SLAC. Accel. Lab. 2015. New Science Opportunities Enabled by LCLS-II X-Ray Lasers Menlo Park, CA: SLAC [Google Scholar]
  142. Nemsak S, Shavorskiy A, Karslioglu O, Zegkinoglou I, Rattanachata A. 142.  et al. 2014. Concentration and chemical-state profiles at heterogeneous interfaces with sub-nm accuracy from standing-wave ambient-pressure photoemission. Nat. Commun. 5:5441 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error