1932

Abstract

We review recent advances in the characterization of electronic forms of energy transport in emerging semiconductors. The approaches described all temporally and spatially resolve the evolution of initially localized populations of photogenerated excitons or charge carriers. We first provide a comprehensive background for describing the physical origin and nature of electronic energy transport both microscopically and from the perspective of the observer. We introduce the new family of far-field, time-resolved optical microscopies developed to directly resolve not only the extent of this transport but also its potentially temporally and spatially dependent rate. We review a representation of examples from the recent literature, including investigation of energy flow in colloidal quantum dot solids, organic semiconductors, organic-inorganic metal halide perovskites, and 2D transition metal dichalcogenides. These examples illustrate how traditional parameters like diffusivity are applicable only within limited spatiotemporal ranges and how the techniques at the core of this review,especially when taken together, are revealing a more complete picture of the spatiotemporal evolution of energy transport in complex semiconductors, even as a function of their structural heterogeneities.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-052516-050703
2020-04-20
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/physchem/71/1/annurev-physchem-052516-050703.html?itemId=/content/journals/10.1146/annurev-physchem-052516-050703&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H 2004. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432:7016488–92
    [Google Scholar]
  2. 2. 
    Chang J-F, Sakanoue T, Olivier Y, Uemura T, Dufourg-Madec M-B et al. 2011. Hall-effect measurements probing the degree of charge-carrier delocalization in solution-processed crystalline molecular semiconductors. Phys. Rev. Lett. 107:6066601
    [Google Scholar]
  3. 3. 
    Zhang Y, Ye J, Matsuhashi Y, Iwasa Y 2012. Ambipolar MoS2 thin flake transistors. Nano Lett 12:31136–40
    [Google Scholar]
  4. 4. 
    Stoumpos CC, Malliakas CD, Kanatzidis MG 2013. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52:159019–38
    [Google Scholar]
  5. 5. 
    Hoofman R, de Haas MP, Siebbeles LDA, Warman JM 1998. Highly mobile electrons and holes on isolated chains of the semiconducting polymer poly(phenylenevinylene). Nature 392:667154–56
    [Google Scholar]
  6. 6. 
    Lee JS, Kovalenko MV, Huang J, Chung DS, Talapin DV 2011. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat. Nanotechnol. 6:6348–52
    [Google Scholar]
  7. 7. 
    Savenije TJ, Ferguson AJ, Kopidakis N, Rumbles G 2013. Revealing the dynamics of charge carriers in polymer:fullerene blends using photoinduced time-resolved microwave conductivity. J. Phys. Chem. C 117:4624085–103
    [Google Scholar]
  8. 8. 
    Ponseca CS, Savenije TJ, Abdellah M, Zheng K, Yartsev A et al. 2014. Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. J. Am. Chem. Soc. 136:145189–92
    [Google Scholar]
  9. 9. 
    Salcedo JR, Siegman AE, Dlott DD, Fayer MD 1978. Dynamics of energy transport in molecular crystals: the picosecond transient-grating method. Phys. Rev. Lett. 41:2131–34
    [Google Scholar]
  10. 10. 
    Lloyd-Hughes J, Jeon T-I. 2012. A review of the terahertz conductivity of bulk and nano-materials. J. Infrared Millim. Terahertz Waves 33:9871–925
    [Google Scholar]
  11. 11. 
    Ulbricht R, Hendry E, Shan J, Heinz TF, Bonn M 2011. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 83:2543–86
    [Google Scholar]
  12. 12. 
    Yettapu GR, Talukdar D, Sarkar S, Swarnkar A, Nag A et al. 2016. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths. Nano Lett 16:84838–48
    [Google Scholar]
  13. 13. 
    Gilmore RH, Lee EMY, Weidman MC, Willard AP, Tisdale WA 2017. Charge carrier hopping dynamics in homogeneously broadened PbS quantum dot solids. Nano Lett 17:2893–901
    [Google Scholar]
  14. 14. 
    Guzelturk B, Belisle RA, Smith MD, Bruening K, Prasanna R et al. 2018. Terahertz emission from hybrid perovskites driven by ultrafast charge separation and strong electron–phonon coupling. Adv. Mater. 30:111704737
    [Google Scholar]
  15. 15. 
    Bischak CG, Sanehira EM, Precht JT, Luther JM, Ginsberg NS 2015. Heterogeneous charge carrier dynamics in organic-inorganic hybrid materials: nanoscale lateral and depth-dependent variation of recombination rates in methylammonium lead halide perovskite thin films. Nano Lett 15:74799–807
    [Google Scholar]
  16. 16. 
    Haegel NM, Ke C, Taha H, Guthrey H, Fetzer CM, King RR 2017. Cross-sectional transport imaging in a multijunction solar cell. IEEE J. Photovolt. 7:1354–58
    [Google Scholar]
  17. 17. 
    Shaw PE, Ruseckas A, Samuel IDW 2008. Exciton diffusion measurements in poly(3-hexylthiophene). Adv. Mater. 20:183516–20
    [Google Scholar]
  18. 18. 
    Markov DE, Amsterdam E, Blom PWM, Sieval AB, Hummelen JC 2005. Accurate measurement of the exciton diffusion length in a conjugated polymer using a heterostructure with a side-chain cross-linked fullerene layer. J. Phys. Chem. A 109:245266–74
    [Google Scholar]
  19. 19. 
    Scully SR, McGehee MD. 2006. Effects of optical interference and energy transfer on exciton diffusion length measurements in organic semiconductors. J. Appl. Phys. 100:3034907
    [Google Scholar]
  20. 20. 
    Lunt RR, Giebink NC, Belak AA, Benziger JB, Forrest SR 2009. Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching. J. Appl. Phys. 105:5053711
    [Google Scholar]
  21. 21. 
    Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP et al. 2013. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342:6156341–44
    [Google Scholar]
  22. 22. 
    Menke SM, Holmes RJ. 2014. Exciton diffusion in organic photovoltaic cells. Energy Environ. Sci. 7:2499–512
    [Google Scholar]
  23. 23. 
    Mikhnenko O, Blom P, Nguyen T-QT 2015. Exciton diffusion in organic semiconductors. Energy Environ. Sci. 8:71867–88
    [Google Scholar]
  24. 24. 
    Lee EMY, Tisdale WA. 2015. Determination of exciton diffusion length by transient photoluminescence quenching and its application to quantum dot films. J. Phys. Chem. C 119:179005–15
    [Google Scholar]
  25. 25. 
    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J et al. 2015. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347:6225967–70
    [Google Scholar]
  26. 26. 
    Kholmicheva N, Moroz P, Bastola E, Razgoniaeva N, Bocanegra J et al. 2015. Mapping the exciton diffusion in semiconductor nanocrystal solids. ACS Nano 9:32926–37
    [Google Scholar]
  27. 27. 
    Fleming GR, van Grondelle R 1997. Femtosecond spectroscopy of photosynthetic light-harvesting systems. Curr. Opin. Struct. Biol. 7:5738–48
    [Google Scholar]
  28. 28. 
    Pullerits T, Sundström V. 1996. Photosynthetic light-harvesting pigment−protein complexes: toward understanding how and why. Acc. Chem. Res. 29:8381–89
    [Google Scholar]
  29. 29. 
    Cheng Y-C, Fleming GR. 2009. Dynamics of light harvesting in photosynthesis. Annu. Rev. Phys. Chem. 60:1241–62
    [Google Scholar]
  30. 30. 
    Ginsberg NS, Cheng Y-C, Fleming GR 2009. Two-dimensional electronic spectroscopy of molecular aggregates. Acc. Chem. Res. 42:91352–63
    [Google Scholar]
  31. 31. 
    Alivisatos AP. 1996. Semiconductor clusters, nanocrystals, and quantum dots. Science 271:5251933–37
    [Google Scholar]
  32. 32. 
    Klimov VI. 2000. Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. J. Phys. Chem. B 104:266112–23
    [Google Scholar]
  33. 33. 
    Bawendi MG, Steigerwald ML, Brus LE 1990. The quantum mechanics of larger semiconductor clusters (quantum dots). Annu. Rev. Phys. Chem. 41:477–96
    [Google Scholar]
  34. 34. 
    Akselrod GM, Prins F, Poulikakos LV, Lee EMY, Weidman MC et al. 2014. Subdiffusive exciton transport in quantum dot solids. Nano Lett 14:3556–62
    [Google Scholar]
  35. 35. 
    Akselrod GM, Deotare PB, Thompson NJ, Lee J, Tisdale WA et al. 2014. Visualization of exciton transport in ordered and disordered molecular solids. Nat. Commun. 5:3646
    [Google Scholar]
  36. 36. 
    Delor M, Weaver HL, Yu Q, Ginsberg NS 2020. Imaging material functionality through three-dimensional nanoscale tracking of energy flow. Nat. Mater. 1956–62
    [Google Scholar]
  37. 37. 
    Penwell SB, Ginsberg LDS, Ginsberg NS 2015. Bringing far-field subdiffraction optical imaging to electronically coupled optoelectronic molecular materials using their endogenous chromophores. J. Phys. Chem. Lett. 6:142767–72
    [Google Scholar]
  38. 38. 
    Grumstrup EM, Gabriel MM, Cating EEM, Van Goethem EM, Papanikolas JM 2015. Pump-probe microscopy: visualization and spectroscopy of ultrafast dynamics at the nanoscale. Chem. Phys. 458:30–40
    [Google Scholar]
  39. 39. 
    Guo Z, Wan Y, Yang M, Snaider J, Zhu K, Huang L 2017. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science 356:633359–62
    [Google Scholar]
  40. 40. 
    Yuan L, Wang T, Zhu T, Zhou M, Huang L 2017. Exciton dynamics, transport, and annihilation in atomically thin two-dimensional semiconductors. J. Phys. Chem. Lett. 8:143371–79
    [Google Scholar]
  41. 41. 
    Kulig M, Zipfel J, Nagler P, Blanter S, Schüller C et al. 2018. Exciton diffusion and halo effects in monolayer semiconductors. Phys. Rev. Lett. 120:20207401
    [Google Scholar]
  42. 42. 
    Wan Y, Guo Z, Zhu T, Yan S, Johnson J, Huang L 2015. Cooperative singlet and triplet exciton transport in tetracene crystals visualized by ultrafast microscopy. Nat. Chem. 7:10785–92
    [Google Scholar]
  43. 43. 
    Zhu T, Wan Y, Guo Z, Johnson J, Huang L 2016. Two birds with one stone: tailoring singlet fission for both triplet yield and exciton diffusion length. Adv. Mater. 28:347539–47
    [Google Scholar]
  44. 44. 
    Penwell SB, Ginsberg LDS, Noriega R, Ginsberg NS 2017. Resolving ultrafast exciton migration in organic solids at the nanoscale. Nat. Mater. 16:111136–41
    [Google Scholar]
  45. 45. 
    Zhu T, Wan Y, Huang L 2017. Direct imaging of Frenkel exciton transport by ultrafast microscopy. Acc. Chem. Res. 50:71725–33
    [Google Scholar]
  46. 46. 
    Wan Y, Stradomska A, Knoester J, Huang L 2017. Direct imaging of exciton transport in tubular porphyrin aggregates by ultrafast microscopy. J. Am. Chem. Soc. 139:217287–93
    [Google Scholar]
  47. 47. 
    Yoon SJ, Guo Z, dos Santos Claro PC, Shevchenko EV, Huang L 2016. Direct imaging of long-range exciton transport in quantum dot superlattices by ultrafast microscopy. ACS Nano 10:77208–15
    [Google Scholar]
  48. 48. 
    Guo Z, Manser JS, Wan Y, Kamat PV, Huang L 2015. Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy. Nat. Commun. 6:7471
    [Google Scholar]
  49. 49. 
    Kennedy CL, Hill AH, Massaro ES, Grumstrup EM 2017. Ultrafast excited-state transport and decay dynamics in cesium lead mixed halide perovskites. ACS Energy Lett 2:71501–6
    [Google Scholar]
  50. 50. 
    Hill AH, Smyser KE, Kennedy CL, Massaro ES, Grumstrup EM 2017. Screened charge carrier transport in methylammonium lead iodide perovskite thin films. J. Phys. Chem. Lett. 8:5948–53
    [Google Scholar]
  51. 51. 
    Hill AH, Kennedy CL, Massaro ES, Grumstrup EM 2018. Perovskite carrier transport: disentangling the impacts of effective mass and scattering time through microscopic optical detection. J. Phys. Chem. Lett. 9:112808–13
    [Google Scholar]
  52. 52. 
    Snaider JM, Guo Z, Wang T, Yang M, Yuan L et al. 2018. Ultrafast imaging of carrier transport across grain boundaries in hybrid perovskite thin films. ACS Energy Lett 3:61402–8
    [Google Scholar]
  53. 53. 
    Goodman AJ, Lien D-H, Ahn GH, Spiegel LL, Amani M et al. 2018. Suppressing diffusion-mediated exciton annihilation in 2D semiconductors using the dielectric environment. arXiv:1811.01066 [cond-mat.mtrl-sci].
  54. 54. 
    Gabriel MM, Kirschbrown JR, Christesen JD, Pinion CW, Zigler DF et al. 2013. Direct imaging of free carrier and trap carrier motion in silicon nanowires by spatially-separated femtosecond pump-probe microscopy. Nano Lett 13:31336–40
    [Google Scholar]
  55. 55. 
    Scholes GD. 2003. Long-range resonance energy transfer in molecular systems. Annu. Rev. Phys. Chem. 54:157–87
    [Google Scholar]
  56. 56. 
    Scholes GD, Rumbles G. 2006. Excitons in nanoscale systems. Nat. Mater. 5:9683–96
    [Google Scholar]
  57. 57. 
    Köhler A, Bässler H Electronic Processes in Organic Semiconductors: An Introduction Weinheim, Ger: Wiley-VCH
    [Google Scholar]
  58. 58. 
    Kasha M. 1963. Energy transfer mechanisms and the molecular exciton model for molecular aggregates. Radiat. Res. 20:155–70
    [Google Scholar]
  59. 59. 
    Davydov AS. 1964. The theory of molecular excitons. Sov. Phys. Uspekhi. 7:2145
    [Google Scholar]
  60. 60. 
    Kayanuma Y. 1986. Wannier exciton in microcrystals. Solid State Commun 59:6405–8
    [Google Scholar]
  61. 61. 
    Hsu C-P. 2009. The electronic couplings in electron transfer and excitation energy transfer. Acc. Chem. Res. 42:4509–18
    [Google Scholar]
  62. 62. 
    Troisi A. 2011. Charge transport in high mobility molecular semiconductors: classical models and new theories. Chem. Soc. Rev. 40:52347–58
    [Google Scholar]
  63. 63. 
    Aragó J, Troisi A. 2015. Dynamics of the excitonic coupling in organic crystals. Phys. Rev. Lett. 114:2026402
    [Google Scholar]
  64. 64. 
    Rivas Á, Huelga SF, Plenio MB 2014. Quantum non-Markovianity: characterization, quantification and detection. Rep. Prog. Phys. 77:9094001
    [Google Scholar]
  65. 65. 
    Chenu A, Scholes GD. 2015. Coherence in energy transfer and photosynthesis. Annu. Rev. Phys. Chem. 66:69–96
    [Google Scholar]
  66. 66. 
    Barford W, Tozer OR. 2014. Theory of exciton transfer and diffusion in conjugated polymers. J. Chem. Phys. 141:16164103
    [Google Scholar]
  67. 67. 
    Marcus RA. 1993. Electron transfer reactions in chemistry. Theory and experiment. Rev. Mod. Phys. 65:3599–610
    [Google Scholar]
  68. 68. 
    Förster T. 1948. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys. 437:1–255–75
    [Google Scholar]
  69. 69. 
    Dexter DL. 1953. A theory of sensitized luminescence in solids. J. Chem. Phys. 21:5836–50
    [Google Scholar]
  70. 70. 
    Grover M, Silbey R. 1971. Exciton migration in molecular crystals. J. Chem. Phys. 54:114843–51
    [Google Scholar]
  71. 71. 
    Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas J-L 2007. Charge transport in organic semiconductors. Chem. Rev. 107:4926–52
    [Google Scholar]
  72. 72. 
    Ishizaki A, Fleming GR. 2009. Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: reduced hierarchy equation approach. J. Chem. Phys. 130:23234111
    [Google Scholar]
  73. 73. 
    Sakanoue T, Sirringhaus H. 2010. Band-like temperature dependence of mobility in a solution-processed organic semiconductor. Nat. Mater. 9:9736–40
    [Google Scholar]
  74. 74. 
    Wang L, Beljonne D. 2013. Flexible surface hopping approach to model the crossover from hopping to band-like transport in organic crystals. J. Phys. Chem. Lett. 4:111888–94
    [Google Scholar]
  75. 75. 
    Noriega R, Rivnay J, Vandewal K, Koch FPV, Stingelin N et al. 2013. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12:111038–44
    [Google Scholar]
  76. 76. 
    Rozenman GG, Akulov K, Golombek A, Schwartz T 2018. Long-range transport of organic exciton-polaritons revealed by ultrafast microscopy. ACS Photon 5:1105–10
    [Google Scholar]
  77. 77. 
    Lindfors K, Kalkbrenner T, Stoller P, Sandoghdar V 2004. Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy. Phys. Rev. Lett. 93:3037401
    [Google Scholar]
  78. 78. 
    Jacobsen V, Stoller P, Brunner C, Vogel V, Sandoghdar V 2006. Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface. Opt. Express 14:1405–14
    [Google Scholar]
  79. 79. 
    Piliarik M, Sandoghdar V. 2014. Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites. Nat. Commun. 5:4495
    [Google Scholar]
  80. 80. 
    Young G, Hundt N, Cole D, Fineberg A, Andrecka J et al. 2018. Quantitative mass imaging of single biological macromolecules. Science 360:6387423–27
    [Google Scholar]
  81. 81. 
    Krishnan M, Mojarad N, Kukura P, Sandoghdar V 2010. Geometry-induced electrostatic trapping of nanometric objects in a fluid. Nature 467:7316692–95
    [Google Scholar]
  82. 82. 
    Coffey DC, Reid OG, Rodovsky DB, Bartholomew GP, Ginger DS 2007. Mapping local photocurrents in polymer/fullerene solar cells with photoconductive atomic force microscopy. Nano Lett 7:3738–44
    [Google Scholar]
  83. 83. 
    Bao W, Melli M, Caselli N, Riboli F, Wiersma DS et al. 2012. Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging. Science 338:61121317–21
    [Google Scholar]
  84. 84. 
    Atkin JM, Berweger S, Jones AC, Raschke MB 2012. Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids. Adv. Phys. 61:6745–842
    [Google Scholar]
  85. 85. 
    de Quilettes DW, Vorpahl SM, Stranks SD, Nagaoka H, Eperon GE et al. 2015. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348:6235683–86
    [Google Scholar]
  86. 86. 
    Pierret RF. 1988. Semiconductor Fundamentals I: Reading, MA: Addison-Wesley, 2nd ed..
    [Google Scholar]
  87. 87. 
    Brédas J-L, Sargent EH, Scholes GD 2017. Photovoltaic concepts inspired by coherence effects in photosynthetic systems. Nat. Mater. 16:135–44
    [Google Scholar]
  88. 88. 
    Scholes GD, Fleming GR, Chen LX, Aspuru-Guzik A, Buchleitner A et al. 2017. Using coherence to enhance function in chemical and biophysical systems. Nature 543:7647647–56
    [Google Scholar]
  89. 89. 
    Rose TS, Righini R, Fayer MD 1984. Picosecond transient grating measurements of singlet exciton transport in anthracene single crystals. Chem. Phys. Lett. 106:113–19
    [Google Scholar]
  90. 90. 
    Müller AM, Bardeen CJ. 2007. Using a streak camera to resolve the motion of molecular excited states with picosecond time resolution and 150 nm spatial resolution. J. Phys. Chem. C. 111:3312483–89
    [Google Scholar]
  91. 91. 
    Avakian P, Merrifield RE. 1968. Triplet excitons in anthracene crystals—a review. Mol. Cryst. 5:137–77
    [Google Scholar]
  92. 92. 
    Adams DM, Kerimo J, O'Connor DB, Barbara PF 1999. Spatial imaging of singlet energy migration in perylene bis(phenethylimide) thin films. J. Phys. Chem. A 103:4910138–43
    [Google Scholar]
  93. 93. 
    Irkhin P, Biaggio I. 2011. Direct imaging of anisotropic exciton diffusion and triplet diffusion length in rubrene single crystals. Phys. Rev. Lett. 107:1017402
    [Google Scholar]
  94. 94. 
    Yuan L, Chung T-F, Kuc A, Wan Y, Xu Y et al. 2018. Photocarrier generation from interlayer charge-transfer transitions in WS2-graphene heterostructures. Sci. Adv. 4:2e1700324
    [Google Scholar]
  95. 95. 
    Prins F, Goodman AJ, Tisdale WA 2014. Reduced dielectric screening and enhanced energy transfer in single- and few-layer MoS2. Nano Lett 14:116087–91
    [Google Scholar]
  96. 96. 
    Zhu T, Yuan L, Zhao Y, Zhou M, Wan Y et al. 2018. Highly mobile charge-transfer excitons in two-dimensional WS2/tetracene heterostructures. Sci. Adv. 4:1eaao3104
    [Google Scholar]
  97. 97. 
    Deotare PB, Chang W, Hontz E, Congreve DN, Shi L et al. 2015. Nanoscale transport of charge-transfer states in organic donor-acceptor blends. Nat. Mater. 14:111130–34
    [Google Scholar]
  98. 98. 
    Talapin DV, Lee JS, Kovalenko MV, Shevchenko EV 2010. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110:1389–458
    [Google Scholar]
  99. 99. 
    Kovalenko MV, Protesescu L, Bodnarchuk MI 2017. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358:6364745
    [Google Scholar]
  100. 100. 
    Bourzac K. 2013. Quantum dots go on display. Nature 493:7432283
    [Google Scholar]
  101. 101. 
    Carey GH, Abdelhady AL, Ning Z, Thon SM, Bakr OM, Sargent EH 2015. Colloidal quantum dot solar cells. Chem. Rev. 115:2312732–63
    [Google Scholar]
  102. 102. 
    Shirasaki Y, Supran GJ, Bawendi MG, Bulović V 2013. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photon. 7:113–23
    [Google Scholar]
  103. 103. 
    Shevchenko EV, Talapin DV, Kotov NA, O'Brien S, Murray CB 2006. Structural diversity in binary nanoparticle superlattices. Nature 439:707255–59
    [Google Scholar]
  104. 104. 
    Murray CB, Kagan CR, Bawendi MG 1995. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270:52401335–38
    [Google Scholar]
  105. 105. 
    Guyot-Sionnest P. 2012. Electrical transport in colloidal quantum dot films. J. Phys. Chem. Lett. 3:91169–75
    [Google Scholar]
  106. 106. 
    Kagan C, Murray C, Nirmal M, Bawendi M 1996. Electronic energy transfer in CdSe quantum dot solids. Phys. Rev. Lett. 76:91517–20
    [Google Scholar]
  107. 107. 
    Crooker SA, Hollingsworth JA, Tretiak S, Klimov VI 2002. Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials. Phys. Rev. Lett. 89:18186802
    [Google Scholar]
  108. 108. 
    Lee EMY, Tisdale WA, Willard AP 2015. Can disorder enhance incoherent exciton diffusion. J. Phys. Chem. B 119:309501–9
    [Google Scholar]
  109. 109. 
    Lee EMY, Tisdale WA, Willard AP 2018. Nonequilibrium dynamics of localized and delocalized excitons in colloidal quantum dot solids. J. Vac. Sci. Technol. A 36:068501
    [Google Scholar]
  110. 110. 
    Kodaimati MS, Wang C, Chapman C, Schatz GC, Weiss EA 2017. Distance-dependence of interparticle energy transfer in the near-infrared within electrostatic assemblies of PbS quantum dots. ACS Nano 11:55041–50
    [Google Scholar]
  111. 111. 
    Azzaro MS, Dodin A, Zhang DY, Willard AP, Roberts ST 2018. Exciton-delocalizing ligands can speed up energy migration in nanocrystal solids. Nano Lett 18:53259–70
    [Google Scholar]
  112. 112. 
    Frederick MT, Weiss EA. 2010. Relaxation of exciton confinement in CdSe quantum dots by modification with a conjugated dithiocarbamate ligand. ACS Nano 4:63195–200
    [Google Scholar]
  113. 113. 
    Reich KV, Shklovskii BI. 2016. Exciton transfer in array of epitaxially connected nanocrystals. ACS Nano 10:1110267–74
    [Google Scholar]
  114. 114. 
    Pope M, Swenberg CE. 1999. Electronic Processes in Organic Crystals and Polymers Oxford, UK: Oxford Univ. Press, 2nd ed..
    [Google Scholar]
  115. 115. 
    Bardeen CJ. 2014. The structure and dynamics of molecular excitons. Annu. Rev. Phys. Chem. 65:127–48
    [Google Scholar]
  116. 116. 
    Anthony JE. 2006. Functionalized acenes and heteroacenes for organic electronics. Chem. Rev. 106:125028–48
    [Google Scholar]
  117. 117. 
    Zhan X, Facchetti A, Barlow S, Marks TJ, Ratner MA et al. 2011. Rylene and related diimides for organic electronics. Adv. Mater. 23:2268–84
    [Google Scholar]
  118. 118. 
    Brédas J-L, Beljonne D, Coropceanu V, Cornil J 2004. Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem. Rev. 104:114971–5004
    [Google Scholar]
  119. 119. 
    Krueger BP, Scholes GD, Fleming GR 1998. Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J. Phys. Chem. B 102:275378–86
    [Google Scholar]
  120. 120. 
    Beljonne D, Cornil J, Silbey R, Millié P, Brédas JL 2000. Interchain interactions in conjugated materials: the exciton model versus the supermolecular approach. J. Chem. Phys. 112:104749–58
    [Google Scholar]
  121. 121. 
    Beenken WJD, Pullerits T. 2004. Excitonic coupling in polythiophenes: comparison of different calculation methods. J. Chem. Phys. 120:52490–95
    [Google Scholar]
  122. 122. 
    Beljonne D, Pourtois G, Silva C, Hennebicq E, Herz LM et al. 2002. Interchain versus intrachain energy transfer in acceptor-capped conjugated polymers. PNAS 99:1710982–87
    [Google Scholar]
  123. 123. 
    Beljonne D, Curutchet C, Scholes GD, Silbey RJ 2009. Beyond Förster resonance energy transfer in biological and nanoscale systems. J. Phys. Chem. B 113:196583–99
    [Google Scholar]
  124. 124. 
    Lee J, Jadhav P, Reusswig PD, Yost SR, Thompson NJ et al. 2013. Singlet exciton fission photovoltaics. Acc. Chem. Res. 46:61300–11
    [Google Scholar]
  125. 125. 
    Smith MB, Michl J. 2013. Recent advances in singlet fission. Annu. Rev. Phys. Chem. 64:361–86
    [Google Scholar]
  126. 126. 
    Burdett JJ, Bardeen CJ. 2013. The dynamics of singlet fission in crystalline tetracene and covalent analogs. Acc. Chem. Res. 46:61312–20
    [Google Scholar]
  127. 127. 
    Chan W-L, Berkelbach TC, Provorse MR, Monahan NR, Tritsch JR et al. 2013. The quantum coherent mechanism for singlet fission: experiment and theory. Acc. Chem. Res. 46:61321–29
    [Google Scholar]
  128. 128. 
    Wilson MWB, Rao A, Ehrler B, Friend RH 2013. Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices. Acc. Chem. Res. 46:61330–38
    [Google Scholar]
  129. 129. 
    Berkelbach TC, Hybertsen MS, Reichman DR 2013. Microscopic theory of singlet exciton fission. I. General formulation. J. Chem. Phys. 138:11114102
    [Google Scholar]
  130. 130. 
    Groff RP, Avakian P, Merrifield RE 1970. Coexistence of exciton fission and fusion in tetracene crystals. Phys. Rev. B 1:2815–17
    [Google Scholar]
  131. 131. 
    Hell SW, Wichmann J. 1994. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19:11780–82
    [Google Scholar]
  132. 132. 
    Massaro ES, Hill AH, Grumstrup EM 2016. Super-resolution structured pump-probe microscopy. ACS Photon 3:4501–6
    [Google Scholar]
  133. 133. 
    Massaro ES, Grumstrup EM. 2017. Label-free saturated structured excitation microscopy. Photonics 4:236
    [Google Scholar]
  134. 134. 
    King JT, Granick S. 2016. Operating organic light-emitting diodes imaged by super-resolution spectroscopy. Nat. Commun. 7:11691
    [Google Scholar]
  135. 135. 
    Buttafava M, Boso G, Ruggeri A, Mora AD, Tosi A 2014. Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate. Rev. Sci. Instrum. 85:8083114
    [Google Scholar]
  136. 136. 
    Green MA, Ho-Baillie A, Snaith HJ 2014. The emergence of perovskite solar cells. Nat. Photonics. 8:7506–14
    [Google Scholar]
  137. 137. 
    Gottesman R, Zaban A. 2016. Perovskites for photovoltaics in the spotlight: photoinduced physical changes and their implications. Acc. Chem. Res. 49:2320–29
    [Google Scholar]
  138. 138. 
    Brenner TM, Egger DA, Kronik L, Hodes G, Cahen D 2016. Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1:115007
    [Google Scholar]
  139. 139. 
    Correa-Baena J-P, Abate A, Saliba M, Tress W, Jacobsson TJ et al. 2017. The rapid evolution of highly efficient perovskite solar cells. Energy Environ. Sci. 10:3710–27
    [Google Scholar]
  140. 140. 
    Jeon NJ, Noh JH, Yang WS, Kim YC, Ryu S et al. 2015. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517:7535476–80
    [Google Scholar]
  141. 141. 
    Li W, Wang Z, Deschler F, Gao S, Friend RH, Cheetham AK 2017. Chemically diverse and multifunctional hybrid organic-inorganic perovskites. Nat. Rev. Mater. 2:316099
    [Google Scholar]
  142. 142. 
    Petrus ML, Schlipf J, Li C, Gujar TP, Giesbrecht N et al. 2017. Capturing the sun: a review of the challenges and perspectives of perovskite solar cells. Adv. Energy Mater. 7:161700264
    [Google Scholar]
  143. 143. 
    Berry J, Buonassisi T, Egger DA, Hodes G, Kronik L et al. 2015. Hybrid organic-inorganic perovskites (HOIPs): opportunities and challenges. Adv. Mater. 27:355102–12
    [Google Scholar]
  144. 144. 
    Leblebici SY, Leppert L, Li Y, Reyes-Lillo SE, Wickenburg S et al. 2016. Facet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskite. Nat. Energy 1:816093
    [Google Scholar]
  145. 145. 
    Ball JM, Petrozza A. 2016. Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1:1116149
    [Google Scholar]
  146. 146. 
    Correa-Baena J-P, Saliba M, Buonassisi T, Grätzel M, Abate A et al. 2017. Promises and challenges of perovskite solar cells. Science 358:6364739–44
    [Google Scholar]
  147. 147. 
    Manser JS, Kamat PV. 2014. Band filling with free charge carriers in organometal halide perovskites. Nat. Photon. 8:9737–43
    [Google Scholar]
  148. 148. 
    MacDonald GA, Yang M, Berweger S, Killgore JP, Kabos P et al. 2016. Methylammonium lead iodide grain boundaries exhibit depth-dependent electrical properties. Energy Environ. Sci. 9:123642–49
    [Google Scholar]
  149. 149. 
    Mak KF, Lee C, Hone J, Shan J, Heinz TF 2010. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105:136805
    [Google Scholar]
  150. 150. 
    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011. Single-layer MoS2 transistors. Nat. Nanotechnol. 6:147–50
    [Google Scholar]
  151. 151. 
    Sundaram RS, Engel M, Lombardo A, Krupke R, Ferrari AC et al. 2013. Electroluminescence in single layer MoS2. Nano Lett 13:41416–21
    [Google Scholar]
  152. 152. 
    Wu S, Buckley S, Schaibley JR, Feng L, Yan J et al. 2015. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520:754569–72
    [Google Scholar]
  153. 153. 
    Liu X, Galfsky T, Sun Z, Xia F, Lin E et al. 2014. Strong light-matter coupling in two-dimensional atomic crystals. Nat. Photon. 9:30
    [Google Scholar]
  154. 154. 
    Chernikov A, Berkelbach TC, Hill HM, Rigosi A, Li Y et al. 2014. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113:076802
    [Google Scholar]
  155. 155. 
    Hill HM, Rigosi AF, Roquelet C, Chernikov A, Berkelbach TC et al. 2015. Observation of excitonic Rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett 15:52992–97
    [Google Scholar]
  156. 156. 
    Zhu B, Chen X, Cui X 2015. Exciton binding energy of monolayer WS2. Sci. Rep. 5:9218
    [Google Scholar]
  157. 157. 
    Lin Y, Ling X, Yu L, Huang S, Hsu AL et al. 2014. Dielectric screening of excitons and trions in single-layer MoS2. Nano Lett 14:105569–76
    [Google Scholar]
  158. 158. 
    Hong X, Kim J, Shi S-F, Zhang Y, Jin C et al. 2014. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9:682–86
    [Google Scholar]
  159. 159. 
    Mayers ZM, Berkelbach TC, Hybertsen MS, Reichman DR 2015. Binding energies and spatial structures of small carrier complexes in monolayer transition-metal dichalcogenides via diffusion Monte Carlo. Phys. Rev. B 92:161404
    [Google Scholar]
  160. 160. 
    You Y, Zhang X-X, Berkelbach TC, Hybertsen MS, Reichman DR, Heinz TF 2015. Observation of biexcitons in monolayer WSe2. Nat. Phys. 11:477–81
    [Google Scholar]
  161. 161. 
    Atallah TL, Wang J, Bosch M, Seo D, Burke RA et al. 2017. Electrostatic screening of charged defects in monolayer MoS2. J. Phys. Chem. Lett. 8:102148–52
    [Google Scholar]
  162. 162. 
    Amani M, Lien D-H, Kiriya D, Xiao J, Azcatl A et al. 2015. Near-unity photoluminescence quantum yield in MoS2. Science 350:62641065–68
    [Google Scholar]
  163. 163. 
    Goodman AJ, Willard AP, Tisdale WA 2017. Exciton trapping is responsible for the long apparent lifetime in acid-treated MoS2. Phys. Rev. B 96:12121404
    [Google Scholar]
  164. 164. 
    Kato T, Kaneko T. 2016. Transport dynamics of neutral excitons and trions in monolayer WS2. ACS Nano 10:109687–94
    [Google Scholar]
  165. 165. 
    Cadiz F, Courtade E, Robert C, Wang G, Shen Y et al. 2017. Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures. Phys. Rev. X 7:2021026
    [Google Scholar]
  166. 166. 
    Obafunso AA, Jenny VA, Gabriella DS, Jue W, Abhinandan A et al. 2017. Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers. 2D Mater 4:3031011
    [Google Scholar]
  167. 167. 
    Ghazaryan A, Hafezi M, Ghaemi P 2018. Anisotropic exciton transport in transition-metal dichalcogenides. Phys. Rev. B 97:24245411
    [Google Scholar]
  168. 168. 
    Onga M, Zhang Y, Ideue T, Iwasa Y 2017. Exciton Hall effect in monolayer MoS2. Nat. Mater. 16:121193–97
    [Google Scholar]
  169. 169. 
    Emin D. 2012. Polarons Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  170. 170. 
    Spano FC. 2010. The spectral signatures of Frenkel polarons in H- and J-aggregates. Acc. Chem. Res. 43:3429–39
    [Google Scholar]
  171. 171. 
    Miyata K, Atallah TL, Zhu X-Y 2017. Lead halide perovskites: crystal-liquid duality, phonon glass electron crystals, and large polaron formation. Sci. Adv. 3:10e1701469
    [Google Scholar]
  172. 172. 
    Bischak CG, Hetherington CL, Wu H, Aloni S, Ogletree DF et al. 2017. Origin of reversible photoinduced phase separation in hybrid perovskites. Nano Lett 17:21028–33
    [Google Scholar]
  173. 173. 
    Zimmerman PM, Musgrave CB, Head-Gordon M 2013. A correlated electron view of singlet fission. Acc. Chem. Res. 46:61339–47
    [Google Scholar]
  174. 174. 
    Yost SR, Lee J, Wilson MWB, Wu T, McMahon DP et al. 2014. A transferable model for singlet-fission kinetics. Nat. Chem. 6:6492–97
    [Google Scholar]
  175. 175. 
    Sanders SN, Kumarasamy E, Pun AB, Trinh MT, Choi B et al. 2015. Quantitative intramolecular singlet fission in bipentacenes. J. Am. Chem. Soc. 137:288965–72
    [Google Scholar]
  176. 176. 
    Korovina NV, Das S, Nett Z, Feng X, Joy J et al. 2016. Singlet fission in a covalently linked cofacial alkynyltetracene dimer. J. Am. Chem. Soc. 138:2617–27
    [Google Scholar]
  177. 177. 
    Stern HL, Musser AJ, Gelinas S, Parkinson P, Herz LM et al. 2015. Identification of a triplet pair intermediate in singlet exciton fission in solution. PNAS 112:7656–61
    [Google Scholar]
  178. 178. 
    Pensack RD, Ostroumov EE, Tilley AJ, Mazza S, Grieco C et al. 2016. Observation of two triplet-pair intermediates in singlet exciton fission. J. Phys. Chem. Lett. 7:132370–75
    [Google Scholar]
  179. 179. 
    Folie BD, Haber JB, Refaely-Abramson S, Neaton JB, Ginsberg NS 2018. Long-lived correlated triplet pairs in a π-stacked crystalline pentacene derivative. J. Am. Chem. Soc. 140:62326–35
    [Google Scholar]
  180. 180. 
    Sharifzadeh S, Wong CY, Wu H, Cotts BL, Kronik L et al. 2014. Relating the physical structure and optoelectronic function of crystalline TIPS-pentacene. Adv. Funct. Mater. 25:132038–46
    [Google Scholar]
  181. 181. 
    Schaibley JR, Yu HY, Clark G, Rivera P, Ross JS et al. 2016. Valleytronics in 2D materials. Nat. Rev. Mater. 1:1116055
    [Google Scholar]
  182. 182. 
    Xiao D, Liu G-B, Feng W, Xu X, Yao W 2012. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108:19196802
    [Google Scholar]
  183. 183. 
    Zeng H, Dai J, Yao W, Xiao D, Cui X 2012. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7:490–93
    [Google Scholar]
  184. 184. 
    Mak KF, He K, Shan J, Heinz TF 2012. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7:494–98
    [Google Scholar]
  185. 185. 
    Mak KF, McGill KL, Park J, McEuen PL 2014. The valley Hall effect in MoS2 transistors. Science 344:61911489–92
    [Google Scholar]
  186. 186. 
    Lee J, Mak KF, Shan J 2016. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol. 11:421–25
    [Google Scholar]
  187. 187. 
    Zhang YJ, Oka T, Suzuki R, Ye JT, Iwasa Y 2014. Electrically switchable chiral light-emitting transistor. Science 344:6185725–28
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-052516-050703
Loading
/content/journals/10.1146/annurev-physchem-052516-050703
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error