1932

Abstract

This review focuses on coherent light sources at the nanoscale, and specifically on lasers exploiting plasmonic cavities that can beat the diffraction limit of light. Conventional lasers exhibit coherent, intense, and directional emission with cavity sizes much larger than their operating wavelength. Plasmon lasers show ultrasmall mode confinement, support strong light–matter interactions, and represent a class of devices with extremely small sizes. We discuss the differences between plasmon lasers and traditional ones, and we highlight advances in directionality and tunability through innovative cavity designs and new materials. Challenges and future prospects are also discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-052516-050730
2017-05-05
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/physchem/68/1/annurev-physchem-052516-050730.html?itemId=/content/journals/10.1146/annurev-physchem-052516-050730&mimeType=html&fmt=ahah

Literature Cited

  1. Maiman TH. 1.  1960. Stimulated optical radiation in Ruby. Nature 187:493–94 [Google Scholar]
  2. Klein J, Kafka JD. 2.  2010. The Ti:Sapphire laser: the flexible research tool. Nat. Photonics 4:289 [Google Scholar]
  3. Wolbarsht ML. 3.  1989. Laser Applications in Medicine and Biology. Boston: Springer
  4. Murphy E. 4.  2010. The semiconductor laser: enabling optical communication. Nat. Photonics 4:5287 [Google Scholar]
  5. Khajavikhan M, Simic A, Katz M, Lee JH, Slutsky B. 5.  et al. 2012. Thresholdless nanoscale coaxial lasers. Nature 482:7384204–7 [Google Scholar]
  6. Altug H, Englund D, Vučković J. 6.  2006. Ultrafast photonic crystal nanocavity laser. Nat. Phys. 2:7484–88 [Google Scholar]
  7. Yang A, Odom T. 7.  2015. Advances in plasmonic nanolasers. IEEE Photonics J 7:30700606 [Google Scholar]
  8. Ren-Min M, Yin X, Oulton RF, Sorger VJ, Zhang X. 8.  2012. Multiplexed and electrically modulated plasmon laser circuit. Nano Lett 12:105396–402First illustration of the potential of plasmon lasers integrated in photonic circuits. [Google Scholar]
  9. Ren-Min M, Oulton RF, Sorger VJ, Zhang X. 9.  2013. Plasmon lasers: coherent light source at molecular scales. Laser Photonics Rev 7:1–21 [Google Scholar]
  10. Hill MT, Gather MC. 10.  2014. Advances in small lasers. Nat. Photonics 8:12908–18 [Google Scholar]
  11. Maier SA. 11.  2007. Plasmonics: Fundamentals and Applications Springer New York: [Google Scholar]
  12. Oulton RF, Sorger VJ, Zentgraf T, Ren-Min M, Gladden C. 12.  et al. 2009. Plasmon lasers at deep subwavelength scale. Nature 461:7264629–32First report of a plasmon laser based on a surface plasmon polariton mode. [Google Scholar]
  13. Noginov MA, Zhu G, Belgrave AM, Bakker R, Shalaev VM. 13.  et al. 2009. Demonstration of a spaser-based nanolaser. Nature 460:72591110–12First report of a plasmon laser based on a localized surface plasmon mode. [Google Scholar]
  14. Zhou W, Dridi M, Suh JY, Kim CH, Co DT. 14.  et al. 2013. Lasing action in strongly coupled plasmonic nanocavity arrays. Nat. Nanotechnol. 8:7506–11First report of a plasmon laser based on a lattice plasmon mode with directional emission. [Google Scholar]
  15. Ren-Min M, Oulton RF, Sorger VJ, Bartal G, Zhang X. 15.  2010. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nat. Mater. 10:2110–13 [Google Scholar]
  16. Hill MT, Oei Y-S, Smalbrugge B, Zhu Y, de Vries T. 16.  et al. 2007. Lasing in metallic-coated nanocavities. Nat. Photonics 1:10589–94First demonstration of a small laser using metallic nanocavities. [Google Scholar]
  17. Dridi M, Schatz GC. 17.  2013. Model for describing plasmon-enhanced lasers that combines rate equations with finite-difference time-domain. J. Opt. Soc. Am. B 30:112791–97 [Google Scholar]
  18. Bravo-Abad J, García-Vidal FJ. 18.  2013. Plasmonic lasers: a sense of direction. Nat. Nanotechnol. 8:7479–80 [Google Scholar]
  19. Samuel IDW, Namdas EB, Turnbull GA. 19.  2009. How to recognize lasing. Nat. Photonics 3:10546–49 [Google Scholar]
  20. Meng X, Kildishev AV, Fujita K, Tanaka K, Shalaev VM. 20.  2013. Wavelength-tunable spasing in the visible. Nano Lett 13:94106–12 [Google Scholar]
  21. De Leon I, Berini P. 21.  2010. Amplification of long-range surface plasmons by a dipolar gain medium. Nat. Photonics 4:382–87 [Google Scholar]
  22. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H. 22.  et al. 1997. (CdSe)ZnS core-shell quantum dots synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101:9463–75 [Google Scholar]
  23. Lu Y-J, Wang C-Y, Kim J, Chen H-Y, Lu M-Y. 23.  et al. 2014. All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing. Nano Lett 14:4381–88First report of tunable plasmon laser across the visible. [Google Scholar]
  24. Yang A, Hoang TB, Dridi M, Deeb C, Mikkelsen MH. 24.  et al. 2015. Real-time tunable lasing from plasmonic nanocavity arrays. Nat. Commun. 6:6939First demonstration of a real-time tunable plasmon laser. [Google Scholar]
  25. Kwon SH, Park HG, Lee YH. 25.  2012. Photonic crystal lasers. Advances in Semiconductor Lasers JJ Coleman, AC Bryce, C Jagadish 301–33 Boston: Academic [Google Scholar]
  26. Baba T, Fujita P, Sakai A, Kihara M, Watanabe R. 26.  1997. Lasing characteristics of GaInAsP–InP strained quantum-well microdisk injection lasers with diameter of 2–10 μm. IEEE Photonics Technol. Lett. 9:7878–80 [Google Scholar]
  27. Lee YH, Jewell JL, Scherer A, McCall SL, Harbison JP, Florez LT. 27.  1989. Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes. Electron. Lett. 25:201377–78 [Google Scholar]
  28. Kogelnik H. 28.  1971. Stimulated emission in a periodic structure. Appl. Phys. Lett. 18:4152–54 [Google Scholar]
  29. Stehr J, Crewett J, Schindler F, Sperling R, Plessen von G. 29.  et al. 2003. A low threshold polymer laser based on metallic nanoparticle gratings. Adv. Mater. 15:201726–29 [Google Scholar]
  30. Heliotis G, Xia RD, Turnbull GA, Andrew P, Barnes WL. 30.  et al. 2004. Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback. Adv. Funct. Mater. 14:191–97 [Google Scholar]
  31. Gersborg-Hansen M, Kristensen A. 31.  2006. Optofluidic third order distributed feedback dye laser. Appl. Phys. Lett. 89:10103518 [Google Scholar]
  32. Ellis B, Mayer MA, Shambat G, Sarmiento T, Harris J. 32.  et al. 2011. Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser. Nat. Photonics 5:5297–300 [Google Scholar]
  33. Wu S, Buckley S, Schaibley JR, Feng L, Yan J. 33.  et al. 2015. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520:754569–72 [Google Scholar]
  34. Qian F, Li Y, Gradečak S, Park H-G, Dong Y. 34.  et al. 2008. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat. Mater. 7:9701–6 [Google Scholar]
  35. She C, Fedin I, Dolzhnikov DS, Dahlberg PD, Engel GS. 35.  et al. 2015. Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal CdSe nanoplatelets. ACS Nano 9:109475–85 [Google Scholar]
  36. Huang MH, Mao S, Feick H, Yan H, Wu Y. 36.  et al. 2001. Room-temperature ultraviolet nanowire nanolasers. Science 292:55231897–99 [Google Scholar]
  37. Chen R, Tran T-TD, Ng KW, Ko WS, Chuang LC. 37.  et al. 2011. Nanolasers grown on silicon. Nat. Photonics 5:3170–75 [Google Scholar]
  38. Saxena D, Mokkapati S, Parkinson P, Jiang N, Gao Q. 38.  et al. 2013. Optically pumped room-temperature GaAs nanowire lasers. Nat. Photonics 7:12963–68 [Google Scholar]
  39. Takeda K, Sato T, Shinya A, Nozaki K, Kobayashi W. 39.  et al. 2013. Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers. Nat. Photonics 7:7569–75 [Google Scholar]
  40. Min B, Ostby E, Sorger V, Ulin-Avila E, Yang L. 40.  et al. 2009. High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature 457:7228455–58 [Google Scholar]
  41. Zhang Q, Ha ST, Liu X, Sum TC, Xiong Q. 41.  2014. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett 14:105995–6001 [Google Scholar]
  42. Fujita M, Ushigome R, Baba T. 42.  2000. Continuous wave lasing in GaInAsP microdisk injection laser with threshold current of 40 μA. Electron. Lett. 36:9790–91 [Google Scholar]
  43. Hill MT, Marell M, Eunice L, Smalbrugge B, Zhu Y, Minghua S. 43.  2009. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Opt. Express 17:11107–12 [Google Scholar]
  44. Nezhad MP, Simic A, Bondarenko O, Slutsky B, Mizrahi A. 44.  et al. 2010. Room-temperature subwavelength metallo-dielectric lasers. Nat. Photonics 4:6395–99 [Google Scholar]
  45. Ding K, Hill MT, Liu ZC, Yin LJ, van Veldhoven PJ, Ning CZ. 45.  2013. Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature. Opt. Express 21:44728–33 [Google Scholar]
  46. Bergman D, Stockman M. 46.  2003. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90:2027402 [Google Scholar]
  47. Stockman MI. 47.  2008. Spasers explained. Nat. Photonics 2:6327–29 [Google Scholar]
  48. Stockman MI. 48.  2010. The spaser as a nanoscale quantum generator and ultrafast amplifier. J. Opt. 12:2024004 [Google Scholar]
  49. Henzie J, Lee J, Lee MH, Hasan W, Odom TW. 49.  2009. Nanofabrication of plasmonic structures. Annu. Rev. Phys. Chem. 60:1147–65 [Google Scholar]
  50. Suh JY, Kim CH, Zhou W, Huntington MD, Co DT. 50.  et al. 2012. Plasmonic bowtie nanolaser arrays. Nano Lett 12:115769–74 [Google Scholar]
  51. Barnes WL, Dereux A, Ebbesen TW. 51.  2003. Surface plasmon subwavelength optics. Nature 424:6950824–30 [Google Scholar]
  52. Hou Y, Renwick P, Liu B, Bai J, Wang T. 52.  2014. Room temperature plasmonic lasing in a continuous wave operation mode from an InGaN/GaN single nanorod with a low threshold. Sci. Rep. 4:5014 [Google Scholar]
  53. Zhang Q, Li G, Liu X, Qian F, Li Y. 53.  et al. 2014. A room temperature low-threshold ultraviolet plasmonic nanolaser. Nat. Commun. 5:4953 [Google Scholar]
  54. Chou Y-H, Wu Y-M, Hong K-B, Chou B-T. 54.  Shih J-H. et al. 2016. High-operation-temperature plasmonic nanolasers on single-crystalline aluminum. Nano Lett 16:3179–86 [Google Scholar]
  55. Zheludev NI, Prosvirnin SL, Papasimakis N, Fedotov VA. 55.  2008. Lasing spaser. Nat. Photonics 2:6351–54Theoretical demonstration of a directional plasmon laser. [Google Scholar]
  56. van Beijnum F, van Veldhoven PJ, Geluk EJ, de Dood MJA, Hooft GWT, van Exter MP. 56.  2013. Surface plasmon lasing observed in metal hole arrays. Phys. Rev. Lett. 110:206802 [Google Scholar]
  57. Meng X, Liu J, Kildishev AV, Shalaev VM. 57.  2014. Highly directional spaser array for the red wavelength region. Laser Photon. Rev. 8:6896–903 [Google Scholar]
  58. Yang A, Li Z, Knudson MP, Hryn AJ, Wang W. 58.  et al. 2015. Unidirectional lasing from template-stripped two-dimensional plasmonic crystals. ACS Nano 9:1211582–88First demonstration of a unidirectional plasmon laser. [Google Scholar]
  59. Sönnichsen C, Franzl T, Wilk T, Plessen von G, Feldmann J. 59.  et al. 2002. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. 88:7077402 [Google Scholar]
  60. Meier M, Wokaun A, Liao PF. 60.  1985. Enhanced fields on rough surfaces: dipolar interactions among particles of sizes exceeding the Rayleigh limit. J. Opt. Soc. Am. B. 2:6931–49 [Google Scholar]
  61. Wang D, Yang A, Hryn AJ, Schatz GC, Odom TW. 61.  2015. Superlattice plasmons in hierarchical Au nanoparticle arrays. ACS Photonics 2:1789–94 [Google Scholar]
/content/journals/10.1146/annurev-physchem-052516-050730
Loading
/content/journals/10.1146/annurev-physchem-052516-050730
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error