Exciting a molecule with an ultraviolet photon often leads to bond fission, but the final outcome of the bond cleavage is typically both molecule and phase dependent. The photodissociation of an isolated gas-phase molecule can be viewed as a closed system: Energy and momentum are conserved, and the fragmentation is irreversible. The same is not true in a solution-phase photodissociation process. Solvent interactions may dissipate some of the photoexcitation energy prior to bond fission and will dissipate any excess energy partitioned into the dissociation products. Products that have no analog in the corresponding gas-phase study may arise by, for example, geminate recombination. Here, we illustrate the extent to which dynamical insights from gas-phase studies can inform our understanding of the corresponding solution-phase photochemistry and how, in the specific case of photoinduced ring-opening reactions, solution-phase studies can in some cases reveal dynamical insights more clearly than the corresponding gas-phase study.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ciamician G. 1.  1912. The photochemistry of the future. Science 36:385–94 [Google Scholar]
  2. Jablonski A. 2.  1933. Efficiency of anti-Stokes fluorescence in dyes. Nature 131:839–40 [Google Scholar]
  3. Bodenstein M. 3.  1908. Notice on decomposition of iodine hydrogen in light. Z. Phys. Chem. 61:447–48 [Google Scholar]
  4. Bodenstein M, Dux W. 4.  1913. Photochemische Kinetik des Chlorknallgases. Z. Phys. Chem. 85:297–328 [Google Scholar]
  5. Faraday Soc. 5.  1929. Molecular spectra and molecular structure: a general discussion. Trans. Faraday Soc. 25:611–949 [Google Scholar]
  6. Faraday Soc. 6.  1931. Photochemical processes: a general discussion. Trans. Faraday Soc. 27:357–573 [Google Scholar]
  7. Herzberg G, Scheibe G. 7.  1929. On the absorption spectra of methyl halides and some other methyl compounds in the ultraviolet and in the Schumann region. Trans. Faraday Soc. 25:716–17 [Google Scholar]
  8. Henri V. 8.  1929. Absorption spectra of polyatomic molecules. Predissociation and dissociation of these molecules. Trans. Faraday Soc. 25:765–67 [Google Scholar]
  9. Terenin A, Neujmin H. 9.  1934. Photodissociation of molecules in the Schumann ultraviolet. Nature 134:255 [Google Scholar]
  10. Mele A, Okabe H. 10.  1969. Distribution of the excess energy in CN B2σ produced in photodissociation of cyanogen halides and hydrogen cyanide. J. Chem. Phys. 51:4798–808 [Google Scholar]
  11. Basco N, Norrish RGW. 11.  1961. Vibrationally excited nitric oxide produced by the flash photolysis of nitrosyl chloride. Nature 189:455–56 [Google Scholar]
  12. Basco N, Nicholas JE, Norrish RGW, Vickers WHJ. 12.  1963. Vibrationally excited cyanogen radicals produced in the flash photolysis of cyanogen and cyanogen halides. Proc. R. Soc. A 272:147–63 [Google Scholar]
  13. Welge KH, Stuhl F. 13.  1967. Energy distribution in the photodissociation H2O → H(12S) + OH(X2Π). J. Chem. Phys 46:2440–41 [Google Scholar]
  14. Riley SJ, Wilson KR. 14.  1972. Excited fragments from excited molecules: energy partitioning in the photodissociation of alkyl iodides. Discuss. Faraday Soc. 53:132–46 [Google Scholar]
  15. Sparks RK, Carlson LR, Shobotake K, Kowalczyk ML, Lee YT. 15.  1980. Ozone photolysis: a determination of the electronic and vibrational state distributions of primary products. J. Chem. Phys. 72:1401–2 [Google Scholar]
  16. Zare RN. 16.  1972. Photoejection dynamics. Mol. Photochem. 4:1–37 [Google Scholar]
  17. Dzvonik M, Yang S, Bersohn R. 17.  1974. Photodissociation of molecular beams of aryl halides. J. Chem. Phys. 61:4408–21 [Google Scholar]
  18. Schultz A, Zare RN, Cruse HW. 18.  1972. Laser-induced fluorescence—method to measure internal state distribution of reaction products. J. Chem. Phys. 57:1354–55 [Google Scholar]
  19. Kinsey JL. 19.  1977. Laser-induced fluorescence. Annu. Rev. Phys. Chem. 28:349–72 [Google Scholar]
  20. Ashfold MNR, Howe JD. 20.  1994. Multiphoton spectroscopy of molecular species. Annu. Rev. Phys. Chem. 45:57–82 [Google Scholar]
  21. Greene CH, Zare RN. 21.  1982. Photofragment alignment and orientation. Annu. Rev. Phys. Chem. 33:119–50 [Google Scholar]
  22. Dixon RN. 22.  1986. The determination of the vector correlation between photofragment rotational and translational motions from the analysis of Doppler broadened spectral-line profiles. J. Chem. Phys. 85:1866–79 [Google Scholar]
  23. Hall GE, Houston PL. 23.  1989. Vector correlations in photodissociation dynamics. Annu. Rev. Phys. Chem. 40:375–405 [Google Scholar]
  24. Chandler DW, Houston PL. 24.  1987. Two-dimensional imaging of state-selected photodissociation products detected by multiphoton ionization. J. Chem. Phys. 87:1445–47 [Google Scholar]
  25. Heck AJR, Chandler DW. 25.  1995. Imaging techniques for the study of chemical reaction dynamics. Annu. Rev. Phys. Chem. 46:335–72 [Google Scholar]
  26. Eppink ATJB, Parker DH. 26.  1997. Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 68:3477–84 [Google Scholar]
  27. Ashfold MNR, Nahler NH, Orr-Ewing AJ, Vieuxmaire OPJ, Toomes RL. 27.  et al. 2006. Imaging the dynamics of gas phase reactions. Phys. Chem. Chem. Phys. 8:26–53 [Google Scholar]
  28. Gebhardt CR, Rakitzis TP, Samartzis PC, Ladopoulos V, Kitsopoulos TN. 28.  2001. Slice imaging: a new approach to ion imaging and velocity mapping. Rev. Sci. Instrum. 72:3848–53 [Google Scholar]
  29. Townsend D, Minitti MP, Suits AG. 29.  2003. Direct current slice imaging. Rev. Sci. Instrum. 74:2530–39 [Google Scholar]
  30. Schnieder L, Meier W, Welge KH, Ashfold MNR, Western CM. 30.  1990. Photodissociation dynamics of H2S at 121.6 nm and a determination of the potential-energy function of SH(A2σ+). J. Chem. Phys. 92:7027–37 [Google Scholar]
  31. Harich SA, Hwang DWH, Yang X, Lin JJ, Yang X, Dixon RN. 31.  2000. Photodissociation of H2O at 121.6 nm: a state-to-state dynamical picture. J. Chem. Phys. 113:10073–90 [Google Scholar]
  32. Ashfold MNR, King GA, Murdock D, Nix MGD, Oliver TAA, Sage AG. 32.  2010. πσ* States in molecular photochemistry. Phys. Chem. Chem. Phys. 12:1218–38 [Google Scholar]
  33. Zewail AH. 33.  2000. Femtochemistry: atomic-scale dynamics of the chemical bond. J. Phys. Chem. A 104:5660–94 [Google Scholar]
  34. Roberts GM, Stavros VG. 34.  2014. The role of πσ* states in the photochemistry of heteroaromatic biomolecules and their subunits: insights from gas-phase femtosecond spectroscopy. Chem. Sci. 5:1698–722 [Google Scholar]
  35. Stolow A, Bragg AE, Neumark DM. 35.  2004. Femtosecond time-resolved photoelectron spectroscopy. Chem. Rev. 104:1719–57 [Google Scholar]
  36. Suzuki T. 36.  2006. Femtosecond time-resolved photoelectron imaging. Annu. Rev. Phys. Chem. 57:555–92 [Google Scholar]
  37. Worth GA, Cederbaum LS. 37.  2004. Beyond Born–Oppenheimer: molecular dynamics through a conical intersection. Annu. Rev. Phys. Chem. 55:127–58 [Google Scholar]
  38. Levine BG, Martínez TJ. 38.  2007. Isomerization through conical intersections. Annu. Rev. Phys. Chem. 58:613–34. [Google Scholar]
  39. Matsika S, Krause P. 39.  2011. Non-adiabatic events and conical intersections. Annu. Rev. Phys. Chem. 62:621–43 [Google Scholar]
  40. Domcke W, Yarkony DR. 40.  2012. Role of conical intersections in molecular spectroscopy and photoinduced chemical dynamics. Annu. Rev. Phys. Chem. 63:325–52 [Google Scholar]
  41. Song Y, Lucas M, Alcaraz M, Zhang JS, Brazier C. 41.  2015. Ultraviolet photodissociation dynamics of the allyl radical via the 2A1(3s), 2B2(3py), and 2B1(3px) electronic excited states. J. Phys. Chem. A 119:12318–28 [Google Scholar]
  42. Shapero M, Cole-Filipiak NC, Haibach-Morris C, Neumark DM. 42.  2015. Benzyl radical photodissociation dynamics at 248 nm. J. Phys. Chem. A 119:12349–56 [Google Scholar]
  43. De Vries MS, Hobza P. 43.  2007. Gas-phase spectroscopy of biomolecular building blocks. Annu. Rev. Phys. Chem. 58:585–612 [Google Scholar]
  44. van de Meerakker SYT, Bethlem HL, Vanhaecke N, Meijer G. 44.  2012. Manipulation and control of molecular beams. Chem. Rev. 112:4828–78 [Google Scholar]
  45. Krausz F, Ivanov M. 45.  2009. Attosecond physics. Rev. Mod. Phys. 81:163–234 [Google Scholar]
  46. Sansone G, Kelkensberg F, Perez-Torres JF, Morales F, Kling MF. 46.  et al. 2010. Electron localization following attosecond molecular photoionization. Nature 465:763–66 [Google Scholar]
  47. Hoener M, Fang L, Komilov O, Gessner O, Pratt ST. 47.  et al. 2010. Ultraintense X-ray induced ionization, dissociation, and frustrated absorption in molecular nitrogen. Phys. Rev. Lett. 104:253002 [Google Scholar]
  48. Kupper J, Stern S, Holmegaard L, Filsinger F, Rouzee A. 48.  2014. X-ray diffraction from isolated and strongly aligned gas-phase molecules with a free-electron laser. Phys. Rev. Lett. 112:083002 [Google Scholar]
  49. Franck J, Rabinowitsch E. 49.  1934. Some remarks about free radicals and the photochemistry of solutions. Trans. Faraday Soc. 30:120–30 [Google Scholar]
  50. Meadows LF, Noyes RM. 50.  1960. The dependence on wavelength of quantum yields for iodine dissociation. J. Am. Chem. Soc. 82:1872–76 [Google Scholar]
  51. Porter G. 51.  1968. Flash photolysis and some of its applications. Science 160:1299–307 [Google Scholar]
  52. Porter G, Topp MR. 52.  1968. Nanosecond flash photolysis and the absorption spectra of excited singlet states. Nature 220:1228–29 [Google Scholar]
  53. Chuang TJ, Hoffman GW, Eisenthal KB. 53.  1974. Picosecond studies of cage effect and collision-induced predissociation of iodine in liquids. Chem. Phys. Lett. 25:201–5 [Google Scholar]
  54. Harris AL, Brown JK, Harris CB. 54.  1988. The nature of simple photodissociation reactions in liquids on ultrafast time scales. Annu. Rev. Phys. Chem. 39:341–66 [Google Scholar]
  55. Kliner DAV, Alfano JC, Barbara PF. 55.  1993. Photodissociation and vibrational relaxation of I2 in ethanol. J. Chem. Phys. 98:5375–89 [Google Scholar]
  56. Scherer NF, Ziegler LD, Fleming GR. 56.  1992. Heterodyne-detected time-domain measurement of I2 predissociation and vibrational dynamics in solution. J. Chem. Phys. 96:5544–47 [Google Scholar]
  57. Banin U, Ruhman S. 57.  1993. Ultrafast photodissociation of I3. Coherent photochemistry in solution. J. Chem. Phys. 98:4391–403 [Google Scholar]
  58. Reid PJ. 58.  2001. Understanding the phase-dependent reactivity of chlorine dioxide using resonance Raman spectroscopy. Acc. Chem. Res. 34:691–98 [Google Scholar]
  59. Owrutsky JC, Raftery D, Hochstrasser RM. 59.  1994. Vibrational relaxation dynamics in solutions. Annu. Rev. Phys. Chem. 45:519–55 [Google Scholar]
  60. Horng ML, Gardecki JA, Papazyan A, Maroncelli M. 60.  1995. Subpicosecond measurements of polar solvation dynamics: coumarin 153 revisited. J. Phys. Chem. 99:17311–37 [Google Scholar]
  61. Stratt RM, Maroncelli M. 61.  1996. Non-reactive dynamics in solution: the emerging molecular view of solvation dynamics and vibrational relaxation. J. Phys. Chem. 100:12981–96 [Google Scholar]
  62. Philpott MJ, Hayes SC, Reid PJ. 62.  1998. Femtosecond pump–probe studies of chlorine dioxide photochemistry in water and acetonitrile. Chem. Phys. 236:207–24 [Google Scholar]
  63. Zhang JZ, Harris CB. 63.  1991. Photodissociation dynamics of Mn2(CO)10 in solution on ultrafast time scales. J. Chem. Phys. 95:4024–32 [Google Scholar]
  64. Moore JN, Hansen PA, Hochstrasser RM. 64.  1989. Picosecond infrared probing of metal-carbonyl photodissociation products. J. Am. Chem. Soc. 111:4563–66 [Google Scholar]
  65. Anfinrud PA, Han C, Hochstrasser RM. 65.  1989. Direct observations of ligand dynamics in hemoglobin by subpicosecond infrared spectroscopy. PNAS 86:8387–91 [Google Scholar]
  66. Wilhelm T, Piel J, Riedle E. 66.  1997. Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter. Opt. Lett. 22:1494–96 [Google Scholar]
  67. Berera R, van Grondelle R, Kennis JTM. 67.  2009. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems. Photosynth. Res. 101:105–18 [Google Scholar]
  68. Thomsen CL, Madsen D, Keiding SR, Thøgersen J, Christiansen O. 68.  1999. Two-photon dissociation and ionization of liquid water studied by femtosecond transient absorption spectroscopy. J. Chem. Phys. 110:3453–62 [Google Scholar]
  69. Moskun AC, Jailaubekov AE, Bradforth SE. 69.  2006. Rotational coherence and a sudden breakdown in linear response seen in room-temperature liquids. Science 311:1907–11 [Google Scholar]
  70. Hamm P, Lim M, Hochstrasser RM. 70.  1998. Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy. J. Phys. Chem. B 102:6123–38 [Google Scholar]
  71. Hybl JD, Albrecht Ferro A, Jonas DM. 71.  2001. Two-dimensional Fourier transform electronic spectroscopy. J. Chem. Phys. 115:6606–22 [Google Scholar]
  72. Ruetzel S, Diekmann M, Nuernberger P, Walter C, Engels B, Brixner T. 72.  2014. Multidimensional spectroscopy of photoreactivity. PNAS 111:4764–69 [Google Scholar]
  73. Elles CG, Crim FF. 73.  2006. Connecting chemical dynamics in gas and liquids. Annu. Rev. Phys. Chem. 57:273–302 [Google Scholar]
  74. Harris SJ, Murdock D, Zhang Y, Oliver TAA, Grubb MP. 74.  et al. 2013. Comparing molecular photofragmentation dynamics in the gas and liquid phases. Phys. Chem. Chem. Phys. 15:6567–82 [Google Scholar]
  75. Sobolewski AL, Domcke W, Dedonder-Lardeux C, Jouvet C. 75.  2002. Excited-state hydrogen detachment and hydrogen transfer by repulsive 1πσ* states: a new paradigm for nonradiative decay in aromatic biomolecules. Phys. Chem. Chem. Phys. 4:1093–100 [Google Scholar]
  76. Ashfold MNR, Cronin B, Devine AL, Dixon RN, Nix MGD. 76.  2006. The role of πσ* states in the near ultraviolet photodissociation of heteroaromatic molecules. Science 312:1637–40 [Google Scholar]
  77. Oliver TAA, King GA, Tew DP, Dixon RN, Ashfold MNR. 77.  2012. Controlling the electronic product branching at conical intersections in the UV photolysis of para-substituted thiophenols. J. Phys. Chem. A 116:12444–59 [Google Scholar]
  78. Devine AL, Nix MGD, Dixon RN, Ashfold MNR. 78.  2008. Near ultraviolet photodissociation of thiophenol. J. Phys. Chem. A 112:9563–74 [Google Scholar]
  79. Nix MGD, Devine AL, Cronin B, Dixon RN, Ashfold MNR. 79.  2006. High resolution photofragment translational spectroscopy studies of the near ultraviolet photolysis of phenol. J. Chem. Phys. 125:133318 [Google Scholar]
  80. Dixon RN, Oliver TAA, Ashfold MNR. 80.  2011. Tunnelling under a conical intersection: application to the product vibrational state population distributions in the UV photodissociation of phenols. J. Chem. Phys. 134:194303 [Google Scholar]
  81. Karsili TNV, Wenge AM, Murdock D, Harris SJ, Harvey JN. 81.  et al. 2013. O–H bond fission in 4-substituted phenols: S1 state predissociation viewed in a Hammett-like framework. Chem. Sci. 4:2434–46 [Google Scholar]
  82. Sobolewski AL, Domcke W. 82.  2001. Photoinduced electron and proton transfer in phenol and its clusters with water and ammonia. J. Phys. Chem. A 105:9275–83 [Google Scholar]
  83. Ramesh SG, Domcke W. 83.  2013. A multi-sheeted three-dimensional potential-energy surface for the H-atom photodissociation of phenol. Faraday Discuss 163:73–94 [Google Scholar]
  84. Yang KR, Xu X, Zheng JJ, Truhlar DG. 84.  2014. Full-dimensional potentials and state couplings and multidimensional tunnelling calculations for the photodissociation of phenol. Chem. Sci. 5:4661–80 [Google Scholar]
  85. Zhu X, Malbon CL, Yarkony DR. 85.  2016. An improved quasi-diabatic representation of the 1, 2, 31A coupled adiabatic potential energy surfaces of phenol in the full 33 internal coordinates. J. Chem. Phys. 144:124312 [Google Scholar]
  86. Venkatesan TS, Ramesh SG, Lan Z, Domcke W. 86.  2012. Theoretical analysis of photoinduced H-atom elimination in thiophenol. J. Chem. Phys. 136:174312 [Google Scholar]
  87. Roberts GM, Chatterly AS, Young JD, Stavros VG. 87.  2012. Direct observation of hydrogen tunnelling dynamics in photoexcited phenol. J. Phys. Chem. Lett. 3:348–52 [Google Scholar]
  88. Wenge AM, Karsili TNV, Rodriguez JD, Cotterell MI, Marchetti B. 88.  et al. 2015. Tuning photochemistry: substituent effects on πσ* state mediated bond fission in thioanisoles. Phys. Chem. Chem. Phys. 17:16246–56 [Google Scholar]
  89. Lim JS, Kim SK. 89.  2010. Experimental probing of conical intersection dynamics in the photodissociation of thioanisole. Nat. Chem. 2:627–32 [Google Scholar]
  90. Roberts GM, Hadden DJ, Bergendahl LT, Wenge AM, Harris SJ. 90.  et al. 2013. Exploring quantum phenomena and vibrational control in σ* mediated photochemistry. Chem. Sci. 4:993–1001 [Google Scholar]
  91. Hoshino-Nagasaka M, Suzuki T, Ichimura T, Kasahara S, Baba M. 91.  et al. 2010. Rotationally resolved high-resolution spectrum of the S1–S0 transition of jet-cooled thioanisole. Phys. Chem. Chem. Phys. 12:13243–47 [Google Scholar]
  92. Han SH, Lim JS, Yoon JH, Lee JM, Kim SY. 92.  et al. 2014. Conical intersection seam and bound resonances embedded in continuum observed in the photodissociation of thioanisole-d3. J. Chem. Phys. 140:054307 [Google Scholar]
  93. You HS, Han S, Yoon JH, Lim JS, Lee J. 93.  et al. 2015. Structure and dynamic role of conical intersections in the πσ*-mediated photodissociation reactions. Int. Rev. Phys. Chem. 34:429–59 [Google Scholar]
  94. Xie CJ, Ma JY, Zhu XL, Yarkony DR, Xie DQ, Guo H. 94.  2016. Nonadiabatic tunneling in photodissociation of phenol. J. Am. Chem. Soc. 138:7828–31 [Google Scholar]
  95. Li SHL, Xu XF, Hoyer CE, Truhlar DG. 95.  2015. Non-intuitive diabatic potential energy surfaces for thioanisole. J. Phys. Chem. Lett. 6:3352–59 [Google Scholar]
  96. Li SHL, Xu XF, Truhlar DG. 96.  2015. Computational simulation and interpretation of the low-lying electronic states and electronic spectrum of thioanisole. Phys. Chem. Chem. Phys. 17:20093–99 [Google Scholar]
  97. Hermann R, Dey GR, Naumov S, Brede O. 97.  2000. Thiol radical cations and thiyl radicals as direct products of the free electron transfer from aromatic thiols to n-butyl chloride radical cations. Phys. Chem. Chem. Phys. 2:1213–20 [Google Scholar]
  98. Riyad YM, Naumov S, Hermann R, Brede O. 98.  2006. Deactivation of the first excited singlet state of thiophenols. Phys. Chem. Chem. Phys. 8:1697–706 [Google Scholar]
  99. Zhang Y, Oliver TAA, Das S, Roy A, Ashfold MNR, Bradforth SE. 99.  2013. Exploring the energy disposal immediately after bond-breaking in solution: the wavelength-dependent excited state dissociation pathways of para-methylthiophenol. J. Phys. Chem. A 117:12125–37 [Google Scholar]
  100. Zhang Y, Oliver TAA, Ashfold MNR, Bradforth SE. 100.  2012. Contrasting the excited state reaction pathways of phenol and para-methylthiophenol in the gas and liquid phases. Faraday Discuss 157:141–63 [Google Scholar]
  101. Murdock D, Harris SJ, Karsili TNV, Greetham GM, Clark IP. 101.  et al. 2012. Photofragmentation dynamics in solution probed by transient IR absorption spectroscopy: πσ*-mediated bond cleavage in p-methylthiophenol and p-methylthioanisole. J. Phys. Chem. Lett 3:3715–20 [Google Scholar]
  102. Porter G, Wright FJ. 102.  1955. Primary photochemical processes in aromatic molecules. Part 3. Absorption spectra of benzyl, anilino, phenoxy and related free radicals. Trans. Faraday Soc. 51:1469–74 [Google Scholar]
  103. Chen XY, Larsen DS, Bradforth SE, van Stokkum IHM. 103.  2011. Broadband spectral probing revealing ultrafast photochemical branching after ultraviolet excitation of the aqueous phenolate anion. J. Phys. Chem. A 115:3807–19 [Google Scholar]
  104. Creed D. 104.  1984. The photophysics and photochemistry of the near-UV absorbing amino acids. II. Tyrosine and its simple derivatives. Photochem. Photobiol. 39:563–75 [Google Scholar]
  105. Oliver TAA, Zhang Y, Roy A, Ashfold MNR, Bradforth SE. 105.  2015. Exploring autoionization and photoinduced proton-coupled electron transfer pathways of phenol in aqueous solution. J. Phys. Chem. Lett. 6:4159–64 [Google Scholar]
  106. Chen XY, Bradforth SE. 106.  2008. The ultrafast dynamics of photodetachment. Annu. Rev. Phys. Chem. 59:203–31 [Google Scholar]
  107. Westlake BC, Brennaman MK, Concepcion JJ, Paul JJ, Bettis SE. 107.  et al. 2011. Concerted electron-proton transfer in the optical excitation of hydrogen-bonded dyes. PNAS 108:8554–58 [Google Scholar]
  108. Goyal P, Schwerdtfeger CA, Soudackov AV, Hammes-Schiffer S. 108.  2016. Proton quantization and vibrational relaxation in nonadiabatic dynamics of photoinduced proton-coupled electron transfer in a solvated phenol-amine complex. J. Phys. Chem. B 120:2407–17 [Google Scholar]
  109. Grubb MP, Coulter PM, Marroux HJB, Hornung B, McMullen RS. 109.  et al. 2016. Translational, rotational and vibrational relaxation dynamics of a solute molecule in a non-interacting solvent. Nat. Chem. 8:1042–46 [Google Scholar]
  110. Roberts GM, Marroux HJB, Grubb MP, Ashfold MNR, Orr-Ewing AJ. 110.  2014. On the participation of photo-induced N–H bond fission in aqueous adenine at 266 and 220 nm: a combined ultrafast transient electronic and vibrational absorption spectroscopy study. J. Phys. Chem. A 118:11211–25 [Google Scholar]
  111. Kosma K, Trushin A, Fuss W, Schmid WE. 111.  2009. Cyclohexadiene ring opening observed with 13 fs resolution: Coherent oscillations confirm the reaction path. Phys. Chem. Chem. Phys. 11:172–81 [Google Scholar]
  112. Petrovic VS, Siano M, White JL, Berrah N, Bostedt C. 112.  et al. 2012. Transient X-ray fragmentation: probing a prototypical photoinduced ring opening. Phys. Rev. Letts. 108:253006 [Google Scholar]
  113. Arruda BC, Sension RJ. 113.  2014. Ultrafast polyene dynamics: the ring opening of 1,3-cyclohexadiene derivatives. Phys. Chem. Chem. Phys. 16:4439–55 [Google Scholar]
  114. Pemberton CC, Zhang Y, Saita K, Kirrander A, Weber PM. 114.  2015. From the (1B) spectroscopic state to the photochemical product of the ultrafast ring-opening of 1,3-cyclohexadiene: a spectral observation of the complete reaction path. J. Phys. Chem. A 119:8832–45 [Google Scholar]
  115. Blank DA, North SW, Lee YT. 115.  1994. The ultraviolet photodissociation dynamics of pyrrole. Chem. Phys. 187:35–47 [Google Scholar]
  116. Salzmann S, Kleinschmidt M, Tatchen J, Weinkauf R, Marian CM. 116.  2008. Excited states of thiophene: ring opening as deactivation mechanism. Phys. Chem. Chem. Phys. 10:380–92 [Google Scholar]
  117. Weinkauf R, Lehr L, Schlag EW, Salzmann S, Marian CM. 117.  2008. Ultrafast dynamics in thiophene by femtosecond pump probe photoelectron spectroscopy and theory. Phys. Chem. Chem. Phys. 10:393–404 [Google Scholar]
  118. Wu XF, Zheng XM, Wang HG, Zhao YY, Guan XG. 118.  et al. 2010. A resonance Raman spectroscopic and CASSCF investigation of the Franck–Condon region structural dynamics and conical intersections of thiophene. J. Chem. Phys. 133:134507 [Google Scholar]
  119. Cui GL, Fang WH. 119.  2011. Ab initio trajectory surface-hopping study on ultrafast deactivation process of thiophene. J. Phys. Chem. A 115:11544–50 [Google Scholar]
  120. Stenrup M. 120.  2012. Theoretical study of the radiationless deactivation mechanisms of photo-excited thiophene. Chem. Phys. 397:18–25 [Google Scholar]
  121. Prlj A, Curchod BFE, Corminboeuf C. 121.  2015. Excited state dynamics of thiophene and bithiophene: new insights into theoretically challenging systems. Phys. Chem. Chem. Phys. 17:14719–30 [Google Scholar]
  122. Gavrilov N, Salzmann S, Marian CM. 122.  2008. Deactivation by ring opening: a quantum chemical study of the excited states of furan and comparison to thiophene. Chem. Phys. 349:269–77 [Google Scholar]
  123. Grimov EV, Léveque C, Gatti F, Burghardt I, Köppel H. 123.  2011. Ab initio quantum study of photoinduced ring opening in furan. J. Chem. Phys. 135:164305 [Google Scholar]
  124. Stenrup M, Larson Å. 124.  2011. A computational study of radiationless deactivation mechanisms of furan. Chem. Phys. 379:6–12 [Google Scholar]
  125. Vazdar M, Eckert-Maksic M, Barbatti M, Lischka H. 125.  2009. Excited-state non-adiabatic dynamics simulations of pyrrole. Mol. Phys. 107:845–54 [Google Scholar]
  126. Barbatti M, Lischka H, Salzmann S, Marian CM. 126.  2009. UV excitation and radiationless deactivation of imidazole. J. Chem. Phys. 130:034305 [Google Scholar]
  127. Szabla R, Tuna D, Góra RW, Šponer J, Sobolewski AL, Domcke W. 127.  2013. Photochemistry of 2-aminooxazole, a hypothetical prebiotic precursor of RNA nucleotides. J. Phys. Chem. Lett. 4:2785–88 [Google Scholar]
  128. Perun S, Sobolewski AL, Domcke W. 128.  2005. Photostability of 9H-adenine: mechanisms of the radiationless deactivation of the lowest excited singlet states. Chem. Phys. 313:107–12 [Google Scholar]
  129. Liu FY, Morokuma K. 129.  2013. Multiple pathways for the primary step of the spyropyran photochromic reaction: a CASPT2/CASSCF study. J. Am. Chem. Soc. 135:10693–702 [Google Scholar]
  130. Prager S, Burghardt I, Dreuw A. 130.  2014. Ultrafast Cspiro–O dissociation via a conical intersection drives spyropyran to merocyanine photoswitching. J. Phys. Chem. A 118:1339–49 [Google Scholar]
  131. Tuna D, Sobolewski AL, Domcke W. 131.  2014. Electronically excited states and photochemical reaction mechanisms of β-glucose. Phys. Chem. Chem. Phys. 16:38–47 [Google Scholar]
  132. Breda S, Reva I, Fausto R. 132.  2009. UV-induced unimolecular photochemistry of 2(5H)-furanone and 2(5H)-thiophenone isolated in low temperature inert matrices. Vib. Spectrosc 50:57–67 [Google Scholar]
  133. Murdock D, Harris SJ, Luke J, Grubb MP, Orr-Ewing AJ. 133.  et al. 2014. Transient UV pump–IR probe investigation of heterocyclic ring-opening dynamics in the solution phase: the role played by nσ* states in the photoinduced reactions of thiophenone and furanone. Phys. Chem. Chem. Phys. 16:21271–79 [Google Scholar]
  134. Murdock D, Ingle RA, Sazanovich IV, Clark IP, Harabuchi Y. 134.  et al. 2016. Contrasting ring-opening propensities in UV-excited α-pyrone and coumarin. Phys. Chem. Chem. Phys. 18:2629–38 [Google Scholar]
  135. Arnold BR, Brown CE, Lusztyk J. 135.  1993. Solution photochemistry of 2H-pyran-2-one: laser flash photolysis with infrared detection of transients. J. Am. Chem. Soc. 115:1576–77 [Google Scholar]
  136. Murdock D, Clark IP, Ashfold MNR. 136.  2016. Probing photochemically and thermally induced isomerization reactions in α-pyrone. J. Phys. Chem. A 120:7249–54 [Google Scholar]
  137. Maeda S, Harabuchi Y, Taketsuga T, Morokuma K. 137.  2014. Systematic exploration of the minimum energy conical intersection structures near the Franck–Condon region. J. Phys. Chem. A 118:12050–58 [Google Scholar]
  138. Krauter CM, Moehring J, Buckup T, Pempointer M, Motzkus M. 138.  2013. Ultrafast branching in the excited state of coumarin and umbelliferone. Phys. Chem. Chem. Phys. 15:17846–61 [Google Scholar]
  139. Zhang F, Cao ZZ, Qin X, Liu YZ, Wang YM. 139.  et al. 2008. C–Br bond dissociation mechanisms of 2-bromothiophene and 3-bromothiophene at 267 nm. Acta Phys. Chim. Sin. 24:1335–41 [Google Scholar]
  140. Marchetti B, Karsili TNV, Kelly O, Kapetanopoulos P, Ashfold MNR. 140.  2015. Near ultraviolet photochemistry of 2-bromo- and 2-iodothiophene: revealing photoinduced ring opening in the gas phase?. J. Chem. Phys. 142:224303 [Google Scholar]
  141. Gougousi T, Samartzis PC, Kitsopoulos TN. 141.  1998. Photodissociation study of CH3Br in the first continuum. J. Chem. Phys. 108:5742–46 [Google Scholar]
  142. Ingle RA, Karsili TNV, Dennis GJ, Staniforth M, Stavros VG. 142.  et al. 2016. Extreme population inversion in the fragments formed by UV photoinduced S–H bond fission in 2-thiophenethiol. Phys. Chem. Chem. Phys. 18:11401–10 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error