Existence of a hydrated electron as a byproduct of water radiolysis was established more than 50 years ago, yet this species continues to attract significant attention due to its role in radiation chemistry, including DNA damage, and because questions persist regarding its detailed structure. This work provides an overview of what is known in regards to the structure and spectroscopy of the hydrated electron, both in liquid water and in clusters , the latter of which provide model systems for how water networks accommodate an excess electron. In clusters, the existence of both surface-bound and internally bound states of the excess electron has elicited much debate, whereas in bulk water there are questions regarding how best to understand the structure of the excess electron's spin density. The energetics of the equilibrium species () and its excited states, in bulk water and at the air/water interface, are also addressed.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Thomas JM, Edwards PP, Kuznetsov VL. 1.  2008. Sir Humphry Davy: boundless chemist, physicist, poet and man of action. ChemPhysChem 9:59–66 [Google Scholar]
  2. Weyl W. 2.  1864. Ueber Metallammonium-Verbindungen. Ann. Phys. Chem. 197:601–12 [Google Scholar]
  3. Kraus CA. 3.  1908. Solutions of metals in non-metallic solvents; II. On the formation of compounds between metals and ammonia. J. Am. Chem. Soc. 30:653–68 [Google Scholar]
  4. Kraus CA. 4.  1907. Solutions of metals in non-metallic solvents; I. General properties of solutions of metals in liquid ammonia. J. Am. Chem. Soc. 29:1557–71 [Google Scholar]
  5. Kohlrausch F. 5.  1876. Ueber das Leitungsvermogen der Wassergeloten Elektrolyte im Zusammenhang mit der Wanderung ihrer Bestandtheile. Göttingen Nachrichten213–24 Engl. transl. HM Goodwin 1899. The Fundamental Laws of Electrolytic Conduction New York/London: Harper Brothers [Google Scholar]
  6. Kraus CA. 6.  1908. Solutions of metals in non-metallic solvents; IV. Material effects accompanying the passage of an electrical current through solutions of metals in liquid ammonia. Migration experiments. J. Am. Chem. Soc. 30:1323–44 [Google Scholar]
  7. Thompson JJ. 7.  1897. Cathode rays. Philos. Mag. 44:293–316 [Google Scholar]
  8. Millikan RA. 8.  1911. The isolation of an ion, a precision measurement of its charge, and the correction of Stokes's law. Phys. Rev. (Ser. I) 32:349–97 [Google Scholar]
  9. Gibson GE, Argo WL. 9.  1916. The absorption spectra of the blue solutions of sodium and magnesium in liquid ammonia. Phys. Rev. 7:33–48 [Google Scholar]
  10. Gibson GE, Argo WL. 10.  1918. The absorption spectra of the blue solutions of certain alkali and alkaline earth metals in liquid ammonia and in methylamine. J. Am. Chem. Soc. 40:1327–61 [Google Scholar]
  11. Ogg RA Jr.. 11.  1946. Physical interaction of electrons with liquid dielectric media. The properties of metal-ammonia solutions. Phys. Rev. 69:668–69 [Google Scholar]
  12. Jortner J. 12.  1959. Energy levels of bound electrons in liquid ammonia. J. Chem. Phys. 30:839–46 [Google Scholar]
  13. Jortner J, Rice SA. 13.  1965. Theoretical studies of solvated electrons. Solvated Electron Adv. Chem. Vol. 50, ed. RF Gould, pp 7–26 Washington, DC: Am. Chem. Soc. [Google Scholar]
  14. Hart EJ, Anbar M. 14.  1970. The Hydrated Electron New York: Wiley-Intersci.
  15. Boag JW. 15.  1989. Pulse radiolysis: a historical account of the discovery of the optical absorption spectrum of the hydrated electron. Early Developments in Radiation Chemistry J Kroh 7–20 Cambridge, UK: R. Soc. Chem. [Google Scholar]
  16. Schuler RH. 16.  1996. Radiation chemistry at Notre Dame 1943–1994. Radiat. Phys. Chem. 47:9–17 [Google Scholar]
  17. Stein G. 17.  1952. Some aspects of the radiation chemistry of organic solutes. Discuss. Faraday Soc. 12:227–34 [Google Scholar]
  18. Walker DC. 18.  1967. The hydrated electron. Q. Rev. Chem. Soc. 21:79–108 [Google Scholar]
  19. Hart EJ, Boag JW. 19.  1962. Absorption spectrum of the hydrated electron in water and in aqueous solutions. J. Am. Chem. Soc. 84:4090–95 [Google Scholar]
  20. Dharmarathne L, Ashokkumar M, Grieser F. 20.  2013. On the generation of the hydrated electron during sonolysis of aqueous solutions. J. Phys. Chem. A 117:2409–14 [Google Scholar]
  21. Martini IB, Barthel ER, Schwartz BJ. 21.  2000. Mechanisms of the ultrafast production and recombination of solvated electrons in weakly polar fluids: comparison of multiphoton ionization and detachment via the charge-transfer-to-solvent transition of Na in THF. J. Chem. Phys. 113:11245–57 [Google Scholar]
  22. Kee TW, Son DH, Kambhampati P, Barbara PF. 22.  2001. A unified electron transfer model for the different precursors and excited states of the hydrated electron. J. Phys. Chem. A 105:8434–39 [Google Scholar]
  23. Chen X, Bradforth SE. 23.  2008. The ultrafast dynamics of photodetachment. Annu. Rev. Phys. Chem. 59:203–31 [Google Scholar]
  24. Buxton GV, Greenstock CL, Helman WP, Ross AB. 24.  1988. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (/) in aqueous solution. J. Phys. Chem. Ref. Data 17:513–886 [Google Scholar]
  25. Garrett BC, Dixon DA, Camaioni DM, Chipman DM, Johnson MA. 25.  et al. 2005. Role of water in electron-initiated processes and radical chemistry: issues and scientific advances. Chem. Rev. 105:355–89 [Google Scholar]
  26. Copeland DA, Kestner NR, Jortner J. 26.  1970. Excess electrons in polar solvents. J. Chem. Phys. 53:1189–216 [Google Scholar]
  27. Kestner NR, Jortner J. 27.  1973. Radiative processes of the solvated electron in polar fluids. J. Phys. Chem. 77:1040–50 [Google Scholar]
  28. Fueki K, Feng DF, Kevan L, Christoffersen RE. 28.  1971. A semicontinuum model for the hydrated electron. II. Configurational stability of the ground state. J. Phys. Chem. 75:2297–305 [Google Scholar]
  29. Feng DF, Kevan L. 29.  1980. Theoretical models for solvated electrons. Chem. Rev. 80:1–20 [Google Scholar]
  30. Hentz RR, Farhataziz, Hansen EM. 30.  1972. Pulse radiolysis of liquids at high pressures. III. Hydrated-electron reactions not controlled by diffusion. J. Chem. Phys. 57:2959–63 [Google Scholar]
  31. Borsarelli CD, Bertolotti SG, Previtali CM. 31.  2003. Thermodynamic changes associated with the formation of the hydrated electron after photoionization of inorganic anions: a time-resolved photoacoustic study. Photochem. Photobiol. Sci. 2:791–95 [Google Scholar]
  32. Kevan L. 32.  1981. Solvated electron structure in glassy matrices. Acc. Chem. Res. 14:138–45 [Google Scholar]
  33. Rossky PJ, Schnitker J. 33.  1988. The hydrated electron: quantum simulation of structure, spectroscopy, and dynamics. J. Phys. Chem. 92:4277–85 [Google Scholar]
  34. Turi L, Rossky PJ. 34.  2012. Theoretical studies of spectroscopy and dynamics of hydrated electrons. Chem. Rev. 112:5641–74Review of simulations using pseudopotential models. [Google Scholar]
  35. Boero M, Parrinello M, Terakura K, Ikeshoji T, Liew CC. 35.  2003. First-principles molecular-dynamics simulations of a hydrated electron in normal and supercritical water. Phys. Rev. Lett. 90:226403 [Google Scholar]
  36. Boero M. 36.  2007. Excess electron in water at different thermodynamic conditions. J. Phys. Chem. A 111:12248–56 [Google Scholar]
  37. Uhlig F, Marsalek O, Jungwirth P. 37.  2012. Unraveling the complex nature of the hydrated electron. J. Phys. Chem. Lett. 3:3071–75 [Google Scholar]
  38. Larsen RE, Glover WJ, Schwartz BJ. 38.  2010. Does the hydrated electron occupy a cavity. Science 329:65–69 [Google Scholar]
  39. Turi L, Madarász A. 39.  2011. Comment on “Does the hydrated electron occupy a cavity?”. Science 331:1387c [Google Scholar]
  40. Jacobson LD, Herbert JM. 40.  2011. Comment on “Does the hydrated electron occupy a cavity?”. Science 331:1387d [Google Scholar]
  41. Larsen RE, Glover WJ, Schwartz BJ. 41.  2011. Response to comments on “Does the hydrated electron occupy a cavity?”. Science 331:1387e [Google Scholar]
  42. Herbert JM, Jacobson LD. 42.  2011. Structure of the aqueous electron: assessment of one-electron pseudopotential models in comparison to experimental data and time-dependent density functional theory. J. Phys. Chem. A 115:14470–83 [Google Scholar]
  43. Armbruster M, Haberland H, Schindler HG. 43.  1981. Negatively charged water clusters, or the first observation of free hydrated electrons. Phys. Rev. Lett. 47:323–26 [Google Scholar]
  44. Turi L, Sheu WS, Rossky PJ. 44.  2005. Characterization of excess electrons in water-cluster anions by quantum simulations. Science 309:914–17 [Google Scholar]
  45. Verlet JRR, Bragg AE, Kammrath A, Cheshnovsky O, Neumark DM. 45.  2005. Comment on “Characterization of excess electrons in water-cluster anions by quantum simulations.”. Science 310:1769b [Google Scholar]
  46. Turi L, Sheu WS, Rossky PJ. 46.  2005. Response to comment on “Characterization of excess electrons in water-cluster anions by quantum simulations.”. Science 310:1769c [Google Scholar]
  47. Alizadeh E, Sanche L. 47.  2012. Precursors of solvated electrons in radiobiological physics and chemistry. Chem. Rev. 112:5578–602 [Google Scholar]
  48. Marsalek O, Frigato T, VandeVondele J, Bradforth SE, Schmidt B. 48.  et al. 2010. Hydrogen forms in water by proton transfer to a distorted electron. J. Phys. Chem. B 114:915–20 [Google Scholar]
  49. Uhlig F, Jungwirth P. 49.  2013. Embedded cluster models for reactivity of the hydrated electron. Z. Phys. Chem. 227:1583–93 [Google Scholar]
  50. Falcone JM, Becker D, Sevilla MD, Swarts SG. 50.  2005. Products of the reactions of the dry and aqueous electron with hydrated DNA: hydrogen and 5,6-dihyropyrimidines. Radiat. Phys. Chem. 72:257–64 [Google Scholar]
  51. Alizadeh E, Sanz AG, García G, Sanche L. 51.  2013. Radiation damage to DNA: the indirect effect of low-energy electrons. J. Phys. Chem. Lett. 4:820–25 [Google Scholar]
  52. Alizadeh E, Orlando TM, Sanche L. 52.  2015. Biomolecular damage induced by ionizing radiation: the direct and indirect effects of low-energy electrons on DNA. Annu. Rev. Phys. Chem. 66:379–98Review of electron damage to DNA. [Google Scholar]
  53. Boudaïffa B, Cloutier P, Hunting D, Huels MA, Sanche L. 53.  2000. Resonance formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 287:1658–60 [Google Scholar]
  54. Simons J. 54.  2006. How do low-energy (0.1–2 eV) electrons cause DNA strand breaks. Acc. Chem. Res. 39:772–79 [Google Scholar]
  55. Wang CR, Nguyen J, Lu QB. 55.  2009. Bond breaks of nucleotides by dissociative electron transfer of nonequilibrium prehydrated electrons: a new molecular mechanism for reductive DNA damage. J. Am. Chem. Soc. 131:11320–22 [Google Scholar]
  56. Gu J, Xie Y, Schaefer HF III. 56.  2006. Electron attachment to nucleotides in aqueous solution. ChemPhysChem 7:1885–87 [Google Scholar]
  57. Smyth M, Kohanoff J. 57.  2011. Excess electron localization in solvated DNA bases. Phys. Rev. Lett. 106:238108 [Google Scholar]
  58. Coe JV, Lee GH, Eaton JG, Arnold ST, Sarkas HW. 58.  et al. 1990. Photoelectron spectroscopy of hydrated electron cluster anions, (H2O)n=2−69. J. Chem. Phys. 92:3960–62 [Google Scholar]
  59. Verlet JRR, Bragg AE, Kammrath A, Cheshnovsky O, Neumark DM. 59.  2005. Observation of large water-cluster anions with surface-bound excess electrons. Science 307:93–96Experimental demonstration of the existence of multiple isomers in water cluster anions. [Google Scholar]
  60. Ma L, Majer K, Chirot F, von Issendorff B. 60.  2009. Low temperature photoelectron spectra of water cluster anions. J. Chem. Phys. 131:144303 [Google Scholar]
  61. Hammer NI, Roscioli JR, Bopp JC, Headrick JM, Johnson MA. 61.  2005. Vibrational predissociation spectroscopy of the (H2O)6−21 clusters in the OH stretching region: evolution of the excess electron-binding signature into the intermediate cluster size regime. J. Chem. Phys. 123:244311 [Google Scholar]
  62. Asmis KR, Santabrogio G, Zhou J, Garand E, Headrick J. 62.  et al. 2007. Vibrational spectroscopy of hydrated electron clusters (H2O)15–50 via infrared multiple photon dissociation. J. Chem. Phys. 126:191105 [Google Scholar]
  63. Bailey CG, Kim J, Johnson MA. 63.  1996. Infrared spectroscopy of the hydrated electron clusters (H2O)n, N=6, 7: evidence for hydrogen bonding to the excess electron. J. Phys. Chem. 100:16782–85 [Google Scholar]
  64. Kim KS, Park I, Lee S, Cho K, Lee JY. 64.  et al. 1996. The nature of a wet electron. Phys. Rev. Lett. 76:956–59 [Google Scholar]
  65. Lee S, Kim J, Lee SJ, Kim KS. 65.  1997. Novel structures for the excess electron state of the water hexamer and the interaction forces governing the structure. Phys. Rev. Lett. 79:2038–41 [Google Scholar]
  66. Ayotte P, Weddle GH, Bailey CG, Johnson MA, Vila F, Jordan KD. 66.  1999. Infrared spectroscopy of negatively charged water clusters: evidence for a linear network. J. Chem. Phys. 110:6268–77 [Google Scholar]
  67. Lee HM, Lee S, Kim KS. 67.  2003. Structures, energetics, and spectra of electron–water clusters, and . J. Chem. Phys. 119:187–94 [Google Scholar]
  68. Lee S, Lee SJ, Lee JY, Kim J, Kim KS. 68.  et al. 1996. Ab initio study of water hexamer anions. Chem. Phys. Lett. 254:128–34 [Google Scholar]
  69. Weigend F, Ahlrichs R. 69.  1999. Ab initio treatment of (H2O)2 and . Phys. Chem. Chem. Phys. 1:4537–50 [Google Scholar]
  70. Hammer NI, Roscioli JR, Johnson MA. 70.  2005. Identification of two distinct electron binding motifs in the anionic water clusters: a vibrational spectroscopic study of the (H2O)6 isomers. J. Phys. Chem. A 109:7896–901 [Google Scholar]
  71. Hammer NI, Shin JW, Headrick JM, Diken EG, Roscioli JR. 71.  et al. 2004. How do small water clusters bind an excess electron. Science 306:675–79Experimental observation of the AA isomer in water cluster anions. [Google Scholar]
  72. Herbert JM. 72.  2015. The quantum chemistry of loosely bound electrons. Reviews in Computational Chemistry 28 AL Parill, K Lipkowitz 391–517 Hoboken, NJ: John Wiley & SonsExtensive review of anion quantum chemistry. [Google Scholar]
  73. Sommerfeld T, Gardner SD, DeFusco A, Jordan KD. 73.  2006. Low-lying isomers and finite temperature behavior of (H2O)6. J. Chem. Phys. 125:174301 [Google Scholar]
  74. Choi TH, Jordan KD. 74.  2009. Potential energy landscape of the (H2O)6 cluster. Chem. Phys. Lett. 475:293–97 [Google Scholar]
  75. Roscioli JR, Hammer NI, Johnson MA, Diri K, Jordan KD. 75.  2008. Exploring the correlation between network structure and electron binding energy in the (H2O)7 cluster through isomer-photoselected vibrational predissociation spectroscopy and ab initio calculations: addressing complexity beyond types I–III. J. Chem. Phys. 128:104314 [Google Scholar]
  76. Guasco TL, Elliott BM, Johnson MA, Ding J, Jordan KD. 76.  2010. Isolating the spectral signatures of individual sites in water networks using vibrational double-resonance spectroscopy of cluster isotopomers. J. Phys. Chem. Lett. 1:2396–401 [Google Scholar]
  77. Herbert JM, Head-Gordon M. 77.  2006. Charge penetration and the origin of large O–H vibrational red-shifts in hydrated-electron clusters, (H2O)n. J. Am. Chem. Soc. 128:13932–39 [Google Scholar]
  78. Diken EG, Robertson WH, Johnson MA. 78.  2004. The vibrational spectrum of the neutral (H2O)6 precursor to the “magic” (H2O)6 cluster anion by argon-mediated, population-modulated electron attachment spectroscopy. J. Phys. Chem. A 108:64–68 [Google Scholar]
  79. Barnett RN, Landman U, Cleveland CL, Jortner J. 79.  1988. Electron localization in water clusters. II. Surface and internal states. J. Chem. Phys. 88:4429–47 [Google Scholar]
  80. Barnett RN, Landman U, Scharf D, Jortner J. 80.  1989. Surface and internal excess electron states in molecular clusters. Acc. Chem. Res. 22:350–57 [Google Scholar]
  81. Herbert JM, Head-Gordon M. 81.  2005. Calculation of electron detachment energies for water cluster anions: An appraisal of electronic structure methods, with application to (H2O)20 and (H2O)24. J. Phys. Chem. A 109:5217–29 [Google Scholar]
  82. Williams CF, Herbert JM. 82.  2008. Influence of structure on electron correlation effects and electron–water dispersion interactions in anionic water clusters. J. Phys. Chem. A 112:6171–78 [Google Scholar]
  83. Jacobson LD, Herbert JM. 83.  2010. A one-electron model for the aqueous electron that includes many-body electron-water polarization: bulk equilibrium structure, vertical electron binding energy, and optical absorption spectrum. J. Chem. Phys. 133:154106 [Google Scholar]
  84. Kim J, Becker I, Cheshnovsky O, Johnson MA. 84.  1998. Photoelectron spectroscopy of the “missing” hydrated electron clusters (H2O)n, n=3, 5, 8, and 9: isomers and continuity with the dominant clusters N=6, 7 and 11. Chem. Phys. Lett. 297:90–96 [Google Scholar]
  85. Shin JW, Hammer NI, Headrick JM, Johnson MA. 85.  2004. Preparation and photoelectron spectrum of the ‘missing’ (H2O)4 cluster. Chem. Phys. Lett. 399:349–53 [Google Scholar]
  86. Makov G, Nitzan A. 86.  1994. Solvation and ionization near a dielectric surface. J. Phys. Chem. 98:3459–66 [Google Scholar]
  87. Kammrath A, Verlet JRR, Griffin GB, Neumark DM. 87.  2006. Photoelectron spectroscopy of large (water)n (n=50–200) clusters at 4.7 eV. J. Chem. Phys. 125:076101 [Google Scholar]
  88. Jacobson LD, Williams CF, Herbert JM. 88.  2009. The static-exchange electron-water pseudopotential, in conjunction with a polarizable water model: a new Hamiltonian for hydrated-electron simulations. J. Chem. Phys. 130:124115 [Google Scholar]
  89. Jacobson LD, Herbert JM. 89.  2011. Theoretical characterization of four distinct isomer types in hydrated-electron clusters, and proposed assignments for photoelectron spectra of water cluster anions. J. Am. Chem. Soc. 133:19889–99Analysis of anion isomers using theoretical calculations. [Google Scholar]
  90. Marsalek O, Uhlig F, VandeVondele J, Jungwirth P. 90.  2012. Structure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics. Acc. Chem. Res. 45:23–32Overview of theoretical results using DFT. [Google Scholar]
  91. Uhlig F, Herbert JM, Coons MP, Jungwirth P. 91.  2014. Optical spectroscopy of the bulk and interfacial hydrated electron from ab initio calculations. J. Phys. Chem. A 118:7507–15 [Google Scholar]
  92. Kumar A, Walker JA, Bartels DM, Sevilla MD. 92.  2015. A simple ab initio model for the hydrated electron that matches experiment. J. Phys. Chem. A 119:9148–59Recent theoretical validation of the cavity model. [Google Scholar]
  93. Tauber MJ, Mathies RA. 93.  2003. Structure of the aqueous solvated electron from resonance Raman spectroscopy: lessons from isotopic mixtures. J. Am. Chem. Soc. 125:1394–402 [Google Scholar]
  94. Turi L, Borgis D. 94.  2002. Analytical investigations of an electron–water molecule pseudopotential. II. Development of a new pair potential and molecular dynamics simulations. J. Chem. Phys. 117:6186–95 [Google Scholar]
  95. Jacobson LD, Herbert JM. 95.  2010. Polarization-bound quasi-continuum states are responsible for the ‘blue tail’ in the optical absorption spectrum of the aqueous electron. J. Am. Chem. Soc. 132:10000–2Theoretical explanation of the blue tail in the optical spectrum. [Google Scholar]
  96. Tang Y, Shen H, Sekiguchi K, Kurahashi N, Mizuno T. 96.  et al. 2010. Direct measurement of vertical binding energy of a hydrated electron. Phys. Chem. Chem. Phys. 12:3653–55 [Google Scholar]
  97. Shreve AT, Yen TA, Neumark DM. 97.  2010. Photoelectron spectroscopy of hydrated electrons. Chem. Phys. Lett. 493:216–19 [Google Scholar]
  98. Lübcke A, Buchner F, Heine N, Hertel IV, Schultz T. 98.  2010. Time-resolved photoelectron spectroscopy of solvated electrons in aqueous NaI solution. Phys. Chem. Chem. Phys. 12:14629–34 [Google Scholar]
  99. Siefermann KR, Liu Y, Lugovoy E, Link O, Faubel M. 99.  et al. 2010. Binding energies, lifetimes and implications of bulk and interface solvated electrons in water. Nat. Phys. 2:274–79 [Google Scholar]
  100. Buchner F, Schultz T, Lübcke A. 100.  2012. Solvated electrons at the water-air interface: surface versus bulk signal in low kinetic energy photoelectron spectroscopy. Phys. Chem. Chem. Phys. 14:5837–42 [Google Scholar]
  101. Yamamoto Y, Karashima S, Adachi S, Suzuki T. 101.  2016. Wavelength dependence of UV photoemission from solvated electrons in bulk water, methanol, and ethanol. J. Phys. Chem. A 120:1153–59 [Google Scholar]
  102. Coe JV, Williams SM, Bowen KH. 102.  2008. Photoelectron spectra of hydrated electron clusters versus cluster size. Int. Rev. Phys. Chem. 27:27–51Thorough analysis of cluster photoelectron spectra. [Google Scholar]
  103. Stähler J, Deinert JC, Wegkamp D, Hagen S, Wolf M. 103.  2015. Real-time measurement of the vertical binding energy during the birth of a solvated electron. J. Am. Chem. Soc. 137:3520–24 [Google Scholar]
  104. Signorell R, Goldmann M, Yoder BL, Andras B, Chasovskikh E. 104.  et al. 2016. Nanofocusing, shadowing, and electron mean free path in the photoemission from aerosol droplets. Chem. Phys. Lett. 658:1–6 [Google Scholar]
  105. Elkins MH, Williams HL, Shreve AT, Neumark DM. 105.  2013. Relaxation mechanism of the hydrated electron. Science 342:1496–99 [Google Scholar]
  106. Karashima S, Yamamoto, Y, Suzuki T. 106.  2016. Resolving nonadiabatic dynamics of hydrated electrons using ultrafast photoemission anisotropy. Phys. Rev. Lett. 116:137601 [Google Scholar]
  107. Siefermann KR, Abel B. 107.  2011. The hydrated electron: a seemingly familiar chemical and biological transient. Angew. Chem. Int. Ed. Engl. 50:5264–72 [Google Scholar]
  108. Abel B, Buck U, Sobolewski AL, Domcke W. 108.  2012. On the nature and signatures of the solvated electron in water. Phys. Chem. Chem. Phys. 14:22–34 [Google Scholar]
  109. Faubel M, Siefermann KR, Liu Y, Abel B. 109.  2012. Ultrafast soft X-ray photoelectron spectroscopy at liquid water microjets. Acc. Chem. Res. 45:120–30 [Google Scholar]
  110. Abel B. 110.  2013. Hydrated interfacial ions and electrons. Annu. Rev. Phys. Chem. 64:533–52 [Google Scholar]
  111. Coons MP, You ZQ, Herbert JM. 111.  2016. The hydrated electron at the interface of neat liquid water appears to be indistinguishable from the bulk species. J. Am. Chem. Soc. 138:10879–86 [Google Scholar]
  112. Casey JR, Schwartz BJ, Glover WJ. 112.  2016. Free energies of cavity and noncavity hydrated electrons near the instantaneous air/water interface. J. Phys. Chem. Lett. 7:3192–98 [Google Scholar]
  113. Bovensiepen U, Gahl C, Stähler J, Bockstedte M, Meyer M. 113.  et al. 2009. A dynamic landscape from femtoseconds to minutes for excess electrons at ice–metal interfaces. J. Phys. Chem. C 113:979–88 [Google Scholar]
  114. Bertin M, Meyer M, Stähler J, Gahl C, Wolf M, Bovensiepen U. 114.  2009. Reactivity of water–electron complexes on crystalline ice surfaces. Faraday Discuss. 141:293–307 [Google Scholar]
  115. Lu QB, Sanche L. 115.  2001. Effects of cosmic rays on atmospheric chloroflurocarbon dissociation and ozone depletion. Phys. Rev. Lett. 87:078501 [Google Scholar]
  116. Lu QB. 116.  2010. Cosmic-ray-driven electron-induced reactions of halogenated molecules adsorbed on ice surfaces: implications for atmospheric ozone depletion and global climate change. Phys. Rep. 487:141–67 [Google Scholar]
  117. Müller R. 117.  2003. Impact of cosmic rays on stratospheric chlorine chemistry and ozone depletion. Phys. Rev. Lett. 91:058502 [Google Scholar]
  118. Müller R, Grooß JU. 118.  2009. Does cosmic-ray-induced heterogeneous chemistry influence stratospheric polar ozone loss. Phys. Rev. Lett. 103:228501 [Google Scholar]
  119. Grooß JU, Müller R. 119.  2011. Do cosmic-ray-driven electron-induced reactions impact stratospheric ozone depletion and global climate change. Atmos. Environ. 45:3508–14 [Google Scholar]
  120. Golden S, Guttman C, Tuttle TR Jr. 120.  1966. Species and composition of dilute alkali-metal–ammonia solutions. J. Chem. Phys. 44:3791–96 [Google Scholar]
  121. Golden S, Tuttle TR Jr. 121.  1978. On the nature of solvated electrons in polar fluids. J. Phys. Chem. 82:944–51 [Google Scholar]
  122. Sagar DM, Bain CD, Verlet JRR. 122.  2010. Hydrated electrons at the water/air interface. J. Am. Chem. Soc. 132:6917–19 [Google Scholar]
  123. Matsuzaki K, Kusaka R, Nihonyanagi S, Yamaguchi S, Nagata T, Tahara T. 123.  2016. Partially hydrated electrons at the air/water interface observed by UV-excited time-resolved heterodyne-detected vibrational frequency generation spectroscopy. J. Am. Chem. Soc. 138:7551–57 [Google Scholar]
  124. Bartels DM, Takahashi K, Cline JA, Marin TW, Jonah CD. 124.  2005. Pulse radiolysis of supercritical water. 3. Spectrum and thermodynamics of the hydrated electron. J. Phys. Chem. A 109:1299–307 [Google Scholar]
  125. Coe JV, Arnold ST, Eaton JG, Lee GH, Bowen KH. 125.  2006. Photoelectron spectra of hydrated electron clusters: fitting line shapes and grouping isomers. J. Chem. Phys. 125:014315 [Google Scholar]
  126. Turi L, Hantal G, Rossky PJ, Borgis D. 126.  2009. Nuclear quantum effects in electronically adiabatic quantum time correlation functions: application to the absorption spectrum of a hydrated electron. J. Chem. Phys. 131:024119 [Google Scholar]
  127. Golden S, Tuttle TR Jr. 127.  1979. Nature of solvated electron absorption spectra. J. Chem. Soc. Faraday Trans. 2 75:474–84 [Google Scholar]
  128. Coe JV. 128.  2001. Fundamental properties of bulk water from cluster ion data. Int. Rev. Phys. Chem. 20:33–58 [Google Scholar]
  129. Golden S, Tuttle TR Jr. 129.  1981. Shape stability of solvated-electron optical absorption bands. Part 2.—Theoretical implication. J. Chem. Soc. Faraday Trans. 2 77:889–97 [Google Scholar]
  130. Herbert JM, Jacobson LD. 130.  2011. Nature's most squishy ion: the important role of solvent polarization in the description of the hydrated electron. Int. Rev. Phys. Chem. 30:1–48 [Google Scholar]
  131. Hare PM, Price EA, Stanisky CM, Janik I, Bartels DM. 131.  2010. Solvated electron extinction coefficient and oscillator strength in high temperature water. J. Phys. Chem. A 114:1766–75 [Google Scholar]
  132. Schlick S, Narayana PA, Kevan L. 132.  1976. ESR line shape studies of trapped electrons in γ-irradiated 17O enriched 10 M NaOH alkaline ice glass: model for the geometrical structure of the trapped electron. J. Chem. Phys. 64:3153–60 [Google Scholar]
  133. Savolainen J, Uhlig F, Ahmed S, Hamm P, Jungwirth P. 133.  2014. Direct observation of the collapse of the delocalized excess electron in water. Nat. Phys. 6:697–701 [Google Scholar]
  134. Tay KA, Boutin A. 134.  2009. Hydrated electron diffusion: the importance of hydrogen-bond dynamics. J. Phys. Chem. B 113:11943–49 [Google Scholar]
  135. Tuckerman ME, Marx D, Parrinello M. 135.  2002. The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 417:925–29 [Google Scholar]
  136. Hameka HF, Robinson GW, Marsden CJ. 136.  1987. Structure of the hydrated electron. J. Phys. Chem. 91:3150–57 [Google Scholar]
  137. Khatib R, Hasegawa T, Sulpizi M, Backus EHG, Bonn M. 137.  et al. 2016. Molecular dynamics simulations of SFG librational modes spectra of water at the water–air interface. J. Phys. Chem. C 120:18665–73 [Google Scholar]
  138. Shkrob IA. 138.  2007. The structure of the hydrated electron. Part 1. Magnetic resonance of internally trapping water anions: a density functional theory study. J. Phys. Chem. A 111:5223–31 [Google Scholar]
  139. Tuttle TR Jr., Golden S. 139.  1991. Solvated electrons: What is solvated. J. Phys. Chem. 95:5725–36 [Google Scholar]
  140. Clementi E, McLean AD, Ratmondi DL, Yoshimine M. 140.  1964. Atomic negative ions. Second period. Phys. Rev. 133:A1274–79 [Google Scholar]
  141. Sobolewski AL, Domcke W. 141.  2002. Hydrated hydronium: a cluster model of the solvated electron. Phys. Chem. Chem. Phys. 4:4–10 [Google Scholar]
  142. Neumann S, Eisfeld W, Sobolewski A, Domcke W. 142.  2004. Simulation of the resonance Raman spectrum of the hydrated electron in the hydrated-hydronium cluster model. Phys. Chem. Chem. Phys. 6:5297–303 [Google Scholar]
  143. Hentz RR, Farhataziz, Hansen EM. 143.  1972. Pulse radiolysis of liquids at high pressures. II. Diffusion-controlled reactions of the hydrated electron. J. Chem. Phys. 56:4485–88 [Google Scholar]
  144. Casey JR, Larsen RE, Schwartz BJ. 144.  2013. Resonance Raman and temperature-dependent electronic absorption spectra of cavity and noncavity models of the hydrated electron. PNAS 110:2712–17 [Google Scholar]
  145. Corcelli SA, Skinner JL. 145.  2005. Infrared and Raman line shapes of dilute HOD in liquid H2O and D2O from 10 to 90°C. J. Phys. Chem. A 109:6154–65 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error