1932

Abstract

The investigation of intrinsically disordered proteins (IDPs) is a new frontier in structural and molecular biology that requires a new paradigm to connect structural disorder to function. Molecular dynamics simulations and statistical thermodynamics potentially offer ideal tools for atomic-level characterizations and thermodynamic descriptions of this fascinating class of proteins that will complement experimental studies. However, IDPs display sensitivity to inaccuracies in the underlying molecular mechanics force fields. Thus, achieving an accurate structural characterization of IDPs via simulations is a challenge. It is also daunting to perform a configuration-space integration over heterogeneous structural ensembles sampled by IDPs to extract, in particular, protein configurational entropy. In this review, we summarize recent efforts devoted to the development of force fields and the critical evaluations of their performance when applied to IDPs. We also survey recent advances in computational methods for protein configurational entropy that aim to provide a thermodynamic link between structural disorder and protein activity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-052516-050843
2017-05-05
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/physchem/68/1/annurev-physchem-052516-050843.html?itemId=/content/journals/10.1146/annurev-physchem-052516-050843&mimeType=html&fmt=ahah

Literature Cited

  1. Chouard T. 1.  2011. Breaking the protein rules. Nature 471:151–53 [Google Scholar]
  2. Oates ME, Romero P, Ishida T, Ghalwash M, Mizianty MJ. 2.  et al. 2013. D2P2: database of disordered protein predictions. Nucleic Acids Res 41:D508–16 [Google Scholar]
  3. van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW. 3.  et al. 2014. Classification of intrinsically disordered regions and proteins. Chem. Rev. 114:6589–631 [Google Scholar]
  4. Dyson HJ, Wright PE. 4.  2005. Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6:197–208 [Google Scholar]
  5. Wright PE, Dyson HJ. 5.  2015. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 16:18–29 [Google Scholar]
  6. Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradović Z. 6.  2002. Intrinsic disorder and protein function. Biochemistry 41:6573–82 [Google Scholar]
  7. Uversky VN. 7.  2002. Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11:739–56 [Google Scholar]
  8. Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN. 8.  2005. Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J 272:5129–48 [Google Scholar]
  9. Chiti F, Dobson CM. 9.  2006. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75:333–66 [Google Scholar]
  10. Uversky VN, Oldfield CJ, Dunker AK. 10.  2008. Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu. Rev. Biophys. 37:215–46 [Google Scholar]
  11. Babu MM, van der Lee R, de Groot NS, Gsponer J. 11.  2011. Intrinsically disordered proteins: regulation and disease. Curr. Opin. Struct. Biol. 21:432–40 [Google Scholar]
  12. Dunker AK, Gough J. 12.  2011. Sequences and topology: intrinsic disorder in the evolving universe of protein structure. Curr. Opin. Struct. Biol. 21:379–81 [Google Scholar]
  13. Habchi J, Tompa P, Longhi S, Uversky VN. 13.  2014. Introducing protein intrinsic disorder. Chem. Rev. 114:6561–88 [Google Scholar]
  14. Eliezer D. 14.  2009. Biophysical characterization of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 19:23–30 [Google Scholar]
  15. Bowler BE. 15.  2012. Residual structure in unfolded proteins. Curr. Opin. Struct. Biol. 22:4–13 [Google Scholar]
  16. Carballo-Pacheco M, Strodel B. 16.  2016. Advances in the simulation of protein aggregation at the atomistic scale. J. Phys. Chem. B 120:2991–99 [Google Scholar]
  17. Morriss-Andrews A, Shea JE. 17.  2014. Simulations of protein aggregation: insights from atomistic and coarse-grained models. J. Phys. Chem. Lett. 5:1899–908 [Google Scholar]
  18. Nasica-Labouze J, Nguyen PH, Sterpone F, Berthoumieu O, Buchete N-V. 18.  et al. 2015. Amyloid β protein and Alzheimer's disease: when computer simulations complement experimental studies. Chem. Rev. 115:3518–63 [Google Scholar]
  19. Rosenman DJ, Wang C, García AE. 19.  2016. Characterization of Aβ monomers through the convergence of ensemble properties among simulations with multiple force fields. J. Phys. Chem. B 120:259–77 [Google Scholar]
  20. Stanley N, Esteban-Martín S, De Fabritiis G. 20.  2015. Progress in studying intrinsically disordered proteins with atomistic simulations. Prog. Biophys. Mol. Biol. 119:47–52 [Google Scholar]
  21. Tzeng SR, Kalodimos CG. 21.  2012. Protein activity regulation by conformational entropy. Nature 488:236–40 [Google Scholar]
  22. Frederick KK, Marlow MS, Valentine KG, Wand AJ. 22.  2007. Conformational entropy in molecular recognition by proteins. Nature 448:325–29 [Google Scholar]
  23. Flock T, Weatheritt RJ, Latysheva NS, Babu MM. 23.  2014. Controlling entropy to tune the functions of intrinsically disordered regions. Curr. Opin. Struct. Biol. 26:62–72 [Google Scholar]
  24. Wand AJ. 24.  2013. The dark energy of proteins comes to light: conformational entropy and its role in protein function revealed by NMR relaxation. Curr. Opin. Struct. Biol. 23:75–81 [Google Scholar]
  25. Karplus M, Kushick JN. 25.  1981. Method for estimating the configurational entropy of macromolecules. Macromolecules 14:325–32 [Google Scholar]
  26. Levy RM, Karplus M, Kushick J, Perahia D. 26.  1984. Evaluation of the configurational entropy for proteins: application to molecular dynamics simulations of an α-helix. Macromolecules 17:1370–74 [Google Scholar]
  27. Schlitter J. 27.  1993. Estimation of absolute and relative entropies of macromolecules using the covariance matrix. Chem. Phys. Lett. 215:617–21 [Google Scholar]
  28. Schäfer H, Mark AE, van Gunsteren WF. 28.  2000. Absolute entropies from molecular dynamics simulation trajectories. J. Chem. Phys. 113:7809–17 [Google Scholar]
  29. Andricioaei I, Karplus M. 29.  2001. On the calculation of entropy from covariance matrices of the atomic fluctuations. J. Chem. Phys. 115:6289–92 [Google Scholar]
  30. Ponder JW, Case DA. 30.  2003. Force fields for protein simulations. Adv. Protein Chem. 66:27–85 [Google Scholar]
  31. Mackerell AD. 31.  2004. Empirical force fields for biological macromolecules: overview and issues. J. Comput. Chem. 25:1584–604 [Google Scholar]
  32. Wang J, Cieplak P, Kollman PA. 32.  2000. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?. J. Comput. Chem. 21:1049–74 [Google Scholar]
  33. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C. 33.  2006. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins Struct. Funct. Bioinform. 65:712–25 [Google Scholar]
  34. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G. 34.  et al. 2003. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 24:1999–2012 [Google Scholar]
  35. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD. 35.  et al. 1998. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102:3586–616 [Google Scholar]
  36. Mackerell AD, Feig M, Brooks CL. 36.  2004. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 25:1400–15 [Google Scholar]
  37. van Gunsteren WF, Billeter SR, Eising AA, Hünenberger PH, Krüger P. 37.  et al. 1996. Biomolecular Simulation: The GROMOS96 Manual and User Guide Zürich: vdf Hochsch.
  38. Oostenbrink C, Villa A, Mark AE, van Gunsteren WF. 38.  2004. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 25:1656–76 [Google Scholar]
  39. Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M. 39.  et al. 2011. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur. Biophys. J. 40:843–56 [Google Scholar]
  40. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL. 40.  2001. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105:6474–87 [Google Scholar]
  41. Nguyen PH, Li MS, Derreumaux P. 41.  2011. Effects of all-atom force fields on amyloid oligomerization: replica exchange molecular dynamics simulations of the Aβ16–22 dimer and trimer. Phys. Chem. Chem. Phys. 13:9778–88 [Google Scholar]
  42. Best RB, Hummer G. 42.  2009. Optimized molecular dynamics force fields applied to the helix-coil transition of polypeptides. J. Phys. Chem. B 113:9004–15 [Google Scholar]
  43. Freddolino PL, Park S, Roux B, Schulten K. 43.  2009. Force field bias in protein folding simulations. Biophys. J. 96:3772–80 [Google Scholar]
  44. Piana S, Klepeis JL, Shaw DE. 44.  2014. Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations. Curr. Opin. Struct. Biol. 24:98–105 [Google Scholar]
  45. Yoda T, Sugita Y, Okamoto Y. 45.  2004. Comparisons of force fields for proteins by generalized-ensemble simulations. Chem. Phys. Lett. 386:460–67 [Google Scholar]
  46. Sun Y, Qian Z, Wei G. 46.  2016. The inhibitory mechanism of a fullerene derivative against amyloid-β peptide aggregation: an atomistic simulation study. Phys. Chem. Chem. Phys. 18:12582–91 [Google Scholar]
  47. Barz B, Urbanc B. 47.  2012. Dimer formation enhances structural differences between amyloid β-protein (1–40) and (1–42): an explicit-solvent molecular dynamics study. PLOS ONE 7:e34345 [Google Scholar]
  48. Zhang T, Zhang J, Derreumaux P, Mu Y. 48.  2013. Molecular mechanism of the inhibition of EGCG on the Alzheimer Aβ1–42 dimer. J. Phys. Chem. B 117:3993–4002 [Google Scholar]
  49. Tarus B, Tran TT, Nasica-Labouze J, Sterpone F, Nguyen PH, Derreumaux P. 49.  2015. Structures of the Alzheimer's wild-type Aβ1–40 dimer from atomistic simulations. J. Phys. Chem. B 119:10478–87 [Google Scholar]
  50. Hoffmann KQ, McGovern M, Chiu CC, de Pablo JJ. 50.  2015. Secondary structure of rat and human amylin across force fields. PLOS ONE 10:e0134091 [Google Scholar]
  51. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL. 51.  et al. 2010. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins Struct. Funct. Bioinform. 78:1950–58 [Google Scholar]
  52. Best RB, Mittal J. 52.  2010. Protein simulations with an optimized water model: cooperative helix formation and temperature-induced unfolded state collapse. J. Phys. Chem. B 114:14916–23 [Google Scholar]
  53. Piana S, Lindorff-Larsen K, Shaw David E. 53.  2011. How robust are protein folding simulations with respect to force field parameterization?. Biophys. J. 100:L47–49 [Google Scholar]
  54. Best RB, Zhu X, Shim J, Lopes PEM, Mittal J. 54.  et al. 2012. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles. J. Chem. Theory Comput. 8:3257–73 [Google Scholar]
  55. Doshi U, Hamelberg D. 55.  2009. Reoptimization of the AMBER force field parameters for peptide bond (omega) torsions using accelerated molecular dynamics. J. Phys. Chem. B 113:16590–95 [Google Scholar]
  56. Nerenberg PS, Head-Gordon T. 56.  2011. Optimizing protein-solvent force fields to reproduce intrinsic conformational preferences of model peptides. J. Chem. Theory Comput. 7:1220–30 [Google Scholar]
  57. Li D-W, Brüschweiler R. 57.  2010. NMR-based protein potentials. Angew. Chem. Int. Ed. 49:6778–80 [Google Scholar]
  58. Beauchamp KA, Lin YS, Das R, Pande VS. 58.  2012. Are protein force fields getting better? A systematic benchmark on 524 diverse NMR measurements. J. Chem. Theory Comput. 8:1409–14 [Google Scholar]
  59. Lindorff-Larsen K, Maragakis P, Piana S, Eastwood MP, Dror RO, Shaw DE. 59.  2012. Systematic validation of protein force fields against experimental data. PLOS ONE 7:e32131 [Google Scholar]
  60. Lange OF, van der Spoel D, de Groot BL. 60.  2010. Scrutinizing molecular mechanics force fields on the submicrosecond timescale with NMR data. Biophys. J. 99:647–55 [Google Scholar]
  61. Adhikari AN, Freed KF, Sosnick TR. 61.  2013. Simplified protein models: predicting folding pathways and structure using amino acid sequences. Phys. Rev. Lett. 111:028103 [Google Scholar]
  62. Best RB, Mittal J. 62.  2011. Free-energy landscape of the GB1 hairpin in all-atom explicit solvent simulations with different force fields: similarities and differences. Proteins Struct. Funct. Bioinform. 79:1318–28 [Google Scholar]
  63. Lindorff-Larsen K, Trbovic N, Maragakis P, Piana S, Shaw DE. 63.  2012. Structure and dynamics of an unfolded protein examined by molecular dynamics simulation. J. Am. Chem. Soc. 134:3787–91 [Google Scholar]
  64. Skinner JJ, Yu W, Gichana EK, Baxa MC, Hinshaw JR. 64.  et al. 2014. Benchmarking all-atom simulations using hydrogen exchange. PNAS 111:15975–80 [Google Scholar]
  65. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. 65.  1983. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79:926–35 [Google Scholar]
  66. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J. 66.  1981. Interaction models for water in relation to protein hydration. Intermolecular Forces B Pullman 331–42 Dordrecht, Neth.: Springer [Google Scholar]
  67. Jorgensen WL, Madura JD. 67.  1985. Temperature and size dependence for Monte Carlo simulations of TIP4P water. Mol. Phys. 56:1381–92 [Google Scholar]
  68. Abascal JLF, Vega C. 68.  2005. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123:234505 [Google Scholar]
  69. Horn HW, Swope WC, Pitera JW, Madura JD, Dick TJ. 69.  et al. 2004. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J. Chem. Phys. 120:9665–78 [Google Scholar]
  70. Fawzi NL, Phillips AH, Ruscio JZ, Doucleff M, Wemmer DE, Head-Gordon T. 70.  2008. Structure and dynamics of the Aβ21–30 peptide from the interplay of NMR experiments and molecular simulations. J. Am. Chem. Soc. 130:6145–58 [Google Scholar]
  71. Wickstrom L, Okur A, Simmerling C. 71.  2009. Evaluating the performance of the ff99SB force field based on NMR scalar coupling data. Biophys. J. 97:853–56 [Google Scholar]
  72. Chong SH, Ham S. 72.  2013. Assessing the influence of solvation models on structural characteristics of intrinsically disordered protein. Comput. Theor. Chem. 1017:194–99 [Google Scholar]
  73. Best RB, Zheng W, Mittal J. 73.  2014. Balanced protein–water interactions improve properties of disordered proteins and non-specific protein association. J. Chem. Theory Comput. 10:5113–24 [Google Scholar]
  74. Piana S, Donchev AG, Robustelli P, Shaw DE. 74.  2015. Water dispersion interactions strongly influence simulated structural properties of disordered protein states. J. Phys. Chem. B 119:5113–23 [Google Scholar]
  75. Sgourakis NG, Merced-Serrano M, Boutsidis C, Drineas P, Du Z. 75.  et al. 2011. Atomic-level characterization of the ensemble of the Aβ1–42 monomer in water using unbiased molecular dynamics simulations and spectral algorithms. J. Mol. Biol. 405:570–83 [Google Scholar]
  76. Ball KA, Phillips AH, Nerenberg PS, Fawzi NL, Wemmer DE, Head-Gordon T. 76.  2011. Homogeneous and heterogeneous tertiary structure ensembles of amyloid-β peptides. Biochemistry 50:7612–28 [Google Scholar]
  77. Rosenman DJ, Connors CR, Chen W, Wang C, García AE. 77.  2013. Aβ monomers transiently sample oligomer and fibril-like configurations: ensemble characterization using a combined MD/NMR approach. J. Mol. Biol. 425:3338–59 [Google Scholar]
  78. Ball KA, Phillips AH, Wemmer DE, Head-Gordon T. 78.  2013. Differences in β-strand populations of monomeric Aβ40 and Aβ42. Biophys. J. 104:2714–24 [Google Scholar]
  79. Yedvabny E, Nerenberg PS, So C, Head-Gordon T. 79.  2015. Disordered structural ensembles of vasopressin and oxytocin and their mutants. J. Phys. Chem. B 119:896–905 [Google Scholar]
  80. Jose JC, Chatterjee P, Sengupta N. 80.  2014. Cross dimerization of amyloid-β and α-synuclein proteins in aqueous environment: a molecular dynamics simulations study. PLOS ONE 9:e106883 [Google Scholar]
  81. Henriques J, Cragnell C, Skepö M. 81.  2015. Molecular dynamics simulations of intrinsically disordered proteins: force field evaluation and comparison with experiment. J. Chem. Theory Comput. 11:3420–31 [Google Scholar]
  82. Rauscher S, Gapsys V, Gajda MJ, Zweckstetter M, de Groot BL, Grubmüller H. 82.  2015. Structural ensembles of intrinsically disordered proteins depend strongly on force field: a comparison to experiment. J. Chem. Theory Comput. 11:5513–24 [Google Scholar]
  83. Palazzesi F, Prakash MK, Bonomi M, Barducci A. 83.  2015. Accuracy of current all-atom force-fields in modeling protein disordered states. J. Chem. Theory Comput. 11:2–7 [Google Scholar]
  84. Wang W, Ye W, Jiang C, Luo R, Chen HF. 84.  2014. New force field on modeling intrinsically disordered proteins. Chem. Biol. Drug Des. 84:253–69 [Google Scholar]
  85. Ye W, Ji D, Wang W, Luo R, Chen HF. 85.  2015. Test and evaluation of ff99IDPs force field for intrinsically disordered proteins. J. Chem. Inf. Model. 55:1021–29 [Google Scholar]
  86. Brady GP, Sharp KA. 86.  1997. Entropy in protein folding and in protein–protein interactions. Curr. Opin. Struct. Biol. 7:215–21 [Google Scholar]
  87. Meirovitch H. 87.  2007. Recent developments in methodologies for calculating the entropy and free energy of biological systems by computer simulation. Curr. Opin. Struct. Biol. 17:181–86 [Google Scholar]
  88. Zhou HX, Gilson MK. 88.  2009. Theory of free energy and entropy in noncovalent binding. Chem. Rev. 109:4092–107 [Google Scholar]
  89. Polyansky AA, Zubac R, Zagrovic B. 89.  2012. Estimation of conformational entropy in protein-ligand interactions: a computational perspective. Computational Drug Discovery and Design R Baron 327–53 New York: Springer [Google Scholar]
  90. Diehl C, Engström O, Delaine T, Håkansson M, Genheden S. 90.  et al. 2010. Protein flexibility and conformational entropy in ligand design targeting the carbohydrate recognition domain of galectin-3. J. Am. Chem. Soc. 132:14577–89 [Google Scholar]
  91. Silver NW, King BM, Nalam MNL, Cao H, Ali A. 91.  et al. 2013. Efficient computation of small-molecule configurational binding entropy and free energy changes by ensemble enumeration. J. Chem. Theory Comput. 9:5098–115 [Google Scholar]
  92. N, Scheraga HA. 92.  1976. On the use of classical statistical mechanics in the treatment of polymer chain conformation. Macromolecules 9:535–42 [Google Scholar]
  93. Gilson MK, Given JA, Bush BL, McCammon JA. 93.  1997. The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys. J. 72:1047–69 [Google Scholar]
  94. Chong SH, Ham S. 94.  2016. New computational approach for external entropy in protein-protein binding. J. Chem. Theory Comput. 12:2509–16 [Google Scholar]
  95. Smith DMA, Straatsma TP, Squier TC. 95.  2012. Retention of conformational entropy upon calmodulin binding to target peptides is driven by transient salt bridges. Biophys. J. 103:1576–84 [Google Scholar]
  96. Chang CE, Chen W, Gilson MK. 96.  2005. Evaluating the accuracy of the quasiharmonic approximation. J. Chem. Theory Comput. 1:1017–28 [Google Scholar]
  97. Chong SH, Ham S. 97.  2015. Structural versus energetic approaches for protein conformational entropy. Chem. Phys. Lett. 627:90–95 [Google Scholar]
  98. Baron R, van Gunsteren WF, Hünenberger PH. 98.  2006. Estimating the configurational entropy from molecular dynamics simulations: anharmonicity and correlation corrections to the quasi-harmonic approximation. Trends Phys. Chem. 11:87–122 [Google Scholar]
  99. Baron R, Hünenberger PH, McCammon JA. 99.  2009. Absolute single-molecule entropies from quasi-harmonic analysis of microsecond molecular dynamics: correction terms and convergence properties. J. Chem. Theory Comput. 5:3150–60 [Google Scholar]
  100. Edholm O, Berendsen HJC. 100.  1984. Entropy estimation from simulations of non-diffusive systems. Mol. Phys. 51:1011–28 [Google Scholar]
  101. Hnizdo V, Darian E, Fedorowicz A, Demchuk E, Li S, Singh H. 101.  2007. Nearest-neighbor nonparametric method for estimating the configurational entropy of complex molecules. J. Comput. Chem. 28:655–68 [Google Scholar]
  102. Hnizdo V, Tan J, Killian BJ, Gilson MK. 102.  2008. Efficient calculation of configurational entropy from molecular simulations by combining the mutual-information expansion and nearest-neighbor methods. J. Comput. Chem. 29:1605–14 [Google Scholar]
  103. Hensen U, Lange OF, Grubmüller H. 103.  2010. Estimating absolute configurational entropies of macromolecules: the minimally coupled subspace approach. PLOS ONE 5:e9179 [Google Scholar]
  104. Matsuda H. 104.  2000. Physical nature of higher-order mutual information: intrinsic correlations and frustration. Phys. Rev. E 62:3096–102 [Google Scholar]
  105. Killian BJ, Yundenfreund Kravitz J, Gilson MK. 105.  2007. Extraction of configurational entropy from molecular simulations via an expansion approximation. J. Chem. Phys. 127:024107 [Google Scholar]
  106. King BM, Tidor B. 106.  2009. MIST: maximum information spanning trees for dimension reduction of biological data sets. Bioinformatics 25:1165–72 [Google Scholar]
  107. King BM, Silver NW, Tidor B. 107.  2012. Efficient calculation of molecular configurational entropies using an information theoretic approximation. J. Phys. Chem. B 116:2891–904 [Google Scholar]
  108. Li DW, Khanlarzadeh M, Wang J, Huo S, Brüschweiler R. 108.  2007. Evaluation of configurational entropy methods from peptide folding-unfolding simulation. J. Phys. Chem. B 111:13807–13 [Google Scholar]
  109. Li DW, Brüschweiler R. 109.  2009. Insilico relationship between configurational entropy and soft degrees of freedom in proteins and peptides. Phys. Rev. Lett. 102:118108 [Google Scholar]
  110. Li DW, Showalter SA, Brüschweiler R. 110.  2010. Entropy localization in proteins. J. Phys. Chem. B 114:16036–44 [Google Scholar]
  111. Harpole KW, Sharp KA. 111.  2011. Calculation of configurational entropy with a Boltzmann-quasiharmonic model: the origin of high-affinity protein-ligand binding. J. Phys. Chem. B 115:9461–72 [Google Scholar]
  112. Cukier RI. 112.  2015. Dihedral angle entropy measures for intrinsically disordered proteins. J. Phys. Chem. B 119:3621–34 [Google Scholar]
  113. Cover TM, Thomas JA. 113.  2006. Elements of Information Theory Hoboken, NJ: Wiley
  114. Baxa MC, Haddadian EJ, Jumper JM, Freed KF, Sosnick TR. 114.  2014. Loss of conformational entropy in protein folding calculated using realistic ensembles and its implications for NMR-based calculations. PNAS 111:15396–401 [Google Scholar]
  115. Piana S, Lindorff-Larsen K, Shaw DE. 115.  2013. Atomic-level description of ubiquitin folding. PNAS 110:5915–20 [Google Scholar]
  116. Fenley AT, Killian BJ, Hnizdo V, Fedorowicz A, Sharp DS, Gilson MK. 116.  2014. Correlation as a determinant of configurational entropy in supramolecular and protein systems. J. Phys. Chem. B 118:6447–55 [Google Scholar]
  117. Marlow MS, Dogan J, Frederick KK, Valentine KG, Wand AJ. 117.  2010. The role of conformational entropy in molecular recognition by calmodulin. Nat. Chem. Biol. 6:352–58 [Google Scholar]
  118. Kasinath V, Sharp KA, Wand AJ. 118.  2013. Microscopic insights into the NMR relaxation-based protein conformational entropy meter. J. Am. Chem. Soc. 135:15092–100 [Google Scholar]
  119. Hensen U, Gräter F, Henchman RH. 119.  2014. Macromolecular entropy can be accurately computed from force. J. Chem. Theory Comput. 10:4777–81 [Google Scholar]
  120. Klefas-Stennett M, Henchman RH. 120.  2008. Classical and quantum Gibbs free energies and phase behavior of water using simulation and cell theory. J. Phys. Chem. B 112:9769–76 [Google Scholar]
  121. Chong SH, Ham S. 121.  2011. Configurational entropy of protein: a combined approach based on molecular simulation and integral-equation theory of liquids. Chem. Phys. Lett. 504:225–29 [Google Scholar]
  122. Chong SH, Ham S. 122.  2014. Protein folding thermodynamics: a new computational approach. J. Phys. Chem. B 118:5017–25 [Google Scholar]
  123. Chong SH, Ham S. 123.  2015. Dissecting protein configurational entropy into conformational and vibrational contributions. J. Phys. Chem. B 119:12623–31 [Google Scholar]
  124. Lazaridis T, Karplus M. 124.  2002. Thermodynamics of protein folding: a microscopic view. Biophys. Chem. 100:367–95 [Google Scholar]
  125. Chong SH, Ham S. 125.  2013. Conformational entropy of intrinsically disordered protein. J. Phys. Chem. B 117:5503–9 [Google Scholar]
  126. Karplus M, Ichiye T, Pettitt BM. 126.  1987. Configurational entropy of native proteins. Biophys. J. 52:1083–85 [Google Scholar]
  127. Chang CEA, Chen W, Gilson MK. 127.  2007. Ligand configurational entropy and protein binding. PNAS 104:1534–39 [Google Scholar]
  128. Chang CE, Gilson MK. 128.  2004. Free energy, entropy, and induced fit in host-guest recognition: calculations with the second-generation mining minima algorithm. J. Am. Chem. Soc. 126:13156–64 [Google Scholar]
  129. Suárez E, Díaz N, Suárez D. 129.  2011. Entropy calculations of single molecules by combining the rigid-rotor and harmonic-oscillator approximations with conformational entropy estimations from molecular dynamics simulations. J. Chem. Theory Comput. 7:2638–53 [Google Scholar]
  130. Suárez D, Díaz N. 130.  2014. Sampling assessment for molecular simulations using conformational entropy calculations. J. Chem. Theory Comput. 10:4718–29 [Google Scholar]
  131. Hodrick RJ, Prescott EC. 131.  1997. Postwar U.S. business cycles: an empirical investigation. J. Money Credit Bank. 29:1–16 [Google Scholar]
  132. Killian BJ, Kravitz JY, Somani S, Dasgupta P, Pang Y-P, Gilson MK. 132.  2009. Configurational entropy in protein–peptide binding: computational study of Tsg101 ubiquitin E2 variant domain with an HIV-derived PTAP nonapeptide. J. Mol. Biol. 389:315–35 [Google Scholar]
  133. Thorpe IF, Brooks CL. 133.  2007. Molecular evolution of affinity and flexibility in the immune system. PNAS 104:8821–26 [Google Scholar]
  134. Chang CEA, McLaughlin WA, Baron R, Wang W, McCammon JA. 134.  2008. Entropic contributions and the influence of the hydrophobic environment in promiscuous protein–protein association. PNAS 105:7456–61 [Google Scholar]
  135. Sugase K, Dyson HJ, Wright PE. 135.  2007. Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447:1021–25 [Google Scholar]
/content/journals/10.1146/annurev-physchem-052516-050843
Loading
/content/journals/10.1146/annurev-physchem-052516-050843
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error