1932

Abstract

Atmospheric aerosols exert a significant but highly uncertain effect on the global climate, and roughly half of these particles originate as small clusters formed by collisions between atmospheric trace vapors. These particles typically consist of acids, bases, and water, stabilized by salt bridge formation and a network of strong hydrogen bonds. We review spectroscopic studies of this process, focusing on the clusters likely to be involved in the first steps of particle formation and the intermolecular interactions governing their stability. These studies typically focus on determining structure and stability and have shown that acid-base chemistry in the cluster may violate chemical intuition derived from solution-phase behavior and that hydration of these clusters is likely to be complex to describe. We also suggest fruitful areas for extension of these studies and alternative spectroscopic techniques that have not yet been applied to this problem.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-062322-041503
2023-04-24
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/physchem/74/1/annurev-physchem-062322-041503.html?itemId=/content/journals/10.1146/annurev-physchem-062322-041503&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Seinfeld J. 2003. Tropospheric chemistry and composition—aerosols/particles. Encyclopedia of Atmospheric Sciences JR Holton 2349–54. New York: Academic
    [Google Scholar]
  2. 2.
    IPCC 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. RK Pachauri, LA Meyer Geneva, Switz: IPCC
  3. 3.
    Marcolli C, Krieger UK. 2020. Relevance of particle morphology for atmospheric aerosol processing. Trends Chem. 2:11–3
    [Google Scholar]
  4. 4.
    Zhang R. 2010. Getting to the critical nucleus of aerosol formation. Science 328:59841366–67
    [Google Scholar]
  5. 5.
    Lee SH, Gordon H, Yu H, Lehtipalo K, Haley R et al. 2019. New particle formation in the atmosphere: from molecular clusters to global climate. J. Geophys. Res. Atmos. 124:137098–146
    [Google Scholar]
  6. 6.
    Yu F. 2006. Effect of ammonia on new particle formation: a kinetic H2SO4-H2O-NH3 nucleation model constrained by laboratory measurements. J. Geophys. Res. Atmos. 111:D1D01204
    [Google Scholar]
  7. 7.
    Gordon H, Kirkby J, Baltensperger U, Bianchi F, Breitenlechner M et al. 2017. Causes and importance of new particle formation in the present-day and preindustrial atmospheres. J. Geophys. Res. Atmos. 122:168739–60
    [Google Scholar]
  8. 8.
    Wang M, Kong W, Marten R, He XC, Chen D et al. 2020. Rapid growth of new atmospheric particles by nitric acid and ammonia condensation. Nature 581:7807184–89
    [Google Scholar]
  9. 9.
    Baccarini A, Karlsson L, Dommen J, Duplessis P, Vüllers J et al. 2020. Frequent new particle formation over the high Arctic pack ice by enhanced iodine emissions. Nat. Commun. 11:14924
    [Google Scholar]
  10. 10.
    Olenius T, Halonen R, Kurtén T, Henschel H, Kupiainen-Määttä O et al. 2017. New particle formation from sulfuric acid and amines: comparison of monomethylamine, dimethylamine, and trimethylamine. J. Geophys. Res. Atmos. 122:137103–18
    [Google Scholar]
  11. 11.
    Elm J, Passananti M, Kurtén T, Vehkamäki H. 2017. Diamines can initiate new particle formation in the atmosphere. J. Phys. Chem. A 121:326155–64
    [Google Scholar]
  12. 12.
    Dawson ML, Varner ME, Perraud V, Ezell MJ, Gerber RB, Finlayson-Pitts BJ. 2012. Simplified mechanism for new particle formation from methanesulfonic acid, amines, and water via experiments and ab initio calculations. PNAS 109:4618719–24
    [Google Scholar]
  13. 13.
    Kürten A, Li C, Bianchi F, Curtius J, Dias A et al. 2018. New particle formation in the sulfuric acid–dimethylamine–water system: reevaluation of CLOUD chamber measurements and comparison to an aerosol nucleation and growth model. Atmos. Chem. Phys. 18:845–63
    [Google Scholar]
  14. 14.
    Wagner R, Yan C, Lehtipalo K, Duplissy J, Nieminen T et al. 2017. The role of ions in new particle formation in the CLOUD chamber. Atmos. Chem. Phys. 17:2415181–97
    [Google Scholar]
  15. 15.
    Karthika S, Radhakrishnan TK, Kalaichelvi P. 2016. A review of classical and nonclassical nucleation theories. Cryst. Growth Des. 16:116663–81
    [Google Scholar]
  16. 16.
    Laaksonen A. 2000. Application of nucleation theories to atmospheric aerosol formation. AIP Conf. Proc. 534:711–23
    [Google Scholar]
  17. 17.
    McGrath MJ, Olenius T, Ortega IK, Loukonen V, Paasonen P et al. 2012. Atmospheric Cluster Dynamics Code: a flexible method for solution of the birth-death equations. Atmos. Chem. Phys. 12:52345–55
    [Google Scholar]
  18. 18.
    Elm J. 2019. An atmospheric cluster database consisting of sulfuric acid, bases, organics, and water. ACS Omega 4:10965–74
    [Google Scholar]
  19. 19.
    Almeida J, Schobesberger S, Kürten A, Ortega IK, Kupiainen-Määttä O et al. 2013. Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere. Nature 502:359–63
    [Google Scholar]
  20. 20.
    Kubečka J, Besel V, Kurtén T, Myllys N, Vehkamäki H. 2019. Configurational sampling of noncovalent (atmospheric) molecular clusters: sulfuric acid and guanidine. J. Phys. Chem. A 123:286022–33
    [Google Scholar]
  21. 21.
    Kurfman LA, Odbadrakh TT, Shields GC. 2021. Calculating reliable Gibbs free energies for formation of gas-phase clusters that are critical for atmospheric chemistry: (H2SO4)3. J. Phys. Chem. A 125:153169–76
    [Google Scholar]
  22. 22.
    Henschel H, Navarro JCA, Yli-Juuti T, Kupiainen-Määttä O, Olenius T et al. 2014. Hydration of atmospherically relevant molecular clusters: computational chemistry and classical thermodynamics. J. Phys. Chem. A 118:142599–611
    [Google Scholar]
  23. 23.
    Kulmala M. 2003. How particles nucleate and grow. Science 302:56471000–1
    [Google Scholar]
  24. 24.
    Kalkavouras P, Bougiatioti A, Kalivitis N, Stavroulas I, Tombrou M et al. 2019. Regional new particle formation as modulators of cloud condensation nuclei and cloud droplet number in the eastern Mediterranean. Atmos. Chem. Phys. 19:96185–203
    [Google Scholar]
  25. 25.
    Arnold F, Fabian R. 1980. First measurements of gas phase sulphuric acid in the stratosphere. Nature 283:574255–57
    [Google Scholar]
  26. 26.
    Wang S, Zordan CA, Johnston MV. 2006. Chemical characterization of individual, airborne sub-10-nm particles and molecules. Anal. Chem. 78:61750–54
    [Google Scholar]
  27. 27.
    Smith JN, Barsanti KC, Friedli HR, Ehn M, Kulmala M et al. 2010. Observations of aminium salts in atmospheric nanoparticles and possible climatic implications. PNAS 107:156634–39
    [Google Scholar]
  28. 28.
    Sipilä M, Sarnela N, Jokinen T, Henschel H, Junninen H et al. 2016. Molecular-scale evidence of aerosol particle formation via sequential addition of HIO3. Nature 537:7621532–34
    [Google Scholar]
  29. 29.
    Passananti M, Zapadinsky E, Zanca T, Kangasluoma J, Myllys N et al. 2019. How well can we predict cluster fragmentation inside a mass spectrometer?. Chem. Commun. 55:425946–49
    [Google Scholar]
  30. 30.
    Jen CN, McMurry PH, Hanson DR. 2014. Stabilization of sulfuric acid dimers by ammonia, methylamine, dimethylamine, and trimethylamine. J. Geophys. Res. Atmos. 119:7502–14
    [Google Scholar]
  31. 31.
    Kirkby J, Curtius J, Almeida J, Dunne E, Duplissy J et al. 2011. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476:7361429–33
    [Google Scholar]
  32. 32.
    Kürten A, Bianchi F, Almeida J, Kupiainen-Määttä O, Dunne EM et al. 2016. Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures. J. Geophys. Res. Atmos. 121:2012377–400
    [Google Scholar]
  33. 33.
    Waller SE, Yang Y, Castracane E, Kreinbihl JJ, Nickson KA, Johnson CJ. 2019. Electrospray ionization-based synthesis and validation of amine-sulfuric acid clusters of relevance to atmospheric new particle formation. J. Am. Soc. Mass Spectrom. 30:2267–77
    [Google Scholar]
  34. 34.
    Thomas JM, He S, Larriba-Andaluz C, DePalma JW, Johnston MV, Hogan CJ Jr. 2016. Ion mobility spectrometry-mass spectrometry examination of the structures, stabilities, and extents of hydration of dimethylamine–sulfuric acid clusters. Phys. Chem. Chem. Phys. 18:22962–72
    [Google Scholar]
  35. 35.
    Gerlich D. 1992. Inhomogeneous RF Fields: A Versatile Tool for the Study of Processes with Slow Ions Hoboken, NJ: Wiley
  36. 36.
    Froyd KD, Lovejoy ER. 2011. Bond energies and structures of ammonia–sulfuric acid positive cluster ions. J. Phys. Chem. A 116:245886–99
    [Google Scholar]
  37. 37.
    Maier-Borst M, Cameron DB, Rokni M, Parks JH. 1999. Electron diffraction of trapped cluster ions. Phys. Rev. A 59:5R3162–65
    [Google Scholar]
  38. 38.
    Ekeberg T, Svenda M, Abergel C, Maia FRNC, Seltzer V et al. 2015. Three-dimensional reconstruction of the giant mimivirus particle with an x-ray free-electron laser. Phys. Rev. Lett. 114:9098102
    [Google Scholar]
  39. 39.
    Polfer NC. 2011. Infrared multiple photon dissociation spectroscopy of trapped ions. Chem. Soc. Rev. 40:52211–21
    [Google Scholar]
  40. 40.
    Wolk AB, Leavitt CM, Garand E, Johnson MA. 2014. Cryogenic ion chemistry and spectroscopy. Acc. Chem. Res. 47:1202–10
    [Google Scholar]
  41. 41.
    Yuan Q, Cao W, Wang XB. 2020. Cryogenic and temperature-dependent photoelectron spectroscopy of metal complexes. Int. Rev. Phys. Chem. 39:183–108
    [Google Scholar]
  42. 42.
    Bene JED, Jordan MJT. 1999. Vibrational spectroscopy of the hydrogen bond: an ab initio quantum-chemical perspective. Int. Rev. Phys. Chem. 18:1119–62
    [Google Scholar]
  43. 43.
    Johnson CJ, Dzugan LC, Wolk AB, Leavitt CM, Fournier JA et al. 2014. Microhydration of contact ion pairs in M2+OH(H2O)n=1−5 (M = Mg, Ca) clusters: spectral manifestations of a mobile proton defect in the first hydration shell. J. Phys. Chem. A 118:357590–97
    [Google Scholar]
  44. 44.
    Mishra S, Nguyen HQ, Huang QR, Lin CK, Kuo JL, Patwari GN. 2020. Vibrational spectroscopic signatures of hydrogen bond induced NH stretch–bend Fermi-resonance in amines: the methylamine clusters and other N–H⋅⋅⋅N hydrogen-bonded complexes. J. Chem. Phys. 153:19194301
    [Google Scholar]
  45. 45.
    DePalma JW, Bzdek BR, Doren DJ, Johnston MV. 2012. Structure and energetics of nanometer size clusters of sulfuric acid with ammonia and dimethylamine. J. Phys. Chem. A 116:1030–40
    [Google Scholar]
  46. 46.
    Kupiainen O, Ortega I, Kurtén T, Vehkamäki H. 2012. Amine substitution into sulfuric acid–ammonia clusters. Atmos. Chem. Phys. 12:83591–99
    [Google Scholar]
  47. 47.
    Johnson CJ, Johnson MA. 2013. Vibrational spectra and fragmentation pathways of size-selected, D2-tagged ammonium/methylammonium bisulfate clusters. J. Phys. Chem. A 117:5013265–74
    [Google Scholar]
  48. 48.
    Kreinbihl JJ, Frederiks NC, Waller SE, Yang Y, Johnson CJ 2020. Establishing the structural motifs present in small ammonium and aminium bisulfate clusters of relevance to atmospheric new particle formation. J. Chem. Phys. 153:3034307
    [Google Scholar]
  49. 49.
    Yacovitch TI, Heine N, Brieger C, Wende T, Hock C et al. 2013. Vibrational spectroscopy of bisulfate/sulfuric acid/water clusters: structure, stability, and infrared multiple-photon dissociation intensities. J. Phys. Chem. A 117:327081–90
    [Google Scholar]
  50. 50.
    Yacovitch TI, Heine N, Brieger C, Wende T, Hock C et al. 2012. Vibrational spectroscopy of atmospherically relevant acid cluster anions: bisulfate versus nitrate core structures. J. Chem. Phys. 136:24241102
    [Google Scholar]
  51. 51.
    Hou GL, Wang XB, Valiev M. 2017. Formation of (HCOO)(H2SO4) anion clusters: violation of gas-phase acidity predictions. J. Am. Chem. Soc. 139:3311321–24
    [Google Scholar]
  52. 52.
    Hou GL, Valiev M, Wang XB. 2019. Sulfuric acid and aromatic carboxylate clusters H2SO4·ArCOO: structures, properties, and their relevance to the initial aerosol nucleation. Int. J. Mass Spectrom. 439:27–33
    [Google Scholar]
  53. 53.
    Hou GL, Lin W, Deng S, Zhang J, Zheng WJ et al. 2013. Negative ion photoelectron spectroscopy reveals thermodynamic advantage of organic acids in facilitating formation of bisulfate ion clusters: atmospheric implications. J. Phys. Chem. Lett. 4:5779–85
    [Google Scholar]
  54. 54.
    Hou GL, Valiev M, Wang XB. 2016. Deprotonated dicarboxylic acid homodimers: hydrogen bonds and atmospheric implications. J. Phys. Chem. A 120:152342–49
    [Google Scholar]
  55. 55.
    Waller SE, Yang Y, Castracane E, Racow EE, Kreinbihl JJ et al. 2018. The interplay between hydrogen bonding and Coulombic forces in determining the structure of sulfuric acid-amine clusters. J. Phys. Chem. Lett. 9:61216–22
    [Google Scholar]
  56. 56.
    Fatila EM, Twum EB, Sengupta A, Pink M, Karty JA et al. 2016. Anions stabilize each other inside macrocyclic hosts. Angew. Chem. Int. Ed. 55:4514057–62
    [Google Scholar]
  57. 57.
    Hou GL, Lin W, Wang XB 2018. Direct observation of hierarchic molecular interactions critical to biogenic aerosol formation. Commun. Chem. 1:37
    [Google Scholar]
  58. 58.
    Ehn M, Junninen H, Petäjä T, Kurtén T, Kerminen VM et al. 2010. Composition and temporal behavior of ambient ions in the boreal forest. Atmos. Chem. Phys. 10:178513–30
    [Google Scholar]
  59. 59.
    Schobesberger S, Junninen H, Bianchi F, Lönn G, Ehn M et al. 2013. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules. PNAS 110:4317223–28
    [Google Scholar]
  60. 60.
    Lehtipalo K, Yan C, Dada L, Bianchi F, Xiao M et al. 2018. Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors. Sci. Adv. 4:12eaau5363
    [Google Scholar]
  61. 61.
    Carl DR, Armentrout PB. 2013. Threshold collision-induced dissociation of hydrated magnesium: experimental and theoretical investigation of the binding energies for Mg2+(H2O)x complexes (x = 2–10). Chem. Phys. Chem. 14:4681–97
    [Google Scholar]
  62. 62.
    Yeh L, Okumura M, Myers J, Price J, Lee Y 1989. Vibrational spectroscopy of the hydrated hydronium cluster ions H3O+(H2O)n (n = 1, 2, 3). J. Chem. Phys. 91:127319–30
    [Google Scholar]
  63. 63.
    Wang YS, Chang HC, Jiang JC, Lin SH, Lee YT, Chang HC. 1998. Structures and isomeric transitions of (H2O)3–6: from single to double rings. J. Am. Chem. Soc. 120:348777–88
    [Google Scholar]
  64. 64.
    Serxner D, Dessent CE, Johnson MA. 1996. Precursor of the charge-transfer-to-solvent (CTTS) band in I(H2O)n clusters. J. Chem. Phys. 105:167231–34
    [Google Scholar]
  65. 65.
    Goebbert DJ, Garand E, Wende T, Bergmann R, Meijer G et al. 2009. Infrared spectroscopy of the microhydrated nitrate ions (H2O)1–6. J. Phys. Chem. A 113:267584–92
    [Google Scholar]
  66. 66.
    Heine N, Kratz EG, Bergmann R, Schofield DP, Asmis KR et al. 2014. Vibrational spectroscopy of the water–nitrate complex in the O–H stretching region. J. Phys. Chem. A 118:378188–97
    [Google Scholar]
  67. 67.
    Wang XB, Yang X, Wang LS, Nicholas JB. 2002. Photodetachment and theoretical study of free and water-solvated nitrate anions, (H2O)n (n = 0–6). J. Chem. Phys. 116:2561–70
    [Google Scholar]
  68. 68.
    Wang XB, Nicholas JB, Wang LS. 2000. Electronic instability of isolated and its solvation stabilization. J. Chem. Phys. 113:2410837–40
    [Google Scholar]
  69. 69.
    Zhou J, Santambrogio G, Brümmer M, Moore DT, Wöste L et al. 2006. Infrared spectroscopy of hydrated sulfate dianions. J. Chem. Phys. 125:11111102
    [Google Scholar]
  70. 70.
    Wang XB, Sergeeva AP, Yang J, Xing XP, Boldyrev AI, Wang LS. 2009. Photoelectron spectroscopy of cold hydrated sulfate clusters, (H2O)n (n = 4–7): temperature-dependent isomer populations. J. Phys. Chem. A 113:195567–76
    [Google Scholar]
  71. 71.
    Yacovitch TI, Wende T, Jiang L, Heine N, Meijer G et al. 2011. Infrared spectroscopy of hydrated bisulfate anion clusters: HSO4(H2O)1–16. J. Phys. Chem. Lett. 2:172135–40
    [Google Scholar]
  72. 72.
    Hou GL, Zhang J, Valiev M, Wang XB. 2017. Structures and energetics of hydrated deprotonated cis-pinonic acid anion clusters and their atmospheric relevance. Phys. Chem. Chem. Phys. 19:1610676–84
    [Google Scholar]
  73. 73.
    Hou GL, Kong XT, Valiev M, Jiang L, Wang XB. 2016. Probing the early stages of solvation of cis-pinate dianions by water, acetonitrile, and methanol: a photoelectron spectroscopy and theoretical study. Phys. Chem. Chem. Phys. 18:53628–37
    [Google Scholar]
  74. 74.
    Wanko M, Wende T, Saralegui MM, Jiang L, Rubio A, Asmis KR. 2013. Solvent-mediated folding of dicarboxylate dianions: aliphatic chain length dependence and origin of the IR intensity quenching. Phys. Chem. Chem. Phys. 15:4720463–72
    [Google Scholar]
  75. 75.
    Heine N, Yacovitch TI, Schubert F, Brieger C, Neumark DM, Asmis KR. 2014. Infrared photodissociation spectroscopy of microhydrated nitrate–nitric acid clusters (HNO3)m (H2O)n. J. Phys. Chem. A 118:357613–22
    [Google Scholar]
  76. 76.
    McCaslin LM, Johnson MA, Gerber RB. 2019. Mechanisms and competition of halide substitution and hydrolysis in reactions of N2O5 with seawater. Sci. Adv. 5:6eaav6503
    [Google Scholar]
  77. 77.
    DePalma JW, Kelleher PJ, Johnson CJ, Fournier JA, Johnson MA. 2015. Vibrational signatures of solvent-mediated deformation of the ternary core ion in size-selected [MgSO4Mg(H2O)n=4–11]2+ clusters. J. Phys. Chem. A 119:308294–302
    [Google Scholar]
  78. 78.
    Jiang L, Wende T, Bergmann R, Meijer G, Asmis KR. 2010. Gas-phase vibrational spectroscopy of microhydrated magnesium nitrate ions [MgNO3(H2O)1–4]+. J. Am. Chem. Soc. 132:217398–404
    [Google Scholar]
  79. 79.
    Wende T, Heine N, Yacovitch TI, Asmis KR, Neumark DM, Jiang L. 2016. Probing the microsolvation of a quaternary ion complex: gas phase vibrational spectroscopy of ()2(H2O)n=0–6,8.. Phys. Chem. Chem. Phys. 18:1267–77
    [Google Scholar]
  80. 80.
    Kreinbihl JJ, Frederiks NC, Johnson CJ. 2021. Hydration motifs of ammonium bisulfate clusters show complex temperature dependence. J. Chem. Phys. 154:1014304
    [Google Scholar]
  81. 81.
    Yang Y, Johnson CJ. 2019. Hydration motifs of ammonium bisulfate clusters of relevance to atmospheric new particle formation. Faraday Discuss. 217:47–66
    [Google Scholar]
  82. 82.
    Thomas JM, He S, Larriba-Andaluz C, DePalma JW, Johnston MV, Hogan CJ Jr. 2016. Ion mobility spectrometry-mass spectrometry examination of the structures, stabilities, and extents of hydration of dimethylamine–sulfuric acid clusters. Phys. Chem. Chem. Phys. 18:22962–72
    [Google Scholar]
  83. 83.
    Yang Y, Waller SE, Kreinbihl JJ, Johnson CJ. 2018. Direct link between structure and hydration in ammonium and aminium bisulfate clusters implicated in atmospheric new particle formation. J. Phys. Chem. Lett. 9:185647–52
    [Google Scholar]
  84. 84.
    Tsona NT, Henschel H, Bork N, Loukonen V, Vehkamäki H. 2015. Structures, hydration, and electrical mobilities of bisulfate ion–sulfuric acid–ammonia/dimethylamine clusters: a computational study. J. Phys. Chem. A 119:9670–79
    [Google Scholar]
  85. 85.
    Rozenberg M, Loewenschuss A. 2009. Matrix isolation infrared spectrum of the sulfuric acid–monohydrate complex: new assignments and resolution of the “missing H-bonded (OH) band” issue. J. Phys. Chem. A 113:174963–71
    [Google Scholar]
  86. 86.
    Rozenberg M, Loewenschuss A, Nielsen CJ. 2011. Complexes of molecular and ionic character in the same matrix layer: infrared studies of the sulfuric acid/ammonia system. J. Phys. Chem. A 115:235759–66
    [Google Scholar]
  87. 87.
    Rozenberg M, Loewenschuss A, Nielsen CJ. 2016. H-bonding of sulfuric acid with its decomposition products: an infrared matrix isolation and computational study of the H2SO4·H2O·SO3 complex. J. Phys. Chem. A 120:203450–55
    [Google Scholar]
  88. 88.
    Rozenberg M, Loewenschuss A, Nielsen CJ. 2014. Trimethylamine/sulfuric acid/water clusters: a matrix isolation infrared study. J. Phys. Chem. A 118:61004–11
    [Google Scholar]
  89. 89.
    Rozenberg M, Loewenschuss A, Nielsen CJ. 2015. H-bonding of formic acid with its decomposition products: a matrix isolation and computational study of the HCOOH/CO and HCOOH/CO2 complexes. J. Phys. Chem. A 119:318497–502
    [Google Scholar]
  90. 90.
    Haupa K, Bil A, Barnes A, Mielke Z. 2015. Isomers of the acetic acid–water complex trapped in an argon matrix. J. Phys. Chem. A 119:112522–31
    [Google Scholar]
  91. 91.
    Cziczo DJ, Abbatt JPD. 2000. Infrared observations of the response of NaCl, MgCl2, NH4HSO4, and NH4NO3 aerosols to changes in relative humidity from 298 to 238 K. J. Phys. Chem. A 104:102038–47
    [Google Scholar]
  92. 92.
    Gao X, Zhang Y, Liu Y. 2018. Temperature-dependent hygroscopic behaviors of atmospherically relevant water-soluble carboxylic acid salts studied by ATR-FTIR spectroscopy. Atmos. Environ. 191:312–19
    [Google Scholar]
  93. 93.
    Kelleher PJ, Menges FS, DePalma JW, Denton JK, Johnson MA et al. 2017. Trapping and structural characterization of the XNO2· (X = Cl, Br, I) exit channel complexes in the water-mediated X + N2O5 reactions with cryogenic vibrational spectroscopy. J. Phys. Chem. Lett. 8:194710–15
    [Google Scholar]
  94. 94.
    Lee AK, Ling T, Chan CK 2008. Understanding hygroscopic growth and phase transformation of aerosols using single particle Raman spectroscopy in an electrodynamic balance. Faraday Discuss. 137:245–63
    [Google Scholar]
  95. 95.
    Birdsall AW, Krieger UK, Keutsch FN. 2018. Electrodynamic balance–mass spectrometry of single particles as a new platform for atmospheric chemistry research. Atmos. Meas. Tech. 11:133–47
    [Google Scholar]
  96. 96.
    Esser TK, Hoffmann B, Anderson SL, Asmis KR. 2019. A cryogenic single nanoparticle action spectrometer. Rev. Sci. Instrum. 90:12125110
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-062322-041503
Loading
/content/journals/10.1146/annurev-physchem-062322-041503
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error