1932

Abstract

The magneto-optical signatures of colloidal noble metal nanostructures, spanning both discrete nanoclusters (<2 nm) and plasmonic nanoparticles (>2 nm), exhibit rich structure-property correlations, impacting applications including photonic integrated circuits, light modulation, applied spectroscopy, and more. For nanoclusters, electron doping and single-atom substitution modify both the intensity of the magneto-optical response and the degree of transient spin polarization. Nanoparticle size and morphology also modulate the magnitude and polarity of plasmon-mediated magneto-optical signals. This intimate interplay between nanostructure and magneto-optical properties becomes especially apparent in magnetic circular dichroism (MCD) and magnetic circular photoluminescence (MCPL) spectroscopic data. Whereas MCD spectroscopy informs on a metal nanostructure's steady-state extinction properties, its MCPL counterpart is sensitive to electronic spin and orbital angular momenta of transiently excited states. This review describes the size- and structure-dependent magneto-optical properties of nanoscale metals, emphasizing the increasingly important role of MCPL in understanding transient spin properties and dynamics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-062322-043108
2023-04-24
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/physchem/74/1/annurev-physchem-062322-043108.html?itemId=/content/journals/10.1146/annurev-physchem-062322-043108&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Yao H. 2012. On the electronic structures of Au25(SR)18 clusters studied by magnetic circular dichroism spectroscopy. J. Phys. Chem. Lett. 3:121701–6
    [Google Scholar]
  2. 2.
    Jaw HRC, Savas MM, Rogers RD, Mason WR. 1989. Crystal structures and solution electronic absorption and MCD spectra for perchlorate and halide salts of binuclear gold(I) complexes containing bridging Me2PCH2PMe2(dmpm) or Me2PCH2CH2PMe2(dmpe) ligands. Inorg. Chem. 28:61028–37
    [Google Scholar]
  3. 3.
    Herbert PJ, Mitra U, Knappenberger KL 2017. Variable-temperature variable-field magnetic circular photoluminescence (VTVH-MCPL) spectroscopy for electronic-structure determination in nanoscale chemical systems. Opt. Lett. 42:234833–36
    [Google Scholar]
  4. 4.
    Green TD, Yi C, Zeng C, Jin R, McGill S, Knappenberger KL Jr. 2014. Temperature-dependent photoluminescence of structurally-precise quantum-confined Au25(SC8H9)18 and Au38(SC12H25)24 metal nanoparticles. J. Phys. Chem. A 118:4510611–21
    [Google Scholar]
  5. 5.
    Green TD, Herbert PJ, Yi C, Zeng C, McGill S et al. 2016. Characterization of emissive states for structurally precise Au25(SC8H9)180 monolayer-protected gold nanoclusters using magnetophotoluminescence spectroscopy. J. Phys. Chem. C 120:3117784–90
    [Google Scholar]
  6. 6.
    Jaw HRC, Mason WR. 1991. Magnetic circular dichroism spectra for the octakis(triphenylphosphino)-nonagold(3+) ion. Inorg. Chem. 30:2275–78
    [Google Scholar]
  7. 7.
    Jiang DE, Kühn M, Tang Q, Weigend F. 2014. Superatomic orbitals under spin-orbit coupling. J. Phys. Chem. Lett. 5:193286–89
    [Google Scholar]
  8. 8.
    Mishra S, Vallet V, Domcke W. 2006. Importance of spin-orbit coupling for the assignment of the photodetachment spectra of AuX2 (X = Cl, Br, and I). ChemPhysChem 7:3723–27
    [Google Scholar]
  9. 9.
    Herbert PJ, Tofanelli MA, Ackerson CJ, Knappenberger KL Jr. 2021. The influence of Pd-atom substitution on Au25(SC8H9)18 cluster photoluminescence. J. Phys. Chem. C 125:137267–75
    [Google Scholar]
  10. 10.
    Herbert PJ, Window P, Ackerson CJ, Knappenberger KL Jr. 2019. Low-temperature magnetism in nanoscale gold revealed through variable-temperature magnetic circular dichroism spectroscopy. J. Phys. Chem. Lett. 10:2189–93
    [Google Scholar]
  11. 11.
    Tsesses S, Cohen K, Ostrovsky E, Gjonaj B, Bartal G. 2019. Spin-orbit interaction of light in plasmonic lattices. Nano Lett. 19:64010–16
    [Google Scholar]
  12. 12.
    Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R 2008. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 130:185883–85
    [Google Scholar]
  13. 13.
    Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD. 2007. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 318:5849430–33
    [Google Scholar]
  14. 14.
    Walter M, Akola J, Lopez-Acevedo O, Jadzinsky PD, Calero G et al. 2008. A unified view of ligand-protected gold clusters as superatom complexes. PNAS 105:279157–62
    [Google Scholar]
  15. 15.
    Heaven MW, Dass A, White PS, Holt KM, Murray RW. 2008. Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J. Am. Chem. Soc. 130:123754–55
    [Google Scholar]
  16. 16.
    Williams LJ, Herbert PJ, Tofanelli MA, Ackerson CJ, Knappenberger KL Jr. 2019. Superatom spin-state dynamics of structurally precise metal monolayer-protected clusters (MPCs). J. Chem. Phys. 150:10101102
    [Google Scholar]
  17. 17.
    Zhu M, Aikens CM, Hendrich MP, Gupta R, Qian H et al. 2009. Reversible switching of magnetism in thiolate-protected Au25 superatoms. J. Am. Chem. Soc. 131:72490–92
    [Google Scholar]
  18. 18.
    Herbert PJ, Knappenberger KL. 2021. Spin-polarized photoluminescence in Au25(SC8H9)18 monolayer-protected clusters. Small 17:272004431
    [Google Scholar]
  19. 19.
    Agrachev M, Antonello S, Dainese T, Ruzzi M, Zoleo A et al. 2017. Magnetic ordering in gold nanoclusters. ACS Omega 2:62607–17
    [Google Scholar]
  20. 20.
    Mustalahti S, Myllyperkiö P, Malola S, Lahtinen T, Salorinne K et al. 2015. Molecule-like photodynamics of Au102(pMBA)44 nanocluster. ACS Nano 9:32328–35
    [Google Scholar]
  21. 21.
    Green TD, Knappenberger KL Jr. 2012. Relaxation dynamics of Au25L18 nanoclusters studied by femtosecond time-resolved near infrared transient absorption spectroscopy. Nanoscale 4:144111–18
    [Google Scholar]
  22. 22.
    Jin R, Zeng C, Zhou M, Chen Y. 2016. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem. Rev. 116:1810346–413
    [Google Scholar]
  23. 23.
    Compel WS, Wong OA, Chen X, Yi C, Geiss R et al. 2015. Dynamic diglyme-mediated self-assembly of gold nanoclusters. ACS Nano 9:1211690–98
    [Google Scholar]
  24. 24.
    Briat B, Djerassi C. 1968. Applications of magnetic circular dichroism and optical rotatory dispersion measurements. Nature 217:5132918–22
    [Google Scholar]
  25. 25.
    Foss JG, McCarville ME. 1965. Magnetic circular dichroism and magnetic optical rotatory dispersion. J. Am. Chem. Soc. 87:2228–30
    [Google Scholar]
  26. 26.
    Blumling DE, McGill S, Knappenberger KL Jr. 2013. The influence of applied magnetic fields on the optical properties of zero- and one-dimensional CdSe nanocrystals. Nanoscale 5:199049–56
    [Google Scholar]
  27. 27.
    Larrabee JA, Leung CH, Moore RL, Thamrong-nawasawat T, Wessler BSH 2004. Magnetic circular dichroism and cobalt(II) binding equilibrium studies of Escherichia coli methionyl aminopeptidase. J. Am. Chem. Soc. 126:3912316–24
    [Google Scholar]
  28. 28.
    King GW. 1965. Spectroscopy and Molecular Structure New York: Holt, Rinehart & Winston
    [Google Scholar]
  29. 29.
    Sato H, Yao H. 2019. Application of magnetic circular dichroism (MCD) to morphological quality evaluation of silver nanodecahedra. Chem. Phys. Lett. 732:136637
    [Google Scholar]
  30. 30.
    Mason WR. 2007. Magnetic Circular Dichroism Spectroscopy Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  31. 31.
    Piepho S, Schatz P. 1983. Group Theory in Spectroscopy with Applications to Magnetic Circular Dichroism Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  32. 32.
    Sutherland JC, Low H. 1976. Fluorescence-detected magnetic circular dichroism of fluorescent and nonfluorescent molecules. PNAS 73:2276–80
    [Google Scholar]
  33. 33.
    Archer PI, Santangelo SA, Gamelin DR. 2007. Direct observation of sp–d exchange interactions in colloidal Mn2+- and Co2+-doped CdSe quantum dots. Nano Lett. 7:41037–43
    [Google Scholar]
  34. 34.
    Neese F, Zaleski JM, Loeb Zaleski K, Solomon EI 2000. Electronic structure of activated bleomycin: oxygen intermediates in heme versus non-heme iron. J. Am. Chem. Soc. 122:4711703–24
    [Google Scholar]
  35. 35.
    Neese F, Solomon EI. 1999. MCD C-term signs, saturation behavior, and determination of band polarizations in randomly oriented systems with spin S ≥ 1/2. Applications to S = 1/2 and S = 5/2. Inorg. Chem. 38:81847–65
    [Google Scholar]
  36. 36.
    Gewirth AA, Solomon EI. 1988. Electronic structure of plastocyanin: excited state spectral features. J. Am. Chem. Soc. 110:123811–19
    [Google Scholar]
  37. 37.
    Kuno M, Nirmal M, Bawendi MG, Efros A, Rosen M. 1998. Magnetic circular dichroism study of CdSe quantum dots. J. Chem. Phys. 108:104242–47
    [Google Scholar]
  38. 38.
    Solomon EI, Pavel EG, Loeb KE, Campochiaro C. 1995. Magnetic circular dichroism spectroscopy as a probe of the geometric and electronic structure of non-heme ferrous enzymes. Coord. Chem. Rev. 144:369–460
    [Google Scholar]
  39. 39.
    Ando K, Yamada Y, Shakin VA. 1993. Magneto-optical study of quantum confinement in Cd(S,Se) quantum dots. Phys. Rev. B 47:2013462–65
    [Google Scholar]
  40. 40.
    Stephens PJ, McKenna CE, Smith BE, Nguyen HT, McKenna MC et al. 1979. Circular dichroism and magnetic circular dichroism of nitrogenase proteins. PNAS 76:62585–89
    [Google Scholar]
  41. 41.
    Stephens PJ. 1976. Magnetic circular dichroism. Adv. Chem. Phys. 35:197–266
    [Google Scholar]
  42. 42.
    Schatz PN, Mowery RL, Krausz ER. 1978. M.C.D./M.C.P.L. saturation theory with application to molecules in Dαk and its subgroups. Mol. Phys. 35:61537–57
    [Google Scholar]
  43. 43.
    Aikens CM. 2010. Geometric and electronic structure of Au25(SPhX)18 (X = H, F, Cl, Br, CH3, and OCH3). J. Phys. Chem. Lett. 1:172594–99
    [Google Scholar]
  44. 44.
    Jin R 2010. Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2:3343–62
    [Google Scholar]
  45. 45.
    Price RC, Whetten RL. 2005. All-aromatic, nanometer-scale, gold-cluster thiolate complexes. J. Am. Chem. Soc. 127:4013750–51
    [Google Scholar]
  46. 46.
    Aikens CM. 2011. Electronic structure of ligand-passivated gold and silver nanoclusters. J. Phys. Chem. Lett. 2:299–104
    [Google Scholar]
  47. 47.
    Wyrwas RB, Alvarez MM, Khoury JT, Price RC, Schaaff TG, Whetten RL. 2007. The colours of nanometric gold. Eur. Phys. J. D 43:1–391–95
    [Google Scholar]
  48. 48.
    Zheng J, Zhou C, Yu M, Liu J 2012. Different sized luminescent gold nanoparticles. Nanoscale 4:144073–83
    [Google Scholar]
  49. 49.
    Aikens CM. 2012. Modelling small gold and silver nanoparticles with electronic structure methods. Mol. Simul. 38:8–9607–14
    [Google Scholar]
  50. 50.
    Crespo P, Litrán R, Rojas TC, Multigner M, de la Fuente JM et al. 2004. Permanent magnetism, magnetic anisotropy, and hysteresis of thiol-capped gold nanoparticles. Phys. Rev. Lett. 93:887204
    [Google Scholar]
  51. 51.
    Negishi Y, Tsunoyama H, Suzuki M, Kawamura N, Matsushita MM et al. 2006. X-ray magnetic circular dichroism of size-selected, thiolated gold clusters. J. Am. Chem. Soc. 128:3712034–35
    [Google Scholar]
  52. 52.
    Yi C, Zheng H, Tvedte LM, Ackerson CJ, Knappenberger KL Jr. 2015. Nanometals: identifying the onset of metallic relaxation dynamics in monolayer-protected gold clusters using femtosecond spectroscopy. J. Phys. Chem. C 119:116307–13
    [Google Scholar]
  53. 53.
    Yi C, Tofanelli MA, Ackerson CJ, Knappenberger KL Jr. 2013. Optical properties and electronic energy relaxation of metallic Au144(SR)60 nanoclusters. J. Am. Chem. Soc. 135:4818222–28
    [Google Scholar]
  54. 54.
    Malola S, Lehtovaara L, Häkkinen H. 2014. TDDFT analysis of optical properties of thiol monolayer-protected gold and intermetallic silver-gold Au144(SR)60 and Au84Ag60(SR)60 clusters. J. Phys. Chem. C 118:3420002–8
    [Google Scholar]
  55. 55.
    Malola S, Kaappa S, Häkkinen H. 2019. Role of nanocrystal symmetry in the crossover region from molecular to metallic gold nanoparticles. J. Phys. Chem. C 123:3320655–63
    [Google Scholar]
  56. 56.
    Zaitoun MA, Mason WR, Lin CT. 2001. Magnetic circular dichroism spectra for colloidal gold nanoparticles in xerogels at 5.5 K. J. Phys. Chem. B 105:296780–84
    [Google Scholar]
  57. 57.
    Han B, Gao X, Shi L, Zheng Y, Hou K et al. 2017. Geometry-modulated magnetoplasmonic optical activity of Au nanorod-based nanostructures. Nano Lett. 17:106083–89
    [Google Scholar]
  58. 58.
    Melnikau D, Govyadinov AA, Sánchez-Iglesias A, Grzelczak M, Liz-Marzán LM, Rakovich YP. 2017. Strong magneto-optical response of nonmagnetic organic materials coupled to plasmonic nanostructures. Nano Lett. 17:31808–13
    [Google Scholar]
  59. 59.
    Han B, Sun C, Zhou Y, Gao X. 2022. Geometry-modulated magnetoplasmonic circular dichroism of gold nanobipyramids. J. Phys. Chem. C 126:73600–3605
    [Google Scholar]
  60. 60.
    Sepúlveda B, González-Diaz JB, Garcia-Martin A, Lechuga LM, Armelles G. 2010. Plasmon-induced magneto-optical activity in nanosized gold disks. Phys. Rev. Lett. 104:14147401
    [Google Scholar]
  61. 61.
    Shuford KL, Ratner MA, Schatz GC. 2005. Multipolar excitation in triangular nanoprisms. J. Chem. Phys. 123:11114713
    [Google Scholar]
  62. 62.
    Yao H, Shiratsu T. 2017. Multipolar surface magnetoplasmon resonances in triangular silver nanoprisms studied by MCD spectroscopy. J. Phys. Chem. C 121:1761–68
    [Google Scholar]
  63. 63.
    Sels A, Salassa G, Pollitt S, Guglieri C, Rupprechter G et al. 2017. Structural investigation of the ligand exchange reaction with rigid dithiol on doped (Pt, Pd) Au25 clusters. J. Phys. Chem. C 121:2010919–26
    [Google Scholar]
  64. 64.
    Varnholt B, Oulevey P, Luber S, Kumara C, Dass A, Bürgi T. 2014. Structural information on the Au-S interface of thiolate-protected gold clusters: a Raman spectroscopy study. J. Phys. Chem. C 118:189604–11
    [Google Scholar]
  65. 65.
    Aikens CM. 2018. Electronic and geometric structure, optical properties, and excited state behavior in atomically precise thiolate-stabilized noble metal nanoclusters. Acc. Chem. Res. 51:123065–73
    [Google Scholar]
  66. 66.
    Weerawardene KLDM, Pandeya P, Zhou M, Chen Y, Jin R, Aikens CM 2019. Luminescence and electron dynamics in atomically precise nanoclusters with eight superatomic electrons. J. Am. Chem. Soc. 141:4718715–26
    [Google Scholar]
  67. 67.
    Herbert PJ, Ackerson CJ, Knappenberger KL Jr. 2021. Size-scalable near-infrared photoluminescence in gold monolayer protected clusters. J. Phys. Chem. Lett. 12:317531–36
    [Google Scholar]
  68. 68.
    Bonačić-Koutecký V, Antoine R 2019. Enhanced two-photon absorption of ligated silver and gold nanoclusters: theoretical and experimental assessments. Nanoscale 11:2612436–48
    [Google Scholar]
  69. 69.
    Knoppe S, Verbiest T. 2017. Resonance enhancement of nonlinear optical scattering in monolayer-protected gold clusters. J. Am. Chem. Soc. 139:4214853–56
    [Google Scholar]
  70. 70.
    Kacprzak KA, Lehtovaara L, Akola J, Lopez-Acevedo O, Häkkinen H. 2009. A density functional investigation of thiolate-protected bimetal PdAu24(SR)18z clusters: doping the superatom complex. Phys. Chem. Chem. Phys. 11:337123–29
    [Google Scholar]
  71. 71.
    Yan J, Su H, Yang H, Malola S, Lin S et al. 2015. Total structure and electronic structure analysis of doped thiolated silver [Mag24(SR)18]2− (M = Pd, Pt) clusters. J. Am. Chem. Soc. 137:3711880–83
    [Google Scholar]
  72. 72.
    Alkan F, Pandeya P, Aikens CM. 2019. Understanding the effect of doping on energetics and electronic structure for Au25, Ag25, and Au38 clusters. J. Phys. Chem. C 123:149516–27
    [Google Scholar]
  73. 73.
    Teh H-H, Dou W, Subotnik JE. 2021. Antisymmetric Berry frictional force at equilibrium in the presence of spin-orbit coupling. Phys. Rev. B 104:20L201409
    [Google Scholar]
  74. 74.
    Willets KA, Van Duyne RP. 2007. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58:267–97
    [Google Scholar]
  75. 75.
    Chandra M, Dowgiallo A-M, Knappenberger KL Jr. 2012. Magnetic dipolar interactions in solid gold nanosphere dimers. J. Am. Chem. Soc. 134:104477–80
    [Google Scholar]
  76. 76.
    Biswas S, Liu X, Jarrett JW, Brown D, Pustovit V et al. 2015. Nonlinear chiro-optical amplification by plasmonic nanolens arrays formed via directed assembly of gold nanoparticles. Nano Lett. 15:31836–42
    [Google Scholar]
  77. 77.
    Liu X, Biswas S, Jarrett JW, Poutrina E, Urbas A et al. 2015. Deterministic construction of plasmonic heterostructures in well-organized arrays for nanophotonic materials. Adv. Mater. 27:457314–19
    [Google Scholar]
  78. 78.
    Li Z, Kang L, Lord RW, Park K, Gillman A et al. 2022. Plasmon-mediated chiroptical second harmonic generation from seemingly achiral gold nanorods. ACS Nanosci. Au 2:132–39
    [Google Scholar]
  79. 79.
    Ma W, Xu L, de Moura AF, Wu X, Kuang H et al. 2017. Chiral inorganic nanostructures. Chem. Rev. 117:128041–93
    [Google Scholar]
  80. 80.
    Hazra B, Dey J, Chandra M. 2018. Structure-specific chiroptical responses of hollow gold nanoprisms. Phys. Chem. Chem. Phys. 20:4327675–83
    [Google Scholar]
  81. 81.
    Smith KW, Link S, Chang W-S. 2017. Optical characterization of chiral plasmonic nanostructures. J. Photochem. Photobiol. C 32:40–57
    [Google Scholar]
  82. 82.
    Spaeth P, Adhikari S, Lahabi K, Baaske MD, Wang Y, Orrit M. 2022. Imaging the magnetization of single magnetite nanoparticle clusters via photothermal circular dichroism. Nano Lett. 22:93645–50
    [Google Scholar]
  83. 83.
    Yongbo S, Yingwei L, Meng Z, Xuan L, Hao L et al. 2022. Ultrabright Au@Cu14 nanoclusters: 71.3% phosphorescence quantum yield in non-degassed solution at room temperature. Sci. Adv. 7:2eabd2091
    [Google Scholar]
  84. 84.
    Siebers B, Biadala L, Yakovlev DR, Rodina AV, Aubert T et al. 2015. Exciton spin dynamics and photoluminescence polarization of CdSe/CdS dot-in-rod nanocrystals in high magnetic fields. Phys. Rev. B 91:15155304
    [Google Scholar]
  85. 85.
    Barman PK, Sarma PV, Shaijumon MM, Kini RN. 2019. High degree of circular polarization in WS2 spiral nanostructures induced by broken symmetry. Sci. Rep. 9:2784
    [Google Scholar]
  86. 86.
    Yousefalizadeh G, Stamplecoskie KG. 2018. A single model for the excited-state dynamics of Au18(SR)14 and Au25(SR)18 clusters. J. Phys. Chem. A 122:357014–22
    [Google Scholar]
  87. 87.
    Stoll T, Sgrò E, Jarrett JW, Réhault J, Oriana A et al. 2016. Superatom state-resolved dynamics of the Au25(SC8H9)18 cluster from two-dimensional electronic spectroscopy. J. Am. Chem. Soc. 138:61788–91
    [Google Scholar]
  88. 88.
    Yau SH, Varnavski O, Goodson T. 2013. An ultrafast look at Au nanoclusters. Acc. Chem. Res. 46:71506–16
    [Google Scholar]
  89. 89.
    Zhu Y, Guo J, Qiu X, Zhao S, Tang Z. 2021. Optical activity of chiral metal nanoclusters. Acc. Mater. Res. 2:121–35
    [Google Scholar]
  90. 90.
    Rao A, Chow PCY, Gélinas S, Schlenker CW, Li C-Z et al. 2013. The role of spin in the kinetic control of recombination in organic photovoltaics. Nature 500:7463435–39
    [Google Scholar]
  91. 91.
    Wiltschko R, Wiltschko W. 2019. Magnetoreception in birds. J. R. Soc. Interface 16:15820190295
    [Google Scholar]
  92. 92.
    Rosenberg RA, Abu Haija M, Ryan PJ 2008. Chiral-selective chemistry induced by spin-polarized secondary electrons from a magnetic substrate. Phys. Rev. Lett. 101:17178301
    [Google Scholar]
  93. 93.
    Naaman R, Paltiel Y, Waldeck DH. 2020. Chiral induced spin selectivity gives a new twist on spin-control in chemistry. Acc. Chem. Res. 53:112659–67
    [Google Scholar]
  94. 94.
    Koperski M, Molas MR, Arora A, Nogajewski K, Bartos M et al. 2018. Orbital, spin, and valley contributions to Zeeman splitting of excitonic resonances in MoSe2, WSe2, and WS2 monolayers. 2D Mater. 6:015001
    [Google Scholar]
  95. 95.
    Yang K, Tang C, Kuang T, Tang P, Shen Z et al. 1997. Magnetic circular dichroism of Photosystem II reaction center complex. Chin. Sci. Bull. 42:9784–87
    [Google Scholar]
  96. 96.
    Jena P, Sun Q, eds. 2021. Superatoms: Principles, Synthesis and Applications Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  97. 97.
    Zhao T, Herbert PJ, Zheng H, Knappenberger KL Jr. 2018. State-resolved metal nanoparticle dynamics viewed through the combined lenses of ultrafast and magneto-optical spectroscopies. Acc. Chem. Res. 51:61433–42
    [Google Scholar]
  98. 98.
    Pineider F, Campo G, Bonanni V, de Julián Fernández C, Mattei G et al. 2013. Circular magnetoplasmonic modes in gold nanoparticles. Nano Lett. 13:104785–89
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-062322-043108
Loading
/content/journals/10.1146/annurev-physchem-062322-043108
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error