1932

Abstract

Elementary events that determine photochemical outcomes and molecular functionalities happen on the femtosecond and subfemtosecond timescales. Among the most ubiquitous events are the nonadiabatic dynamics taking place at conical intersections. These facilitate ultrafast, nonradiative transitions between electronic states in molecules that can outcompete slower relaxation mechanisms such as fluorescence. The rise of ultrafast X-ray sources, which provide intense light pulses with ever-shorter durations and larger observation bandwidths, has fundamentally revolutionized our spectroscopic capabilities to detect conical intersections. Recent theoretical studies have demonstrated an entirely new signature emerging once a molecule traverses a conical intersection, giving detailed insights into the coupled nuclear and electronic motions that underlie, facilitate, and ultimately determine the ultrafast molecular dynamics. Following a summary of current sources and experiments, we survey these techniques and provide a unified overview of their capabilities. We discuss their potential to dramatically increase our understanding of ultrafast photochemistry.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-062322-051532
2023-04-24
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/physchem/74/1/annurev-physchem-062322-051532.html?itemId=/content/journals/10.1146/annurev-physchem-062322-051532&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Emma P, Akre R, Arthur J, Bionta R, Bostedt C et al. 2010. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photon. 4:9641–47
    [Google Scholar]
  2. 2.
    Allaria E, Appio R, Badano L, Barletta W, Bassanese S et al. 2012. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photon. 6:10699–704
    [Google Scholar]
  3. 3.
    Tono K, Togashi T, Inubushi Y, Sato T, Katayama T et al. 2013. Beamline, experimental stations and photon beam diagnostics for the hard X-ray free electron laser of SACLA. New J. Phys. 15:083035
    [Google Scholar]
  4. 4.
    Milne C, Schietinger T, Aiba M, Alarcon A, Alex J et al. 2017. SwissFEL: the Swiss X-ray Free Electron Laser. Appl. Sci. 7:7720
    [Google Scholar]
  5. 5.
    Abeghyan S, Bagha-Shanjani M, Chen G, Englisch U, Karabekyan S et al. 2019. First operation of the SASE1 undulator system of the European X-ray Free-Electron Laser. J. Synchrotron Radiat. 26:2302–10
    [Google Scholar]
  6. 6.
    Yang H, Kim G, Kang HS. 2018. First saturation of 14.5 keV free electron laser at PAL-XFEL. Nucl. Instrum. Methods A 911:51–54
    [Google Scholar]
  7. 7.
    Zhang B, Yu Y, Zhang Z, Zhang YY, Jiang S et al. 2020. Infrared spectroscopy of neutral water dimer based on a tunable vacuum ultraviolet free electron laser. J. Phys. Chem. Lett. 11:3851–55
    [Google Scholar]
  8. 8.
    Young L, Ueda K, Gühr M, Bucksbaum PH, Simon M et al. 2018. Roadmap of ultrafast X-ray atomic and molecular physics. J. Phys. B 51:032003
    [Google Scholar]
  9. 9.
    Duris J, Li S, Driver T, Champenois EG, MacArthur JP et al. 2020. Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser. Nat. Photon. 14:130–36
    [Google Scholar]
  10. 10.
    Emma P, Bane K, Cornacchia M, Huang Z, Schlarb H et al. 2004. Femtosecond and subfemtosecond X-ray pulses from a self-amplified spontaneous-emission-based free-electron laser. Phys. Rev. Lett. 92:074801
    [Google Scholar]
  11. 11.
    Saa Hernandez A, Prat E, Bettoni S, Beutner B, Reiche S 2016. Generation of large-bandwidth X-ray free-electron-laser pulses. Phys. Rev. Accel. Beams 19:090702
    [Google Scholar]
  12. 12.
    Prat E, Calvi M, Reiche S. 2016. Generation of ultra-large-bandwidth X-ray free-electron-laser pulses with a transverse-gradient undulator. J. Synchrotron Radiat. 23:4874–79
    [Google Scholar]
  13. 13.
    Inoue I, Osaka T, Hara T, Tanaka T, Inagaki T et al. 2019. Generation of narrow-band X-ray free-electron laser via reflection self-seeding. Nat. Photon. 13:5319–22
    [Google Scholar]
  14. 14.
    Amini K, Biegert J, Calegari F, Chacón A, Ciappina MF et al. 2019. Symphony on strong field approximation. Rep. Prog. Phys. 82:116001
    [Google Scholar]
  15. 15.
    Li J, Ren X, Yin Y, Zhao K, Chew A et al. 2017. 53-attosecond X-ray pulses reach the carbon K-edge. Nat. Commun. 8:186
    [Google Scholar]
  16. 16.
    Teichmann SM, Silva F, Cousin SL, Hemmer M, Biegert J. 2016. 0.5-keV soft X-ray attosecond continua. Nat. Commun. 7:11493
    [Google Scholar]
  17. 17.
    Cousin SL, Di Palo N, Buades B, Teichmann SM, Reduzzi M et al. 2017. Attosecond streaking in the water window: a new regime of attosecond pulse characterization. Phys. Rev. X 7:041030
    [Google Scholar]
  18. 18.
    Kleine C, Ekimova M, Goldsztejn G, Raabe S, Strüber C et al. 2019. Soft X-ray absorption spectroscopy of aqueous solutions using a table-top femtosecond soft X-ray source. J. Phys. Chem. Lett. 10:152–58
    [Google Scholar]
  19. 19.
    Worner HJ, Bertrand JB, Fabre B, Higuet J, Ruf H et al. 2011. Conical intersection dynamics in NO2 probed by homodyne high-harmonic spectroscopy. Science 334:6053208–12
    [Google Scholar]
  20. 20.
    Chergui M, Collet E. 2017. Photoinduced structural dynamics of molecular systems mapped by time-resolved X-ray methods. Chem. Rev. 117:1611025–65
    [Google Scholar]
  21. 21.
    Wolf TJA, Myhre RH, Cryan JP, Coriani S, Squibb RJ et al. 2017. Probing ultrafast ππ*/ππ* internal conversion in organic chromophores via K-edge resonant absorption. Nat. Commun. 8:29
    [Google Scholar]
  22. 22.
    Attar AR, Bhattacherjee A, Pemmaraju CD, Schnorr K, Closser KD et al. 2017. Femtosecond X-ray spectroscopy of an electrocyclic ring-opening reaction. Science 356:633354–59
    [Google Scholar]
  23. 23.
    Pathak S, Ibele LM, Boll R, Callegari C, Demidovich A et al. 2020. Tracking the ultraviolet-induced photochemistry of thiophenone during and after ultrafast ring opening. Nat. Chem. 12:9795–800
    [Google Scholar]
  24. 24.
    Rebholz M, Ding T, Despré V, Aufleger L, Hartmann M et al. 2021. All-XUV pump-probe transient absorption spectroscopy of the structural molecular dynamics of di-iodomethane. Phys. Rev. X 11:031001
    [Google Scholar]
  25. 25.
    Mayer D, Lever F, Picconi D, Metje J, Alisauskas S et al. 2022. Following excited-state chemical shifts in molecular ultrafast X-ray photoelectron spectroscopy. Nat. Commun. 13:198
    [Google Scholar]
  26. 26.
    Minitti MP, Budarz JM, Kirrander A, Robinson JS, Ratner D et al. 2015. Imaging molecular motion: femtosecond X-ray scattering of an electrocyclic chemical reaction. Phys. Rev. Lett. 114:255501
    [Google Scholar]
  27. 27.
    Stankus B, Yong H, Zotev N, Ruddock JM, Bellshaw D et al. 2019. Ultrafast X-ray scattering reveals vibrational coherence following Rydberg excitation. Nat. Chem. 11:8716–21
    [Google Scholar]
  28. 28.
    Kim JG, Nozawa S, Kim H, Choi EH, Sato T et al. 2020. Mapping the emergence of molecular vibrations mediating bond formation. Nature 582:7813520–24
    [Google Scholar]
  29. 29.
    Yong H, Zotev N, Ruddock JM, Stankus B, Simmermacher M et al. 2020. Observation of the molecular response to light upon photoexcitation. Nat. Commun. 11:2157
    [Google Scholar]
  30. 30.
    Biasin E, Fox ZW, Andersen A, Ledbetter K, Kjær KS et al. 2021. Direct observation of coherent femtosecond solvent reorganization coupled to intramolecular electron transfer. Nat. Chem. 13:4343–49
    [Google Scholar]
  31. 31.
    Jahnke T, Guillemin R, Inhester L, Son SK, Kastirke G et al. 2021. Inner-shell-ionization-induced femtosecond structural dynamics of water molecules imaged at an X-ray free-electron laser. Phys. Rev. X 11:041044
    [Google Scholar]
  32. 32.
    Boll R, Schäfer JM, Richard B, Fehre K, Kastirke G et al. 2022. X-ray multiphoton-induced Coulomb explosion images complex single molecules. Nat. Phys. 18:4423–28
    [Google Scholar]
  33. 33.
    Pandey S, Bean R, Sato T, Poudyal I, Bielecki J et al. 2020. Time-resolved serial femtosecond crystallography at the European XFEL. Nat. Methods 17:173–78
    [Google Scholar]
  34. 34.
    Brändén G, Neutze R. 2021. Advances and challenges in time-resolved macromolecular crystallography. Science 373:6558aba0954
    [Google Scholar]
  35. 35.
    Suzuki T. 2021. Spiers Memorial Lecture: introduction to ultrafast spectroscopy and imaging of photochemical reactions. Faraday Discuss. 228:11–38
    [Google Scholar]
  36. 36.
    Ivanov M. 2021. The age of molecular movies. Faraday Discuss. 228:622–29
    [Google Scholar]
  37. 37.
    Calegari F, Ayuso D, Trabattoni A, Belshaw L, De Camillis S et al. 2014. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science 346:6207336–39
    [Google Scholar]
  38. 38.
    Kraus PM, Mignolet B, Baykusheva D, Rupenyan A, Horný L et al. 2015. Measurement and laser control of attosecond charge migration in ionized iodoacetylene. Science 350:6262790–95
    [Google Scholar]
  39. 39.
    Li S, Driver T, Rosenberger P, Champenois EG, Duris J et al. 2022. Attosecond coherent electron motion in Auger–Meitner decay. Science 375:6578285–90
    [Google Scholar]
  40. 40.
    Domcke W, Yarkony DR, Köppel H. 2011. Conical Intersections Singapore: World Sci.
  41. 41.
    Farag MH, Jansen TLC, Knoester J. 2016. Probing the interstate coupling near a conical intersection by optical spectroscopy. J. Phys. Chem. Lett. 7:173328–34
    [Google Scholar]
  42. 42.
    Polli D, Altoè P, Weingart O, Spillane KM, Manzoni C et al. 2010. Conical intersection dynamics of the primary photoisomerization event in vision. Nature 467:7314440–43
    [Google Scholar]
  43. 43.
    Lim JS, Kim SK. 2010. Experimental probing of conical intersection dynamics in the photodissociation of thioanisole. Nat. Chem. 2:8627–32
    [Google Scholar]
  44. 44.
    Hartmann N, Hartmann G, Heider R, Wagner MS, Ilchen M et al. 2018. Attosecond time-energy structure of X-ray free-electron laser pulses. Nat. Photon. 12:4215–20
    [Google Scholar]
  45. 45.
    Prat E, Reiche S. 2015. Simple method to generate terawatt-attosecond X-ray free-electron-laser pulses. Phys. Rev. Lett. 114:244801
    [Google Scholar]
  46. 46.
    Kobayashi Y, Chang KF, Zeng T, Neumark DM, Leone SR. 2019. Direct mapping of curve-crossing dynamics in IBr by attosecond transient absorption spectroscopy. Science 364:644879–83
    [Google Scholar]
  47. 47.
    Zinchenko KS, Ardana-Lamas F, Seidu I, Neville SP, van der Veen J et al. 2021. Sub-7-femtosecond conical-intersection dynamics probed at the carbon K-edge. Science 371:6528489–94
    [Google Scholar]
  48. 48.
    Kowalewski M, Bennett K, Dorfman KE, Mukamel S. 2015. Catching conical intersections in the act: monitoring transient electronic coherences by attosecond stimulated X-ray Raman signals. Phys. Rev. Lett. 115:193003
    [Google Scholar]
  49. 49.
    Keefer D, Schnappinger T, de Vivie-Riedle R, Mukamel S. 2020. Visualizing conical intersection passages via vibronic coherence maps generated by stimulated ultrafast X-ray Raman signals. PNAS 117:3924069–75
    [Google Scholar]
  50. 50.
    Keefer D, Freixas VM, Song H, Tretiak S, Fernandez-Alberti S, Mukamel S. 2021. Monitoring molecular vibronic coherences in a bichromophoric molecule by ultrafast X-ray spectroscopy. Chem. Sci. 12:145286–94
    [Google Scholar]
  51. 51.
    Cavaletto SM, Keefer D, Mukamel S. 2021. High temporal and spectral resolution of stimulated X-ray Raman signals with stochastic free-electron-laser pulses. Phys. Rev. X 11:011029
    [Google Scholar]
  52. 52.
    Bennett K, Kowalewski M, Rouxel JR, Mukamel S. 2018. Monitoring molecular nonadiabatic dynamics with femtosecond X-ray diffraction. PNAS 115:266538–47
    [Google Scholar]
  53. 53.
    Keefer D, Aleotti F, Rouxel JR, Segatta F, Gu B et al. 2021. Imaging conical intersection dynamics during azobenzene photoisomerization by ultrafast X-ray diffraction. PNAS 118:3e2022037118
    [Google Scholar]
  54. 54.
    Keefer D, Rouxel JR, Aleotti F, Segatta F, Garavelli M, Mukamel S. 2021. Diffractive imaging of conical intersections amplified by resonant infrared fields. J. Am. Chem. Soc. 143:3413806–15
    [Google Scholar]
  55. 55.
    Cavaletto SM, Keefer D, Rouxel JR, Aleotti F, Segatta F et al. 2021. Unveiling the spatial distribution of molecular coherences at conical intersections by covariance X-ray diffraction signals. PNAS 118:22e2105046118
    [Google Scholar]
  56. 56.
    Rouxel JR, Keefer D, Mukamel S. 2021. Signatures of electronic and nuclear coherences in ultrafast molecular X-ray and electron diffraction. Struct. Dyn. 8:014101
    [Google Scholar]
  57. 57.
    Rouxel JR, Keefer D, Aleotti F, Nenov A, Garavelli M, Mukamel S. 2022. Coupled electronic and nuclear motions during azobenzene photoisomerization monitored by ultrafast electron diffraction. J. Chem. Theory Comput. 18:2605–13
    [Google Scholar]
  58. 58.
    Bennett K, Kowalewski M, Mukamel S. 2016. Nonadiabatic dynamics may be probed through electronic coherence in time-resolved photoelectron spectroscopy. J. Chem. Theory Comput. 12:2740–52
    [Google Scholar]
  59. 59.
    Cavaletto SM, Keefer D, Mukamel S. 2022. Electronic coherences in nonadiabatic molecular photophysics revealed by time-resolved photoelectron spectroscopy. PNAS 119:11e2121383119
    [Google Scholar]
  60. 60.
    Hüll K, Morstein J, Trauner D. 2018. In vivo photopharmacology. Chem. Rev. 118:2110710–47
    [Google Scholar]
  61. 61.
    Goulet-Hanssens A, Eisenreich F, Hecht S. 2020. Enlightening materials with photoswitches. Adv. Mater. 32:201905966
    [Google Scholar]
  62. 62.
    Reiter S, Keefer D, de Vivie-Riedle R 2020. Exact quantum dynamics (wave packets) in reduced dimensionality. Quantum Chemistry and Dynamics of Excited States L González, R Lindh 355–81. New York: Wiley
    [Google Scholar]
  63. 63.
    Tully JC. 1990. Molecular dynamics with electronic transitions. J. Chem. Phys. 93:21061–71
    [Google Scholar]
  64. 64.
    Richter M, Marquetand P, González-Vázquez J, Sola I, González L. 2011. SHARC: ab initio molecular dynamics with surface hopping in the adiabatic representation including arbitrary couplings. J. Chem. Theory Comput. 7:51253–58
    [Google Scholar]
  65. 65.
    Ben-Nun M, Quenneville J, Martínez TJ. 2000. Ab initio multiple spawning: photochemistry from first principles quantum molecular dynamics. J. Phys. Chem. A 104:225161–75
    [Google Scholar]
  66. 66.
    Makhov DV, Glover WJ, Martínez TJ, Shalashilin DV. 2014. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics. J. Chem. Phys. 141:054110
    [Google Scholar]
  67. 67.
    Meyer HD, Manthe U, Cederbaum L. 1990. The multi-configurational time-dependent Hartree approach. Chem. Phys. Lett. 165:173–78
    [Google Scholar]
  68. 68.
    Kowalewski M, Fingerhut BP, Dorfman KE, Bennett K, Mukamel S. 2017. Simulating coherent multidimensional spectroscopy of nonadiabatic molecular processes: from the infrared to the X-ray regime. Chem. Rev. 117:1912165–226
    [Google Scholar]
  69. 69.
    Restaino L, Jadoun D, Kowalewski M. 2022. Probing nonadiabatic dynamics with attosecond pulse trains and soft X-ray Raman spectroscopy. Struct. Dyn. 9:034101
    [Google Scholar]
  70. 70.
    Cho D, Rouxel JR, Mukamel S. 2020. Stimulated X-ray resonant Raman spectroscopy of conical intersections in thiophenol. J. Phys. Chem. Lett. 11:114292–97
    [Google Scholar]
  71. 71.
    Segatta F, Nenov A, Orlandi S, Arcioni A, Mukamel S, Garavelli M. 2020. Exploring the capabilities of optical pump X-ray probe NEXAFS spectroscopy to track photo-induced dynamics mediated by conical intersections. Faraday Discuss. 221:245–64
    [Google Scholar]
  72. 72.
    Chang KF, Reduzzi M, Wang H, Poullain SM, Kobayashi Y et al. 2020. Revealing electronic state-switching at conical intersections in alkyl iodides by ultrafast XUV transient absorption spectroscopy. Nat. Commun. 11:4042
    [Google Scholar]
  73. 73.
    Trebino R, DeLong KW, Fittinghoff DN, Sweetser JN, Krumbügel MA et al. 1997. Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Rev. Sci. Instrum. 68:93277–95
    [Google Scholar]
  74. 74.
    Linden S, Giessen H, Kuhl J. 1998. XFROG—a new method for amplitude and phase characterization of weak ultrashort pulses. Phys. Status Solidi B 206:1119–24
    [Google Scholar]
  75. 75.
    Nam Y, Keefer D, Nenov A, Conti I, Aleotti F et al. 2021. Conical intersection passages of molecules probed by X-ray diffraction and stimulated Raman spectroscopy. J. Phys. Chem. Lett. 12:5112300–9
    [Google Scholar]
  76. 76.
    Gu B, Keefer D, Aleotti F, Nenov A, Garavelli M, Mukamel S. 2021. Photoisomerization transition state manipulation by entangled two-photon absorption. PNAS 118:47e2116868118
    [Google Scholar]
  77. 77.
    Freixas VM, Keefer D, Tretiak S, Fernandez-Alberti S, Mukamel S. 2022. Ultrafast coherent photoexcited dynamics in a trimeric dendrimer probed by X-ray stimulated-Raman signals. Chem. Sci. 13:6373–84
    [Google Scholar]
  78. 78.
    Wituschek A, Bruder L, Allaria E, Bangert U, Binz M et al. 2020. Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses. Nat. Commun. 11:883
    [Google Scholar]
  79. 79.
    Spence JCH. 2017. Outrunning damage: electrons versus X-rays—timescales and mechanisms. Struct. Dyn. 4:044027
    [Google Scholar]
  80. 80.
    Stefanou M, Saita K, Shalashilin DV, Kirrander A. 2017. Comparison of ultrafast electron and X-ray diffraction—a computational study. Chem. Phys. Lett. 683:300–5
    [Google Scholar]
  81. 81.
    Ma L, Yong H, Geiser JD, Moreno Carrascosa A, Goff N, Weber PM 2020. Ultrafast X-ray and electron scattering of free molecules: a comparative evaluation. Struct. Dyn. 7:034102
    [Google Scholar]
  82. 82.
    Thakkar AJ, Tripathi AN, Smith VH. 1984. Molecular X-ray- and electron-scattering intensities. Phys. Rev. A 29:31108–13
    [Google Scholar]
  83. 83.
    Warren BE. 1969. X-Ray Diffraction. Reading, MA: Addison-Wesley
    [Google Scholar]
  84. 84.
    Hofstadter R. 1956. Electron scattering and nuclear structure. Rev. Mod. Phys. 28:3214–54
    [Google Scholar]
  85. 85.
    Chapman HN, Fromme P, Barty A, White TA, Kirian RA et al. 2011. Femtosecond X-ray protein nanocrystallography. Nature 470:733273–77
    [Google Scholar]
  86. 86.
    Decking W, Abeghyan S, Abramian P, Abramsky A, Aguirre A et al. 2020. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator. Nat. Photon. 14:6391–97
    [Google Scholar]
  87. 87.
    Weathersby SP, Brown G, Centurion M, Chase TF, Coffee R et al. 2015. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory. Rev. Sci. Instrum. 86:073702
    [Google Scholar]
  88. 88.
    Qi F, Ma Z, Zhao L, Cheng Y, Jiang W et al. 2020. Breaking 50 femtosecond resolution barrier in MeV ultrafast electron diffraction with a double bend achromat compressor. Phys. Rev. Lett. 124:134803
    [Google Scholar]
  89. 89.
    Wolf TJA, Sanchez DM, Yang J, Parrish RM, Nunes JPF et al. 2019. The photochemical ring-opening of 1,3-cyclohexadiene imaged by ultrafast electron diffraction. Nat. Chem. 11:6504–9
    [Google Scholar]
  90. 90.
    Ruddock JM, Yong H, Stankus B, Du W, Goff N et al. 2019. A deep UV trigger for ground-state ring-opening dynamics of 1,3-cyclohexadiene. Sci. Adv. 5:9aax6625
    [Google Scholar]
  91. 91.
    Yang J, Zhu X, Wolf TJA, Li Z, Nunes JPF et al. 2018. Imaging CF3I conical intersection and photodissociation dynamics with ultrafast electron diffraction. Science 361:639764–67
    [Google Scholar]
  92. 92.
    Ruddock JM, Zotev N, Stankus B, Yong H, Bellshaw D et al. 2019. Simplicity beneath complexity: Counting molecular electrons reveals transients and kinetics of photodissociation reactions. Angew. Chem. Int. Ed. 58:196371–75
    [Google Scholar]
  93. 93.
    Hosseinizadeh A, Breckwoldt N, Fung R, Sepehr R, Schmidt M et al. 2021. Few-fs resolution of a photoactive protein traversing a conical intersection. Nature 599:7886697–701
    [Google Scholar]
  94. 94.
    Henriksen NE, Møller KB. 2008. On the theory of time-resolved X-ray diffraction. J. Phys. Chem. B 112:2558–67
    [Google Scholar]
  95. 95.
    Dixit G, Vendrell O, Santra R. 2012. Imaging electronic quantum motion with light. PNAS 109:2911636–40
    [Google Scholar]
  96. 96.
    Kowalewski M, Bennett K, Mukamel S. 2017. Monitoring nonadiabatic avoided crossing dynamics in molecules by ultrafast X-ray diffraction. Struct. Dyn. 4:054101
    [Google Scholar]
  97. 97.
    Simmermacher M, Moreno Carrascosa A, Henriksen NE, Møller KB, Kirrander A. 2019. Theory of ultrafast X-ray scattering by molecules in the gas phase. J. Chem. Phys. 151:174302
    [Google Scholar]
  98. 98.
    Rouxel JR, Keefer D, Aleotti F, Nenov A, Garavelli M, Mukamel S. 2022. Coupled electronic and nuclear motions during azobenzene photoisomerization monitored by ultrafast electron diffraction. J. Chem. Theory Comput. 18:2605–13
    [Google Scholar]
  99. 99.
    Yang J, Zhu X, Nunes JPF, Yu JK, Parrish RM et al. 2020. Simultaneous observation of nuclear and electronic dynamics by ultrafast electron diffraction. Science 368:6493885–89
    [Google Scholar]
  100. 100.
    Yong H, Keefer D, Mukamel S. 2022. Imaging purely nuclear quantum dynamics in molecules by combined X-ray and electron diffraction. J. Am. Chem. Soc. 144:177796–804
    [Google Scholar]
  101. 101.
    Carlson TA. 1975. Photoelectron spectroscopy. Annu. Rev. Phys. Chem. 26:211–34
    [Google Scholar]
  102. 102.
    Neumark DM. 2001. Time-resolved photoelectron spectroscopy of molecules and clusters. Annu. Rev. Phys. Chem. 52:255–77
    [Google Scholar]
  103. 103.
    Stolow A, Bragg AE, Neumark DM. 2004. Femtosecond time-resolved photoelectron spectroscopy. Chem. Rev. 104:41719–58
    [Google Scholar]
  104. 104.
    Wollenhaupt M, Engel V, Baumert T. 2005. Femtosecond laser photoelectron spectroscopy on atoms and small molecules: prototype studies in quantum control. Annu. Rev. Phys. Chem. 56:25–56
    [Google Scholar]
  105. 105.
    von Conta A, Tehlar A, Schletter A, Arasaki Y, Takatsuka K, Wörner HJ. 2018. Conical-intersection dynamics and ground-state chemistry probed by extreme-ultraviolet time-resolved photoelectron spectroscopy. Nat. Commun. 9:3162
    [Google Scholar]
  106. 106.
    Wolf TJA, Parrish RM, Myhre RH, Martínez TJ, Koch H, Gühr M. 2019. Observation of ultrafast intersystem crossing in thymine by extreme ultraviolet time-resolved photoelectron spectroscopy. J. Phys. Chem. A 123:326897–903
    [Google Scholar]
  107. 107.
    Brauße F, Goldsztejn G, Amini K, Boll R, Bari S et al. 2018. Time-resolved inner-shell photoelectron spectroscopy: from a bound molecule to an isolated atom. Phys. Rev. A 97:043429
    [Google Scholar]
  108. 108.
    Hudock HR, Levine BG, Thompson AL, Satzger H, Townsend D et al. 2007. Ab initio molecular dynamics and time-resolved photoelectron spectroscopy of electronically excited uracil and thymine. J. Phys. Chem. A 111:348500–8
    [Google Scholar]
  109. 109.
    Glover WJ, Mori T, Schuurman MS, Boguslavskiy AE, Schalk O et al. 2018. Excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene. II. Ab initio multiple spawning simulations. J. Chem. Phys. 148:164303
    [Google Scholar]
  110. 110.
    Chakraborty P, Liu Y, McClung S, Weinacht T, Matsika S. 2021. Time resolved photoelectron spectroscopy as a test of electronic structure and nonadiabatic dynamics. J. Phys. Chem. Lett. 12:215099–104
    [Google Scholar]
  111. 111.
    Makhija V, Veyrinas K, Boguslavskiy AE, Forbes R, Wilkinson I et al. 2020. Ultrafast molecular frame electronic coherences from lab frame scattering anisotropies. J. Phys. B 53:114001
    [Google Scholar]
  112. 112.
    Jadoun D, Kowalewski M. 2021. Time-resolved photoelectron spectroscopy of conical intersections with attosecond pulse trains. J. Phys. Chem. Lett. 12:338103–8
    [Google Scholar]
  113. 113.
    Lutman AA, MacArthur JP, Ilchen M, Lindahl AO, Buck J et al. 2016. Polarization control in an X-ray free-electron laser. Nat. Photon. 10:7468–72
    [Google Scholar]
  114. 114.
    Hernández-García C, Durfee CG, Hickstein DD, Popmintchev T, Meier A et al. 2016. Schemes for generation of isolated attosecond pulses of pure circular polarization. Phys. Rev. A 93:043855
    [Google Scholar]
  115. 115.
    Zhang Y, Rouxel JR, Autschbach J, Govind N, Mukamel S. 2017. X-ray circular dichroism signals: a unique probe of local molecular chirality. Chem. Sci. 8:95969–78
    [Google Scholar]
  116. 116.
    Mincigrucci R, Rouxel J, Rossi B, Principi E, Bottari C et al. 2020. Element- and enantiomer-selective visualization of ibuprofen dimer vibrations. arXiv:2010.04860 [cond-mat.soft]
  117. 117.
    Rouxel JR, Kowalewski M, Mukamel S. 2017. Photoinduced molecular chirality probed by ultrafast resonant X-ray spectroscopy. Struct. Dyn. 4:044006
    [Google Scholar]
  118. 118.
    Weingart O, Lan Z, Koslowski A, Thiel W. 2011. Chiral pathways and periodic decay in cis-azobenzene photodynamics. J. Phys. Chem. Lett. 2:131506–9
    [Google Scholar]
  119. 119.
    Ordonez AF, Smirnova O. 2018. Generalized perspective on chiral measurements without magnetic interactions. Phys. Rev. A 98:063428
    [Google Scholar]
  120. 120.
    Beaulieu S, Comby A, Fabre B, Descamps D, Ferré A et al. 2016. Probing ultrafast dynamics of chiral molecules using time-resolved photoelectron circular dichroism. Faraday Discuss. 194:325–48
    [Google Scholar]
  121. 121.
    Cireasa R, Boguslavskiy AE, Pons B, Wong MCH, Descamps D et al. 2015. Probing molecular chirality on a sub-femtosecond timescale. Nat. Phys. 11:8654–58
    [Google Scholar]
  122. 122.
    Ye L, Rouxel JR, Asban S, Rösner B, Mukamel S. 2019. Probing molecular chirality by orbital-angular-momentum-carrying X-ray pulses. J. Chem. Theory Comput. 15:74180–86
    [Google Scholar]
  123. 123.
    Forbes KA, Andrews DL. 2018. Optical orbital angular momentum: twisted light and chirality. Opt. Lett. 43:3435–38
    [Google Scholar]
  124. 124.
    Rouxel JR, Rosner B, Karpov D, Bacellar C, Mancini GF et al. 2022. Hard X-ray helical dichroism of disordered molecular media. Nat. Photon. 16:8570–74
    [Google Scholar]
  125. 125.
    Brullot W, Vanbel MK, Swusten T, Verbiest T. 2016. Resolving enantiomers using the optical angular momentum of twisted light. Sci. Adv. 2:3e1501349
    [Google Scholar]
  126. 126.
    Gauthier D, Ribič PR, De Ninno G, Allaria E, Cinquegrana P et al. 2015. Spectrotemporal shaping of seeded free-electron laser pulses. Phys. Rev. Lett. 115:114801
    [Google Scholar]
  127. 127.
    Prince KC, Allaria E, Callegari C, Cucini R, De Ninno G et al. 2016. Coherent control with a short-wavelength free-electron laser. Nat. Photon. 10:3176–79
    [Google Scholar]
  128. 128.
    Bonifacio R, Pellegrini C, Narducci L. 1984. Collective instabilities and high-gain regime in a free electron laser. Opt. Commun. 50:6373–78
    [Google Scholar]
  129. 129.
    Biggs JD, Zhang Y, Healion D, Mukamel S. 2013. Watching energy transfer in metalloporphyrin heterodimers using stimulated X-ray Raman spectroscopy. PNAS 110:3915597–601
    [Google Scholar]
  130. 130.
    Healion D, Zhang Y, Biggs JD, Govind N, Mukamel S. 2012. Entangled valence electron-hole dynamics revealed by stimulated attosecond X-ray Raman scattering. J. Phys. Chem. Lett. 3:172326–31
    [Google Scholar]
  131. 131.
    Zhang Y, Biggs JD, Govind N, Mukamel S. 2014. Monitoring long-range electron transfer pathways in proteins by stimulated attosecond broadband X-ray Raman spectroscopy. J. Phys. Chem. Lett. 5:213656–61
    [Google Scholar]
  132. 132.
    Amann J, Berg W, Blank V, Decker FJ, Ding Y et al. 2012. Demonstration of self-seeding in a hard-X-ray free-electron laser. Nat. Photon. 6:10693–98
    [Google Scholar]
  133. 133.
    Marinelli A, Ratner D, Lutman A, Turner J, Welch J et al. 2015. High-intensity double-pulse X-ray free-electron laser. Nat. Commun. 6:6369
    [Google Scholar]
  134. 134.
    Lutman AA, Guetg MW, Maxwell TJ, MacArthur JP, Ding Y et al. 2018. High-power femtosecond soft X rays from fresh-slice multistage free-electron lasers. Phys. Rev. Lett. 120:264801
    [Google Scholar]
  135. 135.
    Tollerud JO, Sparapassi G, Montanaro A, Asban S, Glerean F et al. 2019. Femtosecond covariance spectroscopy. PNAS 116:125383–86
    [Google Scholar]
  136. 136.
    Osipov VA, Asban S, Mukamel S. 2019. Time and frequency resolved transient-absorption and stimulated-Raman signals of stochastic light. J. Chem. Phys. 151:044113
    [Google Scholar]
  137. 137.
    Sparapassi G, Cavaletto SM, Tollerud J, Montanaro A, Glerean F et al. 2022. Transient measurement of phononic states with covariance-based stochastic spectroscopy. Light Sci. Appl. 11:144
    [Google Scholar]
  138. 138.
    Kimberg V, Rohringer N. 2016. Stochastic stimulated electronic X-ray Raman spectroscopy. Struct. Dyn. 3:034101
    [Google Scholar]
  139. 139.
    Gorobtsov OY, Mercurio G, Capotondi F, Skopintsev P, Lazarev S et al. 2018. Seeded X-ray free-electron laser generating radiation with laser statistical properties. Nat. Commun. 9:4498
    [Google Scholar]
  140. 140.
    Asban S, Cho D, Mukamel S. 2019. Frequency-, time-, and wavevector-resolved ultrafast incoherent diffraction of noisy X-ray pulses. J. Phys. Chem. Lett. 10:195805–14
    [Google Scholar]
  141. 141.
    Kayser Y, Milne C, Juranić P, Sala L, Czapla-Masztafiak J et al. 2019. Core-level nonlinear spectroscopy triggered by stochastic X-ray pulses. Nat. Commun. 10:4761
    [Google Scholar]
  142. 142.
    Driver T, Li S, Champenois EG, Duris J, Ratner D et al. 2020. Attosecond transient absorption spooktroscopy: a ghost imaging approach to ultrafast absorption spectroscopy. Phys. Chem. Chem. Phys. 22:52704–12
    [Google Scholar]
  143. 143.
    Rohringer N, Santra R. 2007. X-ray nonlinear optical processes using a self-amplified spontaneous emission free-electron laser. Phys. Rev. A 76:033416
    [Google Scholar]
  144. 144.
    Pfeifer T, Jiang Y, Düsterer S, Moshammer R, Ullrich J. 2010. Partial-coherence method to model experimental free-electron laser pulse statistics. Opt. Lett. 35:203441–43
    [Google Scholar]
  145. 145.
    Cavaletto SM, Buth C, Harman Z, Kanter EP, Southworth SH et al. 2012. Resonance fluorescence in ultrafast and intense X-ray free-electron-laser pulses. Phys. Rev. A 86:033402
    [Google Scholar]
  146. 146.
    Weninger C, Rohringer N. 2013. Stimulated resonant X-ray Raman scattering with incoherent radiation. Phys. Rev. A 88:053421
    [Google Scholar]
  147. 147.
    Kumar Giri S, Saalmann U, Rost JM. 2020. Purifying electron spectra from noisy pulses with machine learning using synthetic Hamilton matrices. Phys. Rev. Lett. 124:113201
    [Google Scholar]
  148. 148.
    Lyu C, Cavaletto SM, Keitel CH, Harman Z. 2020. Narrow-band hard-X-ray lasing with highly charged ions. Sci. Rep. 10:9439
    [Google Scholar]
  149. 149.
    Simmermacher M, Henriksen NE, Møller KB, Moreno Carrascosa A, Kirrander A 2019. Electronic coherence in ultrafast X-ray scattering from molecular wave packets. Phys. Rev. Lett. 122:073003
    [Google Scholar]
  150. 150.
    Bennett K, Biggs JD, Zhang Y, Dorfman KE, Mukamel S. 2014. Time-, frequency-, and wavevector-resolved X-ray diffraction from single molecules. J. Chem. Phys. 140:204311
    [Google Scholar]
  151. 151.
    Keefer D, Mukamel S. 2021. Selective enhancement of spectroscopic features by quantum optimal control. Phys. Rev. Lett. 126:163202
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-062322-051532
Loading
/content/journals/10.1146/annurev-physchem-062322-051532
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error