1932

Abstract

Ground-state Kohn-Sham density functional theory provides, in principle, the exact ground-state energy and electronic spin densities of real interacting electrons in a static external potential. In practice, the exact density functional for the exchange-correlation (xc) energy must be approximated in a computationally efficient way. About 20 mathematical properties of the exact xc functional are known. In this work, we review and discuss these known constraints on the xc energy and hole. By analyzing a sequence of increasingly sophisticated density functional approximations (DFAs), we argue that () the satisfaction of more exact constraints and appropriate norms makes a functional more predictive over the immense space of many-electron systems and () fitting to bonded systems yields an interpolative DFA that may not extrapolate well to systems unlike those in the fitting set. We discuss both how the class of well-described systems has grown along with constraint satisfaction and the possibilities for future functional development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-062422-013259
2023-04-24
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/physchem/74/1/annurev-physchem-062422-013259.html?itemId=/content/journals/10.1146/annurev-physchem-062422-013259&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Szabo A, Ostlund NS. 1982. Modern Quantum Chemistry New York: Macmillan
    [Google Scholar]
  2. 2.
    Hohenberg P, Kohn W. 1964. Inhomogeneous electron gas. Phys. Rev. 136:3B864–71
    [Google Scholar]
  3. 3.
    Kohn W, Sham LJ. 1965. Self-consistent equations including exchange and correlation. Phys. Rev. 140:4A1133–38
    [Google Scholar]
  4. 4.
    Parr RG, Yang W 1989. Density Functional Theory of Atoms and Molecules Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  5. 5.
    Perdew JP, Kurth S 2003. Density functionals for non-relativistic Coulomb systems in the new century. A Primer in Density Functional Theory C Fiolhais, F Nogueira, MAL Marques 1–55. Berlin: Springer-Verlag
    [Google Scholar]
  6. 6.
    Jones RO. 2015. Density functional theory: its origins, rise to prominence, and future. Rev. Mod. Phys. 87:3897–923
    [Google Scholar]
  7. 7.
    Van Noorden R, Maher B, Nuzzo R. 2014. The top 100 papers. Nature 514:7524550–53
    [Google Scholar]
  8. 8.
    von Barth U, Hedin L. 1972. A local exchange-correlation potential for the spin polarized case. I. J. Phys. C 5:131629–42
    [Google Scholar]
  9. 9.
    Levy M. 1979. Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. PNAS 76:126062–65
    [Google Scholar]
  10. 10.
    Levy M, Perdew JP, Sahni V. 1984. Exact differential equation for the density and ionization energy of a many-particle system. Phys. Rev. A 30:52745–48
    [Google Scholar]
  11. 11.
    Ceperley DM, Alder BJ. 1980. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45:7566–69
    [Google Scholar]
  12. 12.
    Vosko SH, Wilk L, Nusair M. 1980. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58:81200–11
    [Google Scholar]
  13. 13.
    Perdew JP, Zunger A. 1981. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23:105048–79
    [Google Scholar]
  14. 14.
    Perdew JP, Wang Y. 1992. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45:2313244–49
    [Google Scholar]
  15. 15.
    Sun J, Perdew JP, Seidl M. 2010. Correlation energy of the uniform electron gas from an interpolation between high- and low-density limits. Phys. Rev. B 81:8085123
    [Google Scholar]
  16. 16.
    Bhattarai P, Patra A, Shahi C, Perdew JP. 2018. How accurate are the parametrized correlation energies of the uniform electron gas?. Phys. Rev. B 97:19195128
    [Google Scholar]
  17. 17.
    Slater JC. 1974. The Self-Consistent Field for Molecules and Solids New York: McGraw-Hill
    [Google Scholar]
  18. 18.
    Lang N, Kohn W. 1970. Theory of metal surfaces: charge density and surface energy. Phys. Rev. B 1:124555–68
    [Google Scholar]
  19. 19.
    Kurth S, Perdew JP. 2000. Role of the exchange–correlation energy: nature's glue. Int. J. Quantum Chem. 77:5814–18
    [Google Scholar]
  20. 20.
    Perdew JP, Ruzsinszky A. 2013. Understanding Thomas-Fermi-like approximations: averaging over oscillating occupied orbitals. Discrete Continuous Dyn. Syst. 33:11–125319–25
    [Google Scholar]
  21. 21.
    Cohen AJ, Handy NC. 2001. Dynamic correlation. Mol. Phys. 99:7607–15
    [Google Scholar]
  22. 22.
    Lynch BJ, Truhlar DG. 2003. Small representative benchmarks for thermochemical calculations. J. Phys. Chem. A 107:428996–99
    [Google Scholar]
  23. 23.
    Perdew JP, Ruzsinszky A, Sun J, Nepal NK, Kaplan AD. 2021. Interpretations of ground-state symmetry breaking and strong correlation in wavefunction and density functional theories. PNAS 118:4e2017850118
    [Google Scholar]
  24. 24.
    Levy M, Perdew JP. 1985. Hellmann-Feynman, virial, and scaling requisites for the exact universal density functionals. Shape of the correlation potential and diamagnetic susceptibility for atoms. Phys. Rev. A 32:42010–21
    [Google Scholar]
  25. 25.
    Langreth DC, Perdew JP. 1975. Exchange-correlation energy of a metallic surface. Solid State Commun. 17:111425–29
    [Google Scholar]
  26. 26.
    Gunnarsson O, Lundqvist BI. 1976. Exchange and correlation in atoms, molecules, and solids by the spin-density functional formalism. Phys. Rev. B 13:104274–98. Erratum 1977. Phys. Rev. B 15:126006
    [Google Scholar]
  27. 27.
    Langreth DC, Perdew JP. 1977. Exchange-correlation energy of a metallic surface: wave-vector analysis. Phys. Rev. B 15:62884–901
    [Google Scholar]
  28. 28.
    Perdew JP. 1985. Accurate density functional for the energy: real-space cutoff of the gradient expansion for the exchange hole. Phys. Rev. Lett. 55:161665–68. Erratum 1985. Phys. Rev. Lett. 55:2370
    [Google Scholar]
  29. 29.
    Perdew JP. 1991. Unified theory of exchange and correlation beyond the local density approximation. Proceedings of the 75 WE-Haraeus-Seminar and 21st Annual International Symposium on Electronic Structure of Solids, Held in Gaussig (Germany), March 11–15, 1991, pp. 11–20. Berlin: Akademie Verlag
    [Google Scholar]
  30. 30.
    Perdew JP, Wang Y. 1986. Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation. Phys. Rev. B 33:128800–2
    [Google Scholar]
  31. 31.
    Perdew JP, Burke K, Ernzerhof M. 1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77:183865–68
    [Google Scholar]
  32. 32.
    Perdew JP, Burke K, Wang Y. 1996. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 54:2316533–39. Erratum 1998. Phys. Rev. B 57:2314999
    [Google Scholar]
  33. 33.
    Harris J, Jones RO. 1974. The surface energy of a bounded electron gas. J. Phys. F 4:81170–86
    [Google Scholar]
  34. 34.
    Gunnarsson O, Jonson M, Lundqvist B. 1977. Exchange and correlation in inhomogeneous electron systems. Solid State Commun. 24:11765–68
    [Google Scholar]
  35. 35.
    Burke K, Perdew JP, Ernzerhof M. 1998. Why semilocal functionals work: accuracy of the on-top pair density and importance of system averaging. J. Chem. Phys. 109:103760–71
    [Google Scholar]
  36. 36.
    Oliver GL, Perdew JP. 1979. Spin-density gradient expansion for the kinetic energy. Phys. Rev. A 20:2397–403
    [Google Scholar]
  37. 37.
    Perdew JP, Schmidt K. 2001. Jacob's ladder of density functional approximations for the exchange-correlation energy. AIP Conf. Proc. 577:1 https://doi.org/10.1063/1.1390175
    [Google Scholar]
  38. 38.
    Kaplan AD, Perdew JP. 2022. Laplacian-level meta-generalized gradient approximation for solid and liquid metals. Phys. Rev. Mater. 6:8083803
    [Google Scholar]
  39. 39.
    Furness JW, Sun J. 2019. Enhancing the efficiency of density functionals with an improved iso-orbital indicator. Phys. Rev. B 99:4041119
    [Google Scholar]
  40. 40.
    Hoffmann-Ostenhof M, Hoffmann-Ostenhof T. 1977.. “ Schrödinger inequalities” and asymptotic behavior of the electron density of atoms and molecules. Phys. Rev. A 16:51782–85
    [Google Scholar]
  41. 41.
    Brack M, Jennings BK, Chu YH. 1976. On the extended Thomas-Fermi approximation to the kinetic energy density. Phys. Lett. B 65:11–4
    [Google Scholar]
  42. 42.
    Becke AD, Edgecombe KE. 1990. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92:95397–403
    [Google Scholar]
  43. 43.
    Svendsen PS, Von Barth U 1995. On the gradient expansion of the exchange energy within linear response theory and beyond. Int. J. Quantum Chem. 56:4351–61
    [Google Scholar]
  44. 44.
    Svendsen PS, von Barth U. 1996. Gradient expansion of the exchange energy from second-order density response theory. Phys. Rev. B 54:2417402–13
    [Google Scholar]
  45. 45.
    Zupan A, Burke K, Ernzerhof M, Perdew JP. 1997. Distributions and averages of electron density parameters: explaining the effects of gradient corrections. J. Chem. Phys. 106:2410184–93
    [Google Scholar]
  46. 46.
    Kaplan A, Clark S, Burke K, Perdew JP. 2021. Calculation and interpretation of classical turning surfaces in solids. NPJ Comput. Mater. 7:25
    [Google Scholar]
  47. 47.
    Becke AD. 1988. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38:63098–100
    [Google Scholar]
  48. 48.
    Elliott P, Burke K. 2009. Non-empirical derivation of the parameter in the B88 exchange functional. Can. J. Chem. 87:101485–91
    [Google Scholar]
  49. 49.
    Cancio A, Chen GP, Krull BT, Burke K. 2018. Fitting a round peg into a round hole: asymptotically correcting the generalized gradient approximation for correlation. J. Chem. Phys. 149:8084116
    [Google Scholar]
  50. 50.
    Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE et al. 2008. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100:13136406
    [Google Scholar]
  51. 51.
    Aschebrock T, Kümmel S. 2019. Ultranonlocality and accurate band gaps from a meta-generalized gradient approximation. Phys. Rev. Res. 1:3033082
    [Google Scholar]
  52. 52.
    Furness JW, Kaplan AD, Ning J, Perdew JP, Sun J. 2022. Construction of meta-GGA functionals through restoration of exact constraint adherence to regularized SCAN functionals. J. Chem. Phys. 156:3034109
    [Google Scholar]
  53. 53.
    Tao J, Perdew JP, Staroverov VN, Scuseria GE. 2003. Climbing the density functional ladder: nonempirical meta–generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 91:14146401
    [Google Scholar]
  54. 54.
    Perdew JP, Ruzsinszky A, Csonka GI, Constantin LA, Sun J. 2009. Workhorse semilocal density functional for condensed matter physics and quantum chemistry. Phys. Rev. Lett. 103:2026403
    [Google Scholar]
  55. 55.
    Sun J, Ruzsinszky A, Perdew JP. 2015. Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett. 115:3036402
    [Google Scholar]
  56. 56.
    Furness JW, Kaplan AD, Ning J, Perdew JP, Sun J. 2020. Accurate and numerically efficient r2SCAN meta-generalized gradient approximation. J. Phys. Chem. Lett. 11:198208–15. Erratum 2020. J. Phys. Chem. Lett. 11:219248
    [Google Scholar]
  57. 57.
    Zhao Y, Truhlar DG. 2006. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys. 125:19194101
    [Google Scholar]
  58. 58.
    Dick S, Fernandez-Serra M. 2021. Highly accurate and constrained density functional obtained with differentiable programming. Phys. Rev. B 104:16L161109
    [Google Scholar]
  59. 59.
    Levy M. 1991. Density-functional exchange correlation through coordinate scaling in adiabatic connection and correlation hole. Phys. Rev. A 43:94637–46
    [Google Scholar]
  60. 60.
    Görling A, Levy M. 1992. Requirements for correlation energy density functionals from coordinate transformations. Phys. Rev. A 45:31509–17
    [Google Scholar]
  61. 61.
    Chiodo L, Constantin LA, Fabiano E, Della Sala F. 2012. Nonuniform scaling applied to surface energies of transition metals. Phys. Rev. Lett. 108:12126402
    [Google Scholar]
  62. 62.
    Perdew JP, Ruzsinszky A, Sun J, Burke K. 2014. Gedanken densities and exact constraints in density functional theory. J. Chem. Phys. 140:1818A533
    [Google Scholar]
  63. 63.
    Lieb EH, Oxford S. 1981. Improved lower bound on the indirect Coulomb energy. Int. J. Quantum Chem. 19:427–39
    [Google Scholar]
  64. 64.
    Gadre SR, Bartolotti LJ, Handy NC. 1980. Bounds for Coulomb energies. J. Chem. Phys. 72:21034–38
    [Google Scholar]
  65. 65.
    Lewin M, Lieb EH, Seiringer R. 2022. Improved Lieb-Oxford bound on the indirect and exchange energies. Lett. Math. Phys. 112:592
    [Google Scholar]
  66. 66.
    Tran F, Stelzl J, Blaha P. 2016. Rungs 1 to 4 of DFT Jacob's ladder: extensive test on the lattice constant, bulk modulus, and cohesive energy of solids. J. Chem. Phys. 144:20204120
    [Google Scholar]
  67. 67.
    Lee C, Yang W, Parr RG 1988. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37:2785–89
    [Google Scholar]
  68. 68.
    Miehlich B, Savin A, Stoll H, Preuss H. 1989. Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett. 157:3200–6
    [Google Scholar]
  69. 69.
    Levy M. 1989. Asymptotic coordinate scaling bound for exchange-correlation energy in density-functional theory. Int. J. Quantum Chem. 36:S23617–19
    [Google Scholar]
  70. 70.
    Gell-Mann M, Brueckner KA. 1957. Correlation energy of an electron gas at high density. Phys. Rev. 106:2364–68
    [Google Scholar]
  71. 71.
    Levy M, Perdew JP. 1993. Tight bound and convexity constraint on the exchange-correlation-energy functional in the low-density limit, and other formal tests of generalized-gradient approximations. Phys. Rev. B 48:1611638–45
    [Google Scholar]
  72. 72.
    Wigner E. 1934. On the interaction of electrons in metals. Phys. Rev. 46:111002–11
    [Google Scholar]
  73. 73.
    Ma SK, Brueckner KA. 1968. Correlation energy of an electron gas with a slowly varying high density. Phys. Rev. 165:118–31
    [Google Scholar]
  74. 74.
    Wang Y, Perdew JP. 1991. Spin scaling of the electron-gas correlation energy in the high-density limit. Phys. Rev. B 43:118911–16
    [Google Scholar]
  75. 75.
    Rasolt M, Davis HL. 1981. Exchange splitting of ferromagnetic nickel within the local density approximation. Phys. Lett. 86:145–47
    [Google Scholar]
  76. 76.
    Langreth DC, Perdew JP. 1980. Theory of nonuniform electronic systems. I. Analysis of the gradient approximation and a generalization that works. Phys. Rev. B 21:125469–93
    [Google Scholar]
  77. 77.
    Pollack L, Perdew JP. 2000. Evaluating density functional performance for the quasi-two-dimensional electron gas. J. Phys. Condens. Matter 12:1239–52
    [Google Scholar]
  78. 78.
    Pople JA, Binkley JS, Seeger R. 1976. Theoretical models incorporating electron correlation. Int. J. Quantum Chem. 10:S101–19
    [Google Scholar]
  79. 79.
    Ayers PW, Morrison RC, Parr RG. 2005. Fermi-Amaldi model for exchange-correlation: atomic excitation energies from orbital energy differences. Mol. Phys. 103:15–162061–72
    [Google Scholar]
  80. 80.
    Seidl M, Perdew JP, Kurth S. 2000. Density functionals for the strong-interaction limit. Phys. Rev. A 62:1012502
    [Google Scholar]
  81. 81.
    Holzmann M, Moroni S. 2020. Itinerant-electron magnetism: the importance of many-body correlations. Phys. Rev. Lett. 124:20206404
    [Google Scholar]
  82. 82.
    Moroni S, Ceperley DM, Senatore G. 1995. Static response and local field factor of the electron gas. Phys. Rev. Lett. 75:4689–92
    [Google Scholar]
  83. 83.
    Tao J, Perdew JP, Almeida LM, Fiolhais C, Kümmel S. 2008. Nonempirical density functionals investigated for jellium: spin-polarized surfaces, spherical clusters, and bulk linear response. Phys. Rev. B 77:24245107
    [Google Scholar]
  84. 84.
    Sun J, Perdew JP, Yang Z, Peng H 2016. Communication: near-locality of exchange and correlation density functionals for 1- and 2-electron systems. J. Chem. Phys. 144:19191101
    [Google Scholar]
  85. 85.
    Burke K 1997. Digging into the exchange-correlation energy: the exchange-correlation hole. Electronic Density Functional Theory JF Dobson, G Vignale, MP Das 19–29. New York: Plenum
    [Google Scholar]
  86. 86.
    Santra B, Perdew JP 2019. Perdew-Zunger self-interaction correction: how wrong for uniform densities and large-Z atoms?. J. Chem. Phys. 150:17174106
    [Google Scholar]
  87. 87.
    Pederson MR, Ruzsinszky A, Perdew JP. 2014. Communication: self-interaction correction with unitary invariance in density functional theory. J. Chem. Phys. 140:12121103
    [Google Scholar]
  88. 88.
    Zope RR, Yamamoto Y, Diaz CM, Baruah T, Peralta JE et al. 2019. A step in the direction of resolving the paradox of Perdew-Zunger self-interaction correction. J. Chem. Phys. 151:21214108
    [Google Scholar]
  89. 89.
    Adamo C, Barone V. 1999. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110:136158–70
    [Google Scholar]
  90. 90.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ. 1994. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98:4511623–27
    [Google Scholar]
  91. 91.
    Heyd J, Scuseria GE, Ernzerhof M. 2003. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118:188207–15. Erratum 2006. J. Chem. Phys. 124:21219906
    [Google Scholar]
  92. 92.
    Mardirossian N, Head-Gordon M. 2014. ωB97X-V: a 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy. Phys. Chem. Chem. Phys. 16:219904–24
    [Google Scholar]
  93. 93.
    Kirkpatrick J, McMorrow B, Turban DHP, Gaunt AL, Spencer JS et al. 2021. Pushing the frontiers of density functionals by solving the fractional electron problem. Science 374:65731385–89
    [Google Scholar]
  94. 94.
    Perdew JP, Parr RG, Levy M, Balduz JL Jr. 1982. Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys. Rev. Lett. 49:231691–94
    [Google Scholar]
  95. 95.
    Perdew JP. 2021. Artificial intelligence “sees” split electrons. Science 374:65731322–23
    [Google Scholar]
  96. 96.
    Li C, Zheng X, Su NQ, Yang W. 2017. Localized orbital scaling correction for systematic elimination of delocalization error in density functional approximations. Natl. Sci. Rev. 5:2203–15
    [Google Scholar]
  97. 97.
    Yang Zh, Peng H, Sun J, Perdew JP. 2016. More realistic band gaps from meta-generalized gradient approximations: only in a generalized Kohn-Sham scheme. Phys. Rev. B 93:20205205
    [Google Scholar]
  98. 98.
    Perdew JP, Yang W, Burke K, Yang Z, Gross EKU et al. 2017. Understanding band gaps of solids in generalized Kohn–Sham theory. PNAS 114:112801–6
    [Google Scholar]
  99. 99.
    Cohen AJ, Mori-Sánchez P, Yang W 2008. Fractional spins and static correlation error in density functional theory. J. Chem. Phys. 129:12121104
    [Google Scholar]
  100. 100.
    Su NQ, Li C, Yang W 2018. Describing strong correlation with fractional-spin correction in density functional theory. PNAS 115:399678–83
    [Google Scholar]
  101. 101.
    Gould T, Dale S. 2022. Poisoning density functional theory with benchmark sets of difficult systems. Phys. Chem. Chem. Phys. 24:116398–403
    [Google Scholar]
  102. 102.
    Langreth DC, Mehl MJ. 1983. Beyond the local-density approximation in calculations of ground-state electronic properties. Phys. Rev. B 28:41809–34
    [Google Scholar]
  103. 103.
    Kurth S, Perdew JP, Blaha P. 1999. Molecular and solid-state tests of density functional approximations: LSD, GGAs, and meta-GGAs. Int. J. Quantum Chem. 75:4–5889–909
    [Google Scholar]
  104. 104.
    Neumann R, Nobes RH, Handy NC. 1996. Exchange functionals and potentials. Mol. Phys. 87:11–36
    [Google Scholar]
  105. 105.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR et al. 1992. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46:116671–87
    [Google Scholar]
  106. 106.
    Curtiss LA, Redfern PC, Raghavachari K. 2007. Gaussian-4 theory. J. Chem. Phys. 126:8084108
    [Google Scholar]
  107. 107.
    Marshall MS, Burns LA, Sherrill CD. 2011. Basis set convergence of the coupled-cluster correction, δMP2CCSD(T): best practices for benchmarking non-covalent interactions and the attendant revision of the S22, NBC10, HBC6, and HSG databases. J. Chem. Phys. 135:19194102
    [Google Scholar]
  108. 108.
    Goerigk L, Hansen A, Bauer C, Ehrlich S, Najibi A, Grimme S. 2017. A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys. Chem. Chem. Phys. 19:32184–215
    [Google Scholar]
  109. 109.
    Ernzerhof M, Scuseria GE. 1999. Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 110:115029–36
    [Google Scholar]
  110. 110.
    Ehlert S, Huniar U, Ning J, Furness JW, Sun J et al. 2021. r2SCAN-D4: dispersion corrected meta-generalized gradient approximation for general chemical applications. J. Chem. Phys. 154:6061101
    [Google Scholar]
  111. 111.
    Grimme S, Hansen A, Ehlert S, Mewes JM. 2021. r2SCAN-3c: a “Swiss army knife” composite electronic-structure method. J. Chem. Phys. 154:6064103
    [Google Scholar]
  112. 112.
    Mardirossian N, Head-Gordon M. 2015. Mapping the genome of meta-generalized gradient approximation density functionals: the search for B97M-V. J. Chem. Phys. 142:7074111
    [Google Scholar]
  113. 113.
    Najibi A, Goerigk L. 2020. DFT-D4 counterparts of leading meta-generalized-gradient approximation and hybrid density functionals for energetics and geometries. J. Comput. Chem. 41:302562–72
    [Google Scholar]
  114. 114.
    Chen M, Ko H-Y, Remsing RC, Andrade MFC, Santra B et al. 2017. Ab initio theory and modeling of water. PNAS 114:4110846–51
    [Google Scholar]
  115. 115.
    Sun J, Marsman M, Csonka G, Ruzsinszky A, Hao P et al. 2011. Self-consistent meta-generalized gradient approximation within the projector-augmented-wave method. Phys. Rev. B 84:3035117
    [Google Scholar]
  116. 116.
    Furness JW, Sengupta N, Ning J, Ruzsinszky A, Sun J. 2020. Examining the order-of-limits problem and lattice constant performance of the Tao–Mo functional. J. Chem. Phys. 152:24244112
    [Google Scholar]
  117. 117.
    Isaacs EB, Wolverton C. 2018. Performance of the strongly constrained and appropriately normed density functional for solid-state materials. Phys. Rev. Mater. 2:6063801
    [Google Scholar]
  118. 118.
    Kingsbury R, Gupta AS, Bartel CJ, Munro JM, Dwaraknath S et al. 2022. Performance comparison of r2SCAN and SCAN metaGGA density functionals for solid materials via an automated, high-throughput computational workflow. Phys. Rev. Mater. 6:1013801
    [Google Scholar]
  119. 119.
    Furness JW, Zhang Y, Lane C, Buda IG, Barbiellini B et al. 2018. An accurate first-principles treatment of doping-dependent electronic structure of high-temperature cuprate superconductors. Commun. Phys. 1:11
    [Google Scholar]
  120. 120.
    Zhang Y, Lane C, Furness JW, Barbiellini B, Perdew JP et al. 2020. Competing stripe and magnetic phases in the cuprates from first principles. PNAS 117:168–72
    [Google Scholar]
  121. 121.
    Sai Gautam G, Carter EA 2018. Evaluating transition metal oxides within DFT-SCAN and SCAN + U frameworks for solar thermochemical applications. Phys. Rev. Mater. 2:9095401
    [Google Scholar]
  122. 122.
    Kim MC, Sim E, Burke K 2013. Understanding and reducing errors in density functional calculations. Phys. Rev. Lett. 111:7073003
    [Google Scholar]
  123. 123.
    Janesko BG, Scuseria GE. 2008. Hartree–Fock orbitals significantly improve the reaction barrier heights predicted by semilocal density functionals. J. Chem. Phys. 128:24244112
    [Google Scholar]
  124. 124.
    Peverati R, Truhlar DG. 2014. Quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Philos. Trans. R. Soc. A 372:201120120476
    [Google Scholar]
  125. 125.
    Wang Y, Verma P, Zhang L, Li Y, Liu Z et al. 2020. M06-SX screened-exchange density functional for chemistry and solid-state physics. PNAS 117:52294–301
    [Google Scholar]
  126. 126.
    Dasgupta S, Lambros E, Perdew J, Paesani F. 2021. Elevating density functional theory to chemical accuracy for water simulations through a density-corrected many-body formalism. Nat. Commun. 12:6359
    [Google Scholar]
  127. 127.
    Schimka L, Harl J, Kresse G. 2011. Improved hybrid functional for solids: the HSEsol functional. J. Chem. Phys. 134:2024116
    [Google Scholar]
  128. 128.
    Henderson TM, Paier J, Scuseria GE. 2011. Accurate treatment of solids with the HSE screened hybrid. Phys. Status Solidi B 248:4767–74
    [Google Scholar]
  129. 129.
    Ekholm M, Gambino D, Jönsson HJM, Tasnádi F, Alling B, Abrikosov IA. 2018. Assessing the SCAN functional for itinerant electron ferromagnets. Phys. Rev. B 98:9094413
    [Google Scholar]
  130. 130.
    Fu Y, Singh DJ. 2018. Applicability of the strongly constrained and appropriately normed density functional to transition-metal magnetism. Phys. Rev. Lett. 121:20207201
    [Google Scholar]
  131. 131.
    Mejía-Rodríguez D, Trickey SB. 2019. Comment on “Regularized SCAN functional” [J. Chem. Phys. 150, 161101 (2019)]. J. Chem. Phys. 151:20207101
    [Google Scholar]
  132. 132.
    Fu Y, Singh DJ. 2019. Density functional methods for the magnetism of transition metals: SCAN in relation to other functionals. Phys. Rev. B 100:4045126
    [Google Scholar]
  133. 133.
    Görling A, Levy M. 1994. Exact Kohn-Sham scheme based on perturbation theory. Phys. Rev. A 50:1196–204
    [Google Scholar]
  134. 134.
    Furche F. 2001. Molecular tests of the random phase approximation to the exchange-correlation energy functional. Phys. Rev. B 64:19195120
    [Google Scholar]
  135. 135.
    Schimka L, Gaudoin R, Klimeš J, Marsman M, Kresse G. 2013. Lattice constants and cohesive energies of alkali, alkaline-earth, and transition metals: random phase approximation and density functional theory results. Phys. Rev. B 87:21214102
    [Google Scholar]
  136. 136.
    Grimme S. 2006. Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 124:3034108
    [Google Scholar]
  137. 137.
    Vydrov OA, Scuseria GE. 2006. Assessment of a long-range corrected hybrid functional. J. Chem. Phys. 125:23234109
    [Google Scholar]
  138. 138.
    Vydrov OA, Scuseria GE, Perdew JP. 2007. Tests of functionals for systems with fractional electron number. J. Chem. Phys. 126:15154109
    [Google Scholar]
  139. 139.
    Becke AD. 2022. Density-functional theory versus density-functional fits. J. Chem. Phys. 156:21214101
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-062422-013259
Loading
/content/journals/10.1146/annurev-physchem-062422-013259
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error