1932

Abstract

Localized surface plasmon resonances (LSPRs) in metallic nanostructures result in subwavelength optical confinement that enhances light–matter interactions, for example, aiding the sensitivity of surface spectroscopies. The dissipation of surface plasmons as electronic and vibrational excitations sets the limit for field confinement but also provides opportunities for photochemistry, photocatalysis, and photothermal heating. Optimization for either goal requires a deeper understanding of this photothermalization process. In this review, we focus on recent insights into the physics and dynamics governing photothermalization of LSPRs in metallic nanostructures, emphasizing comparisons between the steady-state behavior and ultrafast time-resolved studies. The differences between these regimes inform how to best optimize plasmonic systems for applications under relatively low-intensity, continuous illumination (e.g., sunlight).

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-062422-014911
2023-04-24
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/physchem/74/1/annurev-physchem-062422-014911.html?itemId=/content/journals/10.1146/annurev-physchem-062422-014911&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kelly KL, Coronado E, Zhao LL, Schatz GC. 2003. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107:668–77
    [Google Scholar]
  2. 2.
    Hartland GV. 2011. Optical studies of dynamics in noble metal nanostructures. Chem. Rev. 111:3858–87
    [Google Scholar]
  3. 3.
    Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B et al. 2020. Present and future of surface-enhanced Raman scattering. ACS Nano 14:28–117
    [Google Scholar]
  4. 4.
    Han XX, Rodriguez RS, Haynes CL, Ozaki Y, Zhao B. 2022. Surface-enhanced Raman spectroscopy. Nat. Rev. Methods Primers 1:87
    [Google Scholar]
  5. 5.
    Bell SEJ, Charron G, Cortés E, Kneipp J, de la Chapelle ML et al. 2020. Towards reliable and quantitative surface-enhanced Raman scattering (SERS): from key parameters to good analytical practice. Angew. Chem. Int. Ed. 59:5454–62
    [Google Scholar]
  6. 6.
    Zhu W, Esteban R, Borisov AG, Baumberg JJ, Nordlander P et al. 2016. Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat. Commun. 7:11495
    [Google Scholar]
  7. 7.
    Khurgin JB, Sun G. 2017. Landau damping—the ultimate limit of field confinement and enhancement in plasmonic structures. Quantum Plasmonics SI Bozhevolnyi, L Martin-Moreno, F Garcia-Vidal 303–22. Cham, Switz.: Springer Int. Publ.
    [Google Scholar]
  8. 8.
    Khurgin J, Tsai W-Y, Tsai DP, Sun G. 2017. Landau damping and limit to field confinement and enhancement in plasmonic dimers. ACS Photon. 4:2871–80
    [Google Scholar]
  9. 9.
    Linic S, Chavez S, Elias R. 2021. Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures. Nat. Mater. 20:916–24
    [Google Scholar]
  10. 10.
    Aslam U, Rao VG, Chavez S, Linic S. 2018. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal. 1:656–65
    [Google Scholar]
  11. 11.
    Aslam U, Chavez S, Linic S. 2017. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nat. Nanotechnol. 12:1000–5
    [Google Scholar]
  12. 12.
    Zhou L, Lou M, Bao JL, Zhang C, Liu JG et al. 2021. Hot carrier multiplication in plasmonic photocatalysis. PNAS 118:e2022109118
    [Google Scholar]
  13. 13.
    Zhou L, Martirez JMP, Finzel J, Zhang C, Swearer DF et al. 2020. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat. Energy 5:61–70
    [Google Scholar]
  14. 14.
    Robatjazi H, Bao JL, Zhang M, Zhou L, Christopher P et al. 2020. Plasmon-driven carbon–fluorine (C(sp3)–F) bond activation with mechanistic insights into hot-carrier-mediated pathways. Nat. Catal. 3:564–73
    [Google Scholar]
  15. 15.
    Zhou L, Swearer DF, Zhang C, Robatjazi H, Zhao H et al. 2018. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 362:69–72
    [Google Scholar]
  16. 16.
    Zhan C, Moskovits M, Tian Z-Q. 2020. Recent progress and prospects in plasmon-mediated chemical reaction. Matter 3:42–56
    [Google Scholar]
  17. 17.
    Zhu Y, Xu H, Yu P, Wang Z 2021. Engineering plasmonic hot carrier dynamics toward efficient photodetection. Appl. Phys. Rev. 8:021305
    [Google Scholar]
  18. 18.
    Knight MW, Sobhani H, Nordlander P, Halas NJ. 2011. Photodetection with active optical antennas. Science 332:702–4
    [Google Scholar]
  19. 19.
    Dhiman M, Maity A, Das A, Belgamwar R, Chalke B et al. 2019. Plasmonic colloidosomes of black gold for solar energy harvesting and hotspots directed catalysis for CO2 to fuel conversion. Chem. Sci. 10:6594–603
    [Google Scholar]
  20. 20.
    Luo S, Ren X, Lin H, Song H, Ye J. 2021. Plasmonic photothermal catalysis for solar-to-fuel conversion: current status and prospects. Chem. Sci. 12:5701–19
    [Google Scholar]
  21. 21.
    Zhang F, Li Y-H, Qi M-Y, Yamada YMA, Anpo M et al. 2021. Photothermal catalytic CO2 reduction over nanomaterials. Chem. Catal. 1:272–97
    [Google Scholar]
  22. 22.
    Gellini C, Feis A. 2021. Optothermal properties of plasmonic inorganic nanoparticles for photoacoustic applications. Photoacoustics 23:100281
    [Google Scholar]
  23. 23.
    Challener WA, Peng C, Itagi AV, Karns D, Peng W et al. 2009. Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nat. Photon. 3:220–24
    [Google Scholar]
  24. 24.
    O'Connor D, Zayats AV 2010. The third plasmonic revolution. Nat. Nanotechnol. 5:482–83
    [Google Scholar]
  25. 25.
    Baffou G, Cichos F, Quidant R. 2020. Applications and challenges of thermoplasmonics. Nat. Mater. 19:946–58
    [Google Scholar]
  26. 26.
    Cole JR, Mirin NA, Knight MW, Goodrich GP, Halas NJ. 2009. Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications. J. Phys. Chem. C 113:12090–94
    [Google Scholar]
  27. 27.
    Bucharskaya AB, Khlebtsov NG, Khlebtsov BN, Maslyakova GN, Navolokin NA et al. 2022. Photothermal and photodynamic therapy of tumors with plasmonic nanoparticles: challenges and prospects. Materials 15:1606
    [Google Scholar]
  28. 28.
    Ali MRK, Wu Y, El-Sayed MA. 2019. Gold-nanoparticle-assisted plasmonic photothermal therapy advances toward clinical application. J. Phys. Chem. C 123:15375–93
    [Google Scholar]
  29. 29.
    Kauranen M, Zayats AV. 2012. Nonlinear plasmonics. Nat. Photon. 6:737–48
    [Google Scholar]
  30. 30.
    Panoiu NC, Sha WEI, Lei DY, Li GC. 2018. Nonlinear optics in plasmonic nanostructures. J. Opt. 20:083001
    [Google Scholar]
  31. 31.
    Singh N. 2010. Two-temperature model of nonequilibrium electron relaxation: a review. Int. J. Mod. Phys. B 24:1141–58
    [Google Scholar]
  32. 32.
    Bresson P, Bryche JF, Besbes M, Moreau J, Karsenti PL et al. 2020. Improved two-temperature modeling of ultrafast thermal and optical phenomena in continuous and nanostructured metal films. Phys. Rev. B 102:155127
    [Google Scholar]
  33. 33.
    Wu S, Hogan N, Sheldon M. 2019. Hot electron emission in plasmonic thermionic converters. ACS Energy Lett. 4:2508–13
    [Google Scholar]
  34. 34.
    Szczerbiński J, Gyr L, Kaeslin J, Zenobi R. 2018. Plasmon-driven photocatalysis leads to products known from e-beam and X-ray-induced surface chemistry. Nano Lett. 18:6740–49
    [Google Scholar]
  35. 35.
    Yu Y, Wijesekara KD, Xi X, Willets KA. 2019. Quantifying wavelength-dependent plasmonic hot carrier energy distributions at metal/semiconductor interfaces. ACS Nano 13:3629–37
    [Google Scholar]
  36. 36.
    Li L, Shao L, Liu X, Gao A, Wang H et al. 2020. Room-temperature valleytronic transistor. Nat. Nanotechnol. 15:743–49
    [Google Scholar]
  37. 37.
    Cai Y-Y, Sung E, Zhang R, Tauzin LJ, Liu JG et al. 2019. Anti-Stokes emission from hot carriers in gold nanorods. Nano Lett. 19:1067–73
    [Google Scholar]
  38. 38.
    Saavedra JRM, Asenjo-Garcia A, García de Abajo FJ. 2016. Hot-electron dynamics and thermalization in small metallic nanoparticles. ACS Photon. 3:1637–46
    [Google Scholar]
  39. 39.
    Maier SA. 2007. Plasmonics: Fundamentals and Applications Berlin: Springer Science & Business Media
  40. 40.
    Kreibig U, Vollmer M. 2013. Optical Properties of Metal Clusters Berlin: Springer Science & Business Media
  41. 41.
    Khurgin JB. 2015. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol. 10:2–6
    [Google Scholar]
  42. 42.
    Kawabata A, Kubo R. 1966. Electronic properties of fine metallic particles. II. Plasma resonance absorption. J. Phys. Soc. Jpn. 21:1765–72
    [Google Scholar]
  43. 43.
    Liu JG, Zhang H, Link S, Nordlander P. 2018. Relaxation of plasmon-induced hot carriers. ACS Photon. 5:2584–95
    [Google Scholar]
  44. 44.
    Manjavacas A, Liu JG, Kulkarni V, Nordlander P. 2014. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 8:7630–38
    [Google Scholar]
  45. 45.
    Dal Forno S, Ranno L, Lischner J 2018. Material, size, and environment dependence of plasmon-induced hot carriers in metallic nanoparticles. J. Phys. Chem. C 122:8517–27
    [Google Scholar]
  46. 46.
    Kumarasinghe CS, Premaratne M, Bao Q, Agrawal GP 2015. Theoretical analysis of hot electron dynamics in nanorods. Sci. Rep. 5:12140
    [Google Scholar]
  47. 47.
    Kornbluth M, Nitzan A, Seideman T. 2013. Light-induced electronic non-equilibrium in plasmonic particles. J. Chem. Phys. 138:174707
    [Google Scholar]
  48. 48.
    Govorov AO, Zhang H, Gun'ko YK 2013. Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. J. Phys. Chem. C 117:16616–31
    [Google Scholar]
  49. 49.
    Hartland GV, Besteiro LV, Johns P, Govorov AO. 2017. What's so hot about electrons in metal nanoparticles?. ACS Energy Lett. 2:1641–53
    [Google Scholar]
  50. 50.
    Zhang H, Govorov AO. 2014. Optical generation of hot plasmonic carriers in metal nanocrystals: the effects of shape and field enhancement. J. Phys. Chem. C 118:7606–14
    [Google Scholar]
  51. 51.
    Besteiro LV, Kong X-T, Wang Z, Hartland G, Govorov AO. 2017. Understanding hot-electron generation and plasmon relaxation in metal nanocrystals: quantum and classical mechanisms. ACS Photon. 4:2759–81
    [Google Scholar]
  52. 52.
    Govorov AO, Zhang H. 2015. Kinetic density functional theory for plasmonic nanostructures: breaking of the plasmon peak in the quantum regime and generation of hot electrons. J. Phys. Chem. C 119:6181–94
    [Google Scholar]
  53. 53.
    Brown AM, Sundararaman R, Narang P, Goddard WA 3rd, Atwater HA. 2016. Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry. ACS Nano 10:957–66
    [Google Scholar]
  54. 54.
    Sundararaman R, Narang P, Jermyn AS, Goddard WA 3rd, Atwater HA. 2014. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 5:5788
    [Google Scholar]
  55. 55.
    Bernardi M, Mustafa J, Neaton JB, Louie SG. 2015. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals. Nat. Commun. 6:7044
    [Google Scholar]
  56. 56.
    Zhang Y. 2021. Theory of plasmonic hot-carrier generation and relaxation. J. Phys. Chem. A 125:9201–8
    [Google Scholar]
  57. 57.
    Zhu XY. 2002. Electron transfer at molecule-metal interfaces: a two-photon photoemission study. Annu. Rev. Phys. Chem. 53:221–47
    [Google Scholar]
  58. 58.
    Berglund CN, Spicer WE. 1964. Photoemission studies of copper and silver: experiment. Phys. Rev. 136:A1044–64
    [Google Scholar]
  59. 59.
    Evers F, Rakete C, Watanabe K, Menzel D, Freund H-J. 2005. Two-photon photoemission from silver nanoparticles on thin alumina films: role of plasmon excitation. Surface Sci. 593:43–48
    [Google Scholar]
  60. 60.
    Schwede JW, Bargatin I, Riley DC, Hardin BE, Rosenthal SJ et al. 2010. Photon-enhanced thermionic emission for solar concentrator systems. Nat. Mater. 9:762–67
    [Google Scholar]
  61. 61.
    Heilpern T, Manjare M, Govorov AO, Wiederrecht GP, Gray SK, Harutyunyan H. 2018. Determination of hot carrier energy distributions from inversion of ultrafast pump-probe reflectivity measurements. Nat. Commun. 9:1853
    [Google Scholar]
  62. 62.
    O'Keeffe P, Catone D, Di Mario L, Toschi F, Magnozzi M et al. 2021. Disentangling the temporal dynamics of nonthermal electrons in photoexcited gold nanostructures. Laser Photon. Rev. 15:2100017
    [Google Scholar]
  63. 63.
    Sun CK, Vallée F, Acioli LH, Ippen EP, Fujimoto JG. 1994. Femtosecond-tunable measurement of electron thermalization in gold. Phys. Rev. B 50:15337–48
    [Google Scholar]
  64. 64.
    Reddy H, Wang K, Kudyshev Z, Zhu L, Yan S et al. 2020. Determining plasmonic hot-carrier energy distributions via single-molecule transport measurements. Science 369:423–26
    [Google Scholar]
  65. 65.
    Mukherjee S, Zhou L, Goodman AM, Large N, Ayala-Orozco C et al. 2014. Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. J. Am. Chem. Soc. 136:64–67
    [Google Scholar]
  66. 66.
    Mukherjee S, Libisch F, Large N, Neumann O, Brown LV et al. 2013. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 13:240–47
    [Google Scholar]
  67. 67.
    Linic S, Aslam U, Boerigter C, Morabito M. 2015. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 14:567–76
    [Google Scholar]
  68. 68.
    Linic S, Christopher P, Ingram DB. 2011. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10:911–21
    [Google Scholar]
  69. 69.
    Christopher P, Xin H, Linic S. 2011. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3:467–72
    [Google Scholar]
  70. 70.
    Coleman P. 2015. Introduction to Many-Body Physics Cambridge, UK: Cambridge Univ. Press
  71. 71.
    Sivan Y, Un IW, Dubi Y. 2019. Assistance of metal nanoparticles in photocatalysis – nothing more than a classical heat source. Faraday Discuss. 214:215–33
    [Google Scholar]
  72. 72.
    Dubi Y, Un IW, Sivan Y. 2022. Distinguishing thermal from nonthermal (“hot”) carriers in illuminated molecular junctions. Nano Lett. 22:2127–33
    [Google Scholar]
  73. 73.
    Sivan Y, Dubi Y. 2021. Theory of “hot” photoluminescence from Drude metals. ACS Nano 15:8724–32
    [Google Scholar]
  74. 74.
    Dubi Y, Un IW, Sivan Y. 2020. Thermal effects – an alternative mechanism for plasmon-assisted photocatalysis. Chem. Sci. 11:5017–27
    [Google Scholar]
  75. 75.
    Dubi Y, Sivan Y. 2019.. “ Hot” electrons in metallic nanostructures-non-thermal carriers or heating?. Light Sci. Appl. 8:89
    [Google Scholar]
  76. 76.
    Jiang L, Tsai H-L. 2004. An improved two-temperature model for metal thin film heating by femtosecond laser pulses. Int. Congr. Appl. Lasers Electro-Opt. 2004:M602
    [Google Scholar]
  77. 77.
    Block A, Liebel M, Yu R, Spector M, Sivan Y et al. 2019. Tracking ultrafast hot-electron diffusion in space and time by ultrafast thermomodulation microscopy. Sci. Adv. 5:eaav8965
    [Google Scholar]
  78. 78.
    Nie S, Emory SR. 1997. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–6
    [Google Scholar]
  79. 79.
    Huang J, Wang W, Murphy CJ, Cahill DG. 2014. Resonant secondary light emission from plasmonic Au nanostructures at high electron temperatures created by pulsed-laser excitation. PNAS 111:906–11
    [Google Scholar]
  80. 80.
    Xie X, Cahill DG. 2016. Thermometry of plasmonic nanostructures by anti-Stokes electronic Raman scattering. Appl. Phys. Lett. 109:183104
    [Google Scholar]
  81. 81.
    Carattino A, Caldarola M, Orrit M. 2018. Gold nanoparticles as absolute nanothermometers. Nano Lett. 18:874–80
    [Google Scholar]
  82. 82.
    Baffou G. 2021. Anti-Stokes thermometry in nanoplasmonics. ACS Nano 15:5785–92
    [Google Scholar]
  83. 83.
    Mertens J, Kleemann M-E, Chikkaraddy R, Narang P, Baumberg JJ. 2017. How light is emitted by plasmonic metals. Nano Lett. 17:2568–74
    [Google Scholar]
  84. 84.
    Hugall JT, Baumberg JJ. 2015. Demonstrating photoluminescence from Au is electronic inelastic light scattering of a plasmonic metal: the origin of SERS backgrounds. Nano Lett. 15:2600–4
    [Google Scholar]
  85. 85.
    Wu S, Cheng OH-C, Zhao B, Hogan N, Lee A et al. 2021. The connection between plasmon decay dynamics and the surface enhanced Raman spectroscopy background: inelastic scattering from non-thermal and hot carriers. J. Appl. Phys. 129:173103
    [Google Scholar]
  86. 86.
    Hogan N, Wu S, Sheldon M. 2020. Photothermalization and hot electron dynamics in the steady state. J. Phys. Chem. C 124:4931–45
    [Google Scholar]
  87. 87.
    Cai Y-Y, Liu JG, Tauzin LJ, Huang D, Sung E et al. 2018. Photoluminescence of gold nanorods: Purcell effect enhanced emission from hot carriers. ACS Nano 12:976–85
    [Google Scholar]
  88. 88.
    Hogan N, Sheldon M. 2020. Comparing steady state photothermalization dynamics in copper and gold nanostructures. J. Chem. Phys. 152:061101
    [Google Scholar]
  89. 89.
    Jauffred L, Samadi A, Klingberg H, Bendix PM, Oddershede LB. 2019. Plasmonic heating of nanostructures. Chem. Rev. 119:8087–130
    [Google Scholar]
  90. 90.
    Huang W, Qian W, El-Sayed MA, Ding Y, Wang ZL. 2007. Effect of the lattice crystallinity on the electron–phonon relaxation rates in gold nanoparticles. J. Phys. Chem. C 111:10751–57
    [Google Scholar]
  91. 91.
    Del Fatti V, Langot P, Vallée F. 2002. Electron-phonon scattering in metal clusters: size effects Paper presented at the Quantum Electronics and Laser Science Conference Long Beach, CA: May 19–22
  92. 92.
    Singh N. 2004. Hot electron relaxation in a metal nanoparticle: electron surface-phonon interaction. Mod. Phys. Lett. B 18:1261–65
    [Google Scholar]
  93. 93.
    Arbouet A, Voisin C, Christofilos D, Langot P, Fatti ND et al. 2003. Electron-phonon scattering in metal clusters. Phys. Rev. Lett. 90:177401
    [Google Scholar]
  94. 94.
    Tagliabue G, DuChene JS, Abdellah M, Habib A, Gosztola DJ et al. 2020. Ultrafast hot-hole injection modifies hot-electron dynamics in Au/p-GaN heterostructures. Nat. Mater. 19:1312–18
    [Google Scholar]
  95. 95.
    Hodak J, Martini I, Hartland GV. 1998. Ultrafast study of electron–phonon coupling in colloidal gold particles. Chem. Phys. Lett. 284:135–41
    [Google Scholar]
  96. 96.
    Mongin D, Maioli P, Burgin J, Langot P, Cottancin E et al. 2019. Ultrafast electron-lattice thermalization in copper and other noble metal nanoparticles. J. Phys. Condens. Matter 31:084001
    [Google Scholar]
  97. 97.
    Jiang W, Hu H, Deng Q, Zhang S, Xu H. 2020. Temperature-dependent dark-field scattering of single plasmonic nanocavity. Nanophotonics 9:3347–56
    [Google Scholar]
  98. 98.
    Konrad A, Wackenhut F, Hussels M, Meixner AJ, Brecht M. 2013. Temperature dependent luminescence and dephasing of gold nanorods. J. Phys. Chem. C 117:21476–82
    [Google Scholar]
  99. 99.
    Gieseking RL, Ratner MA, Schatz GC 2016. Review of plasmon-induced hot-electron dynamics and related SERS chemical effects. Frontiers of Plasmon Enhanced Spectroscopy Y Ozaki, GC Schatz, D Graham, T Itoh 1–22. Washington, DC: Am. Chem. Soc.
    [Google Scholar]
  100. 100.
    Lal S, Clare SE, Halas NJ. 2008. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc. Chem. Res. 41:1842–51
    [Google Scholar]
  101. 101.
    Turcheniuk K, Dumych T, Bilyy R, Turcheniuk V, Bouckaert J et al. 2016. Plasmonic photothermal cancer therapy with gold nanorods/reduced graphene oxide core/shell nanocomposites. RSC Adv. 6:1600–10
    [Google Scholar]
  102. 102.
    Nasseri B, Alizadeh E, Bani F, Davaran S, Akbarzadeh A et al. 2022. Nanomaterials for photothermal and photodynamic cancer therapy. Appl. Phys. Rev. 9:011317
    [Google Scholar]
  103. 103.
    Grote R, Habets R, Rohlfs J, Sastre F, Meulendijks N et al. 2020. Collective photothermal effect of Al2O3-supported spheroidal plasmonic Ru nanoparticle catalysts in the sunlight-powered Sabatier reaction. ChemCatChem 12:5618–22
    [Google Scholar]
  104. 104.
    Liu T, Li Y. 2016. Plasmonic solar desalination. Nat. Photon. 10:361–62
    [Google Scholar]
  105. 105.
    Neumann O, Urban AS, Day J, Lal S, Nordlander P, Halas NJ. 2013. Solar vapor generation enabled by nanoparticles. ACS Nano 7:42–49
    [Google Scholar]
  106. 106.
    Boriskina SV, Ghasemi H, Chen G. 2013. Plasmonic materials for energy: from physics to applications. Mater. Today 16:375–86
    [Google Scholar]
  107. 107.
    Bhattacharjee U, West CA, Hosseini Jebeli SA, Goldwyn HJ, Kong X-T et al. 2019. Active far-field control of the thermal near-field via plasmon hybridization. ACS Nano 13:9655–63
    [Google Scholar]
  108. 108.
    Hosseini Jebeli SA, West CA, Lee SA, Goldwyn HJ, Bilchak CR et al. 2021. Wavelength-dependent photothermal imaging probes nanoscale temperature differences among subdiffraction coupled plasmonic nanorods. Nano Lett. 21:5386–93
    [Google Scholar]
  109. 109.
    Baffou G, Bordacchini I, Baldi A, Quidant R. 2020. Simple experimental procedures to distinguish photothermal from hot-carrier processes in plasmonics. Light Sci. Appl. 9:108
    [Google Scholar]
  110. 110.
    Seemala B, Therrien AJ, Lou M, Li K, Finzel JP et al. 2019. Plasmon-mediated catalytic O2 dissociation on Ag nanostructures: hot electrons or near fields?. ACS Energy Lett. 4:1803–9
    [Google Scholar]
  111. 111.
    Zhang X, Li X, Reish ME, Zhang D, Su NQ et al. 2018. Plasmon-enhanced catalysis: distinguishing thermal and nonthermal effects. Nano Lett. 18:1714–23
    [Google Scholar]
  112. 112.
    Zhan C, Chen X-J, Yi J, Li J-F, Wu D-Y, Tian Z-Q 2018. From plasmon-enhanced molecular spectroscopy to plasmon-mediated chemical reactions. Nat. Rev. Chem. 2:216–30
    [Google Scholar]
  113. 113.
    Christopher P, Moskovits M. 2017. Hot charge carrier transmission from plasmonic nanostructures. Annu. Rev. Phys. Chem. 68:379–98
    [Google Scholar]
  114. 114.
    Wu K, Chen J, McBride JR, Lian T. 2015. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 349:632–35
    [Google Scholar]
  115. 115.
    Keller EL, Frontiera RR. 2018. Ultrafast nanoscale Raman thermometry proves heating is not a primary mechanism for plasmon-driven photocatalysis. ACS Nano 12:5848–55
    [Google Scholar]
  116. 116.
    Brandt NC, Keller EL, Frontiera RR. 2016. Ultrafast surface-enhanced Raman probing of the role of hot electrons in plasmon-driven chemistry. J. Phys. Chem. Lett. 7:3179–85
    [Google Scholar]
  117. 117.
    Brooks JL, Warkentin CL, Saha D, Keller EL, Frontiera RR. 2018. Toward a mechanistic understanding of plasmon-mediated photocatalysis. Nanophotonics 7:1697–724
    [Google Scholar]
  118. 118.
    Martirez JMP, Bao JL, Carter EA. 2021. First-principles insights into plasmon-induced catalysis. Annu. Rev. Phys. Chem. 72:99–119
    [Google Scholar]
  119. 119.
    Lee SA, Link S. 2021. Chemical interface damping of surface plasmon resonances. Acc. Chem. Res. 54:1950–60
    [Google Scholar]
  120. 120.
    Lombardi A, Schmidt MK, Weller L, Deacon WM, Benz F et al. 2018. Pulsed molecular optomechanics in plasmonic nanocavities: from nonlinear vibrational instabilities to bond-breaking. Phys. Rev. X 8:011016
    [Google Scholar]
  121. 121.
    Flick J, Rivera N, Narang P. 2018. Strong light-matter coupling in quantum chemistry and quantum photonics. Nanophotonics 7:1479–501
    [Google Scholar]
  122. 122.
    Roelli P, Galland C, Piro N, Kippenberg TJ. 2016. Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering. Nat. Nanotechnol. 11:164–69
    [Google Scholar]
  123. 123.
    Schmidt MK, Esteban R, González-Tudela A, Giedke G, Aizpurua J. 2016. Quantum mechanical description of Raman scattering from molecules in plasmonic cavities. ACS Nano 10:6291–98
    [Google Scholar]
  124. 124.
    Brawley ZT, Storm SD, Contreras Mora DA, Pelton M, Sheldon M 2021. Angle-independent plasmonic substrates for multi-mode vibrational strong coupling with molecular thin films. J. Chem. Phys. 154:104305
    [Google Scholar]
  125. 125.
    Wan W, Yang X, Gao J 2016. Strong coupling between mid-infrared localized plasmons and phonons. Opt. Express 24:12367–74
    [Google Scholar]
  126. 126.
    Menghrajani KS, Nash GR, Barnes WL. 2019. Vibrational strong coupling with surface plasmons and the presence of surface plasmon stop bands. ACS Photon. 6:2110–16
    [Google Scholar]
  127. 127.
    Menghrajani KS, Chen M, Dholakia K, Barnes WL. 2022. Probing vibrational strong coupling of molecules with wavelength-modulated Raman spectroscopy. Adv. Opt. Mater. 10:2102065
    [Google Scholar]
  128. 128.
    Jin X, Cerea A, Messina GC, Rovere A, Piccoli R et al. 2018. Reshaping the phonon energy landscape of nanocrystals inside a terahertz plasmonic nanocavity. Nat. Commun. 9:763
    [Google Scholar]
  129. 129.
    Hertzog M, Munkhbat B, Baranov D, Shegai T, Börjesson K. 2021. Enhancing vibrational light–matter coupling strength beyond the molecular concentration limit using plasmonic arrays. Nano Lett. 21:1320–26. Erratum. 2021 Nano Lett. 21:5548
    [Google Scholar]
  130. 130.
    Menghrajani KS, Fernandez HA, Nash GR, Barnes WL. 2019. Hybridization of multiple vibrational modes via strong coupling using confined light fields. Adv. Opt. Mater. 7:1900403
    [Google Scholar]
  131. 131.
    Li TE, Cui B, Subotnik JE, Nitzan A. 2022. Molecular polaritonics: chemical dynamics under strong light–matter coupling. Annu. Rev. Phys. Chem. 73:43–71
    [Google Scholar]
  132. 132.
    Dunkelberger AD, Simpkins BS, Vurgaftman I, Owrutsky JC. 2022. Vibration-cavity polariton chemistry and dynamics. Annu. Rev. Phys. Chem. 73:429–51
    [Google Scholar]
  133. 133.
    Mecklenburg M, Hubbard WA, White ER, Dhall R, Cronin SB et al. 2015. Nanoscale temperature mapping in operating microelectronic devices. Science 347:629–32
    [Google Scholar]
  134. 134.
    Idrobo JC, Lupini AR, Feng T, Unocic RR, Walden FS et al. 2018. Temperature measurement by a nanoscale electron probe using energy gain and loss spectroscopy. Phys. Rev. Lett. 120:095901
    [Google Scholar]
  135. 135.
    Valeur B, Berberan-Santos MN. 2012. Molecular Fluorescence: Principles and Applications Weinheim, Ger.: Wiley-VCH. , 2nd ed..
  136. 136.
    Coppens ZJ, Li W, Walker DG, Valentine JG. 2013. Probing and controlling photothermal heat generation in plasmonic nanostructures. Nano Lett. 13:1023–28
    [Google Scholar]
  137. 137.
    Jaque D, Vetrone F. 2012. Luminescence nanothermometry. Nanoscale 4:4301–26
    [Google Scholar]
  138. 138.
    Zhou J, del Rosal B, Jaque D, Uchiyama S, Jin D 2020. Advances and challenges for fluorescence nanothermometry. Nat. Methods 17:967–80
    [Google Scholar]
  139. 139.
    Adhikari S, Spaeth P, Kar A, Baaske MD, Khatua S, Orrit M. 2020. Photothermal microscopy: imaging the optical absorption of single nanoparticles and single molecules. ACS Nano 14:16414–45
    [Google Scholar]
  140. 140.
    Szymanski HA. 1967. Raman Spectroscopy: Theory and Practice New York: Plenum Press
  141. 141.
    Maher RC, Cohen LF, Gallop JC, Le Ru EC, Etchegoin PG 2006. Temperature-dependent anti-Stokes/Stokes ratios under surface-enhanced Raman scattering conditions. J. Phys. Chem. B 110:6797–803
    [Google Scholar]
  142. 142.
    Inagaki M, Isogai T, Motobayashi K, Lin K-Q, Ren B, Ikeda K. 2020. Electronic and vibrational surface-enhanced Raman scattering: from atomically defined Au(111) and (100) to roughened Au. Chem. Sci. 11:9807–17
    [Google Scholar]
  143. 143.
    Inagaki M, Motobayashi K, Ikeda K. 2020. In situ surface-enhanced electronic and vibrational Raman scattering spectroscopy at metal/molecule interfaces. Nanoscale 12:22988–94
    [Google Scholar]
  144. 144.
    Lin K-Q, Yi J, Zhong J-H, Hu S, Liu B-J et al. 2017. Plasmonic photoluminescence for recovering native chemical information from surface-enhanced Raman scattering. Nat. Commun. 8:14891
    [Google Scholar]
  145. 145.
    Barnett SM, Harris N, Baumberg JJ. 2014. Molecules in the mirror: how SERS backgrounds arise from the quantum method of images. Phys. Chem. Chem. Phys. 16:6544–49
    [Google Scholar]
  146. 146.
    Mahajan S, Cole RM, Speed JD, Pelfrey SH, Russell AE et al. 2010. Understanding the surface-enhanced Raman spectroscopy “background. .” J. Phys. Chem. C 114:7242–50
    [Google Scholar]
  147. 147.
    Fast A, Potma EO. 2019. Coherent Raman scattering with plasmonic antennas. Nanophotonics 8:991–1021
    [Google Scholar]
  148. 148.
    Jones S, Andrén D, Karpinski P, Käll M. 2018. Photothermal heating of plasmonic nanoantennas: influence on trapped particle dynamics and colloid distribution. ACS Photon. 5:2878–87
    [Google Scholar]
  149. 149.
    Jollans T, Caldarola M, Sivan Y, Orrit M. 2020. Effective electron temperature measurement using time-resolved anti-Stokes photoluminescence. J. Phys. Chem. A 124:6968–76
    [Google Scholar]
  150. 150.
    Fang Y, Seong N-H, Dlott DD. 2008. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 321:388–92
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-062422-014911
Loading
/content/journals/10.1146/annurev-physchem-062422-014911
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error