1932

Abstract

High-resolution vibrational spectra of C–H, O–H, and N–H stretches depend on both molecular conformation and environment as well as provide a window into the frequencies of many other vibrational degrees of freedom as a result of mode mixing. We review current theoretical strategies that are being deployed to both aid and guide the analysis of the data that are encoded in these spectra. The goal is to enhance the power of vibrational spectroscopy as a tool for probing conformational preferences, hydrogen bonding effects away from equilibrium, and energy flow pathways. Recent years have seen an explosion of new methods and strategies for solving the nuclear Schrödinger equation. Rather than attempt a comprehensive review, this work highlights specific molecular systems that we have chosen as representing bonding motifs that are important to chemistry and biology. We focus on the choices theoretical chemists make regarding the level of electronic structure theory, the representation of the potential energy surface, the selection of coordinates, preferences in basis sets, and methods of solution.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-062422-021306
2023-04-24
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/physchem/74/1/annurev-physchem-062422-021306.html?itemId=/content/journals/10.1146/annurev-physchem-062422-021306&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Sumpter B, Getino C, Noid D. 1992. A neural network approach to the study of internal energy-flow in molecular-systems. J. Chem. Phys. 97:293–306
    [Google Scholar]
  2. 2.
    Dawes R, Thompson DL, Guo Y, Wagner AF, Minkoff M. 2007. Interpolating moving least-squares methods for fitting potential energy surfaces: computing high-density potential energy surface data from low-density ab initio data points. J. Chem. Phys. 126:18184108
    [Google Scholar]
  3. 3.
    Dawes R, Thompson DL, Wagner AF, Minkoff M. 2008. Interpolating moving least-squares methods for fitting potential energy surfaces: a strategy for efficient automatic data point placement in high dimensions. J. Chem. Phys. 128:8084107
    [Google Scholar]
  4. 4.
    Braams BJ, Bowman JM. 2009. Permutationally invariant potential energy surfaces in high dimensionality. Int. Rev. Phys. Chem. 28:577–606
    [Google Scholar]
  5. 5.
    Evenhuis CR, Collins MA. 2009. Locally optimized coordinates in modified Shepard interpolation. J. Phys. Chem. A 113:163979–87
    [Google Scholar]
  6. 6.
    Frankcombe TJ, Collins MA, Zhang DH. 2012. Modified Shepard interpolation of gas-surface potential energy surfaces with strict plane group symmetry and translational periodicity. J. Chem. Phys. 137:14144701
    [Google Scholar]
  7. 7.
    Behler J. 2011. Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations. Phys. Chem. Chem. Phys. 13:17930
    [Google Scholar]
  8. 8.
    Jiang B, Guo H. 2013. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. J. Chem. Phys. 139:054112
    [Google Scholar]
  9. 9.
    Jiang B, Li J, Guo H. 2016. Potential energy surfaces from high fidelity fitting of ab initio points: the permutation invariant polynomial - neural network approach. Int. Rev. Phys. Chem. 35:479–506
    [Google Scholar]
  10. 10.
    Behler J. 2015. Constructing high-dimensional neural network potentials: a tutorial review. Int. J. Quantum Chem. 115:1032–50
    [Google Scholar]
  11. 11.
    Nandi A, Qu C, Bowman JM. 2019. Using gradients in permutationally invariant polynomial potential fitting: a demonstration for CH4 using as few as 100 configurations. J. Chem. Theory Comput. 15:2826–35
    [Google Scholar]
  12. 12.
    Qu C, Yu Q, Bowman JM 2018. Permutationally invariant potential energy surfaces. Annu. Rev. Phys. Chem. 69:151–75
    [Google Scholar]
  13. 13.
    Unke OT, Koner D, Patra S, Käser S, Meuwly M. 2020. High-dimensional potential energy surfaces for molecular simulations: from empiricism to machine learning. Mach. Learn. Sci. Tech. 1:013001
    [Google Scholar]
  14. 14.
    Colbert DT, Miller WH. 1992. A novel discrete variable representation for quantum mechanical reactive scattering via the S-matrix Kohn method. J. Chem. Phys. 96:31982–91
    [Google Scholar]
  15. 15.
    Cullum JK, Willoughby RA. 1985. Lanczos Algorithms for Large Symmetric Eigenvalues Computations Boston: Birkhäuser
    [Google Scholar]
  16. 16.
    Alacid M, Leforestier C. 1998. Direct calculation of long time correlation functions using an optical potential. Int. J. Quantum Chem. 68:5317–28
    [Google Scholar]
  17. 17.
    Wang XG, Carrington T. 2003. A contracted basis-Lanczos calculation of vibrational levels of methane: solving the Schrödinger equation in nine dimensions. J. Chem. Phys. 119:101–17
    [Google Scholar]
  18. 18.
    Stanton JF. 2009. On the vibronic level structure in the NO3 radical: II. Adiabatic calculation of the infrared spectrum. Mol. Phys. 107:8–121059–75
    [Google Scholar]
  19. 19.
    Haupa KA, Johnson BA, Sibert EL, Lee YP. 2017. Infrared absorption spectra of partially deuterated methoxy radicals CH2DO and CHD2O isolated in solid para-hydrogen. J. Chem. Phys. 147:15154305
    [Google Scholar]
  20. 20.
    Mohankumar N, Carrington T. 2019. A comparison of methods for determining the time step when propagating with the Lanczos algorithm. Mathematics 7:111109
    [Google Scholar]
  21. 21.
    Sibert EL, Blodgett KN, Zwier TS. 2021. Spectroscopic manifestations of indirect vibrational state mixing: novel anharmonic effects on a prereactive H atom transfer surface. J. Phys. Chem. A 125:337318–30
    [Google Scholar]
  22. 22.
    Ribeiro F, Iung C, Leforestier C. 2002. Calculation of highly excited vibrational levels: a prediagonalized Davidson scheme. Chem. Phys. Lett. 362:3–4199–204
    [Google Scholar]
  23. 23.
    Garnier R. 2019. Dual vibration configuration interaction (DVCI). An efficient factorization of molecular Hamiltonian for high performance infrared spectrum computation. Comp. Phys. Comm. 234:263–77
    [Google Scholar]
  24. 24.
    Thomas PS, Carrington T Jr. 2015. Using nested contractions and a hierarchical tensor format to compute vibrational spectra of molecules with seven atoms. J. Phys. Chem. A 119:5213074–91
    [Google Scholar]
  25. 25.
    Thomas PS, Carrington T Jr. 2017. An intertwined method for making low-rank, sum-of-product basis functions that makes it possible to compute vibrational spectra of molecules with more than 10 atoms. J. Chem. Phys. 146:20204110
    [Google Scholar]
  26. 26.
    Thomas PS, Carrington T Jr., Agarwal J, Schaefer HF. 2018. Using an iterative eigensolver and intertwined rank reduction to compute vibrational spectra of molecules with more than a dozen atoms: uracil and naphthalene. J. Chem. Phys. 149:6064108
    [Google Scholar]
  27. 27.
    Rakhuba M, Oseledets I. 2016. Calculating vibrational spectra of molecules using tensor train decomposition. J. Chem. Phys. 145:12124101
    [Google Scholar]
  28. 28.
    Madsen NK, Godtliebsen IH, Christiansen O. 2017. Efficient algorithms for solving the non-linear vibrational coupled-cluster equations using full and decomposed tensors. J. Chem. Phys. 146:13134110
    [Google Scholar]
  29. 29.
    Soley MB, Bergold P, Batista VS. 2021. Iterative power algorithm for global optimization with quantics tensor trains. J. Chem. Theory Comp. 17:63280–91
    [Google Scholar]
  30. 30.
    Soley MB, Bergold P, Gorodetsky AA, Batista VS. 2022. Functional tensor-train Chebyshev method for multidimensional quantum dynamics simulations. J. Chem. Theory Comp. 18:25–36
    [Google Scholar]
  31. 31.
    Beylkin G, Mohlenkamp M. 2005. Algorithms for numerical analysis in high dimensions. SIAM J. Sci. Comp. 26:62133–59
    [Google Scholar]
  32. 32.
    Yurchenko SN, Thiel W, Jensen P. 2007. Theoretical rovibrational energies (trove): a robust numerical approach to the calculation of rovibrational energies for polyatomic molecules. J. Mol. Spec. 245:2126–40
    [Google Scholar]
  33. 33.
    Carter S, Bowman JM, Handy NC. 1998. Extensions and tests of ‘multimodes’: a code to obtain accurate vibration/rotation energies of many-mode molecules. Theor. Chem. Acc. 100:1–4191–98
    [Google Scholar]
  34. 34.
    Bowman JM, Carter S, Huang X. 2003. Multimode: a code to calculate rovibrational energies of polyatomic molecules. Int. Rev. Phys. Chem. 22:3533–49
    [Google Scholar]
  35. 35.
    Fabri C, Matyus E, Csaszar AG. 2011. Rotating full- and reduced-dimensional quantum chemical models of molecules. J. Chem. Phys. 134:7074105
    [Google Scholar]
  36. 36.
    Csaszar AG, Fabri C, Szidarovszky T, Matyus E, Furtenbacher T, Czako G. 2012. The fourth age of quantum chemistry: molecules in motion. Phys. Chem. Chem. Phys. 14:31085–106
    [Google Scholar]
  37. 37.
    Mizukami W, Tew DP. 2013. A second-order multi-reference perturbation method for molecular vibrations. J. Chem. Phys. 139:19194108
    [Google Scholar]
  38. 38.
    Sibaev M, Crittenden DL. 2016. PyVCI: a flexible open-source code for calculating accurate molecular infrared spectra. Comp. Phys. Comm. 203:290–97
    [Google Scholar]
  39. 39.
    Sibaev M, Crittenden DL. 2016. Balancing accuracy and efficiency in selecting vibrational configuration interaction basis states using vibrational perturbation theory. J. Chem. Phys. 145:6064106
    [Google Scholar]
  40. 40.
    Beck M, Jackle A, Worth G, Meyer H. 2000. The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets. Phys. Rep. 324:1–105
    [Google Scholar]
  41. 41.
    Manthe U. 2008. A multilayer multiconfigurational time-dependent Hartree approach for quantum dynamics on general potential energy surfaces. J. Chem. Phys. 128:16164116
    [Google Scholar]
  42. 42.
    Manthe U. 2009. Layered discrete variable representations and their application within the multiconfigurational time-dependent Hartree approach. J. Chem. Phys. 130:5054109
    [Google Scholar]
  43. 43.
    Meyer HD. 2012. Studying molecular quantum dynamics with the multiconfiguration time-dependent Hartree method. Wiley Interdiscip. Rev. Comp. Mol. Sci. 2:2351–74
    [Google Scholar]
  44. 44.
    Carney J, Zwier T. 2000. The infrared and ultraviolet spectra of individual conformational isomers of biomolecules: tryptamine. J. Phys. Chem. A 104:388677–88
    [Google Scholar]
  45. 45.
    Dian BC, Longarte A, Mercier S, Evans DA, Wales DJ, Zwier TS. 2002. The infrared and ultraviolet spectra of single conformations of methyl-capped dipeptides: N-acetyl tryptophan amide and N-acetyl tryptophan methyl amide. J. Chem. Phys. 117:2310688–702
    [Google Scholar]
  46. 46.
    Masson A, Kamrath MZ, Perez MAS, Glover MS, Rothlisberger U et al. 2015. Infrared spectroscopy of mobility-selected H+-Gly-Pro-Gly-Gly (GPGG). J. Am. Soc. Mass Spectrom. 26:91444–54
    [Google Scholar]
  47. 47.
    Garand E, Kamrath MZ, Jordan PA, Wolk AB, Leavitt CM et al. 2012. Determination of noncovalent docking by infrared spectroscopy of cold gas-phase complexes. Science 335:6069694–98
    [Google Scholar]
  48. 48.
    Boyarkin OV. 2018. Cold ion spectroscopy for structural identifications of biomolecules. Int. Rev. Phys. Chem. 37:3–4559–606
    [Google Scholar]
  49. 49.
    Burke NL, DeBlase AF, Redwine JG, Hopkins JR, McLuckey SA, Zwier TS. 2016. Gas-phase folding of a prototypical protonated pentapeptide: spectroscopic evidence for formation of a charge-stabilized beta-hairpin. J. Am. Chem. Soc. 138:82849–57
    [Google Scholar]
  50. 50.
    DeBlase AF, Dziekonski ET, Hopkins JR, Burke NL, Sheng H et al. 2016. Alkali cation chelation in cold beta-o-4 tetralignol complexes. J. Phys. Chem. A 120:367152–66
    [Google Scholar]
  51. 51.
    DeBlase AF, Harrilal CP, Lawler JT, Burke NL, McLuckey SA, Zwiere TS. 2017. Conformation-specific infrared and ultraviolet spectroscopy of cold [YAPAA+H]+ and [YGPAA+H]+ ions: a stereochemical “twist” on the β-hairpin turn. J. Am. Chem. Soc. 139:155481–93
    [Google Scholar]
  52. 52.
    Andersson M, Uvdal P. 2005. New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ζ basis set 6-311+g(d,p). J. Phys. Chem. A 109:122937–41
    [Google Scholar]
  53. 53.
    Fischer KC, Sherman SL, Garand E. 2020. Competition between solvation and intramolecular hydrogen-bonding in microsolvated protonated glycine and β-alanine. J. Phys. Chem. A 124:81593–602
    [Google Scholar]
  54. 54.
    Lawler JT, Harrilal CP, DeBlase AF, Sibert EL, McLuckey SA, Zwier TS. 2022. Single-conformation spectroscopy of cold, protonated DPG-containing peptides: switching β-turn types and formation of a sequential type II/II′ double β-turn. Phys. Chem. Chem. Phys. 24:42095–109
    [Google Scholar]
  55. 55.
    Nielsen HH. 1945. The vibration-rotation energies of polyatomic molecules part II. Accidental degeneracies. Phys. Rev. 68:7–8181–91
    [Google Scholar]
  56. 56.
    Herman RC, Shaffer WH. 1948. The calculation of perturbation energies in vibrating rotating polyatomic molecules. J. Chem. Phys. 16:5453–65
    [Google Scholar]
  57. 57.
    McCoy AB, Sibert EL 1990. Perturbative approaches to highly excited molecular vibrations of H2O, D2O and HDO. J. Chem. Phys. 92:1893–901
    [Google Scholar]
  58. 58.
    Kauppi E, Halonen L. 1995. 5-dimensional local mode-Fermi resonance model for overtone spectra of ammonia. J. Chem. Phys. 103:166861–72
    [Google Scholar]
  59. 59.
    Mackeprang K, Hanninen V, Halonen L, Kjaergaard HG. 2015. The effect of large amplitude motions on the vibrational intensities in hydrogen bonded complexes. J. Chem. Phys. 142:9094304
    [Google Scholar]
  60. 60.
    Puzzarini C, Biczysko M, Barone V. 2011. Accurate anharmonic vibrational frequencies for uracil: the performance of composite schemes and hybrid CC/DFT model. J. Chem. Theory Comp. 7:113702–10
    [Google Scholar]
  61. 61.
    Maslen PE, Handy NC, Amos RD, Jayatilaka D. 1992. Higher analytic derivatives. IV. Anharmonic effects in the benzene spectrum. J. Chem. Phys. 97:64233–54
    [Google Scholar]
  62. 62.
    Roy TK, Carrington JT, Gerber RB. 2014. Approximate first-principles anharmonic calculations of polyatomic spectra using MP2 and B3LYP potentials: comparisons with experiment. J. Phys. Chem. A 118:33, SI6730–39
    [Google Scholar]
  63. 63.
    Roy TK. 2022. Performance of vibrational self-consistent field theory for accurate potential energy surfaces: fundamentals, excited states, and intensities. J. Phys. Chem. A 126:4608–622
    [Google Scholar]
  64. 64.
    Maltseva E, Petrignani A, Candian A, Mackie CJ, Huang X et al. 2015. High-resolution IR absorption spectroscopy of polycyclic aromatic hydrocarbons: the realm of anharmonicity. Astrophys. J. 814:23
    [Google Scholar]
  65. 65.
    Mackie CJ, Candian A, Huang X, Maltseva E, Petrignani A et al. 2016. The anharmonic quartic force field infrared spectra of five non-linear polycyclic aromatic hydrocarbons: benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene. J. Chem. Phys. 145:8084313
    [Google Scholar]
  66. 66.
    Mackie CJ, Candian A, Huang X, Maltseva E, Petrignani A et al. 2018. The anharmonic quartic force field infrared spectra of hydrogenated and methylated PAHs. Phys. Chem. Chem. Phys. 20:21189–97
    [Google Scholar]
  67. 67.
    Stropoli SJ, Khuu T, Boyer MA, Karimova VN, Gavin-Hanner CF et al. 2022. Electronic and mechanical anharmonicities in the vibrational spectra of the H-bonded, cryogenically cooled X · HOCl (X = Cl, Br, I) complexes: characterization of the strong anionic H-bond to an acidic OH group. J. Chem. Phys. 156:17174303
    [Google Scholar]
  68. 68.
    Stropoli SJ, Khuu T, Messinger JP, Karimova VN, Boyer MA et al. 2022. Preparation and characterization of the halogen-bonding motif in the isolated Cl · IOH complex with cryogenic ion vibrational spectroscopy. J. Phys. Chem. Lett. 13:122750–56
    [Google Scholar]
  69. 69.
    Boyer MA, McCoy AB. 2022. A flexible approach to vibrational perturbation theory using sparse matrix methods. J. Chem. Phys. 156:5054107
    [Google Scholar]
  70. 70.
    Franke PR, Tabor DP, Moradi CP, Douberly GE, Agarwal J et al. 2016. Infrared laser spectroscopy of the n-propyl and i-propyl radicals: stretch-bend Fermi coupling in the alkyl CH stretch region. J. Chem. Phys. 145:22224304
    [Google Scholar]
  71. 71.
    Franke PR, Stanton JF, Douberly GE. 2021. How to VPT2: accurate and intuitive simulations of CH stretching infrared spectra using VPT2+K with large effective Hamiltonian resonance treatments. J. Phys. Chem. A 125:61301–24
    [Google Scholar]
  72. 72.
    Barnes GL, Kellman ME. 2011. Detailed analysis of polyad-breaking spectroscopic Hamiltonians for multiple minima with above barrier motion: isomerization in HO2. J. Chem. Phys. 134:7074108
    [Google Scholar]
  73. 73.
    Mackie CJ, Candian A, Huang X, Maltseva E, Petrignani A et al. 2015. The anharmonic quartic force field infrared spectra of three polycyclic aromatic hydrocarbons: naphthalene, anthracene, and tetracene. J. Chem. Phys. 143:22224314
    [Google Scholar]
  74. 74.
    Kim HL, Kulp TJ, McDonald JD. 1987. Infrared fluorescence study on the threshold of intramolecular vibrational-state mixing. J. Chem. Phys. 87:84376–82
    [Google Scholar]
  75. 75.
    Almlöf J, Taylor PR. 1987. General contraction of Gaussian basis sets. I. Atomic natural orbitals for first- and second-row atoms. J. Chem. Phys. 86:74070–77
    [Google Scholar]
  76. 76.
    Buchanan EG, Dean JC, Zwier TS, Sibert EL. 2013. Towards a first-principles model of Fermi resonance in the alkyl CH stretch region: application to 1,2-diphenylethane and 2,2,2-paracyclophane. J. Chem. Phys. 138:6064308
    [Google Scholar]
  77. 77.
    Buchanan EG, Sibert EL, Zwier TS. 2013. Ground state conformational preferences and CH stretch-bend coupling in a model alkoxy chain: 1,2-diphenoxyethane. J. Phys. Chem. A 117:132800–11
    [Google Scholar]
  78. 78.
    Kidwell NM, Mehta-Hurt DN, Korn JA, Sibert EL, Zwier TS. 2014. Ground and excited state infrared spectroscopy of jet-cooled radicals: exploring the photophysics of trihydronaphthyl and inden-2-ylmethyl. J. Chem. Phys. 140:21214302
    [Google Scholar]
  79. 79.
    Tabor DP, Hewett DM, Bocklitz S, Korn JA, Tomaine AJ et al. 2016. Anharmonic modeling of the conformation-specific IR spectra of ethyl, n-propyl, and n-butylbenzene. J. Chem. Phys. 144:22224310
    [Google Scholar]
  80. 80.
    Blodgett KN, Sun D, Fischer JL, Sibert EL, Zwier TS. 2019. Vibronic spectroscopy of methyl anthranilate and its water complex: hydrogen atom dislocation in the excited state. Phys. Chem. Chem. Phys. 21:21355–69
    [Google Scholar]
  81. 81.
    Tabor DP, Kusaka R, Walsh PS, Sibert EL, Zwier TS. 2015. Isomer-specific spectroscopy of benzene-(H2O)n, n = 6, 7: benzene's role in reshaping water's three-dimensional networks. J. Phys. Chem. Lett. 6:101989–95
    [Google Scholar]
  82. 82.
    Sibert EL. 2019. Modeling vibrational anharmonicity in infrared spectra of high frequency vibrations of polyatomic molecules. J. Chem. Phys. 150:9090901
    [Google Scholar]
  83. 83.
    Bernath PF, Bittner DM, Sibert EL. 2019. Isobutane infrared bands: partial rotational assignments, ab initio calculations, and local mode analysis. J. Phys. Chem. A 123:296185–93
    [Google Scholar]
  84. 84.
    Jacob CR, Reiher M. 2009. Localizing normal modes in large molecules. J. Chem. Phys. 130:884106
    [Google Scholar]
  85. 85.
    Weymuth T, Jacob CR, Reiher M. 2010. A local-mode model for understanding the dependence of the extended amide III vibrations on protein secondary structure. J. Phys. Chem. B 114:3210649–60
    [Google Scholar]
  86. 86.
    Sibert EL. 2013. Dressed local mode Hamiltonians for CH stretch vibrations. Mol. Phys. 111:14–152093–99
    [Google Scholar]
  87. 87.
    Cheng X, Steele RP. 2014. Efficient anharmonic vibrational spectroscopy for large molecules using local-mode coordinates. J. Chem. Phys. 141:10104105
    [Google Scholar]
  88. 88.
    Cheng X, Talbot JJ, Steele RP. 2016. Tuning vibrational mode localization with frequency windowing. J. Chem. Phys. 145:12124112
    [Google Scholar]
  89. 89.
    Zimmerman PM, Smereka P. 2016. Optimizing vibrational coordinates to modulate intermode coupling. J. Chem. Theory Comp. 12:41883–91
    [Google Scholar]
  90. 90.
    Bernath PF, Sibert EL. 2020. Cyclohexane vibrations: high-resolution spectra and anharmonic local mode calculations. J. Phys. Chem. A 124:489991–10000
    [Google Scholar]
  91. 91.
    Wilson EB, Decius JC, Cross PC. 1955. Molecular Vibrations New York: McGraw-Hill
    [Google Scholar]
  92. 92.
    Halonen L 1998. Local mode vibrations in polyatomic molecules. Advances in Chemical Physics, Vol. 104 I Prigogine, SA Rice 41–179. New York: John Wiley & Sons, Ltd.
    [Google Scholar]
  93. 93.
    Hewett DM, Bocklitz S, Tabor DP, Sibert EL, Suhm MA, Zwier TS. 2017. Identifying the first folded alkylbenzene via ultraviolet, infrared, and Raman spectroscopy of pentylbenzene through decylbenzene. Chem. Sci. 8:85305–18
    [Google Scholar]
  94. 94.
    Kilpatrick JE, Pitzer KS, Spitzer R. 1947. The thermodynamics and molecular structure of cyclopentane. J. Am. Chem. Soc. 69:102483–88
    [Google Scholar]
  95. 95.
    Chao TH, Laane J. 1978. Vibrational studies of cyclopentane: effect of 10-fold barrier to pseudorotation. J. Mol. Spec. 70:3357–60
    [Google Scholar]
  96. 96.
    Bauman LE, Laane J. 1988. Pseudorotation of cyclopentane and its deuterated derivatives. J. Phys. Chem. 92:51040–51
    [Google Scholar]
  97. 97.
    MacPhail RA, Variyar JE. 1989. Pseudorotation dynamics in liquid cyclopentane by Raman spectroscopy. Chem. Phys. Lett. 161:3239–44
    [Google Scholar]
  98. 98.
    Variyar JE, MacPhail RA. 1992. Pseudorotation and the Raman CH stretching spectrum of gaseous cyclopentane-D9: local modes in a floppy molecule. J. Phys. Chem. 96:2576–84
    [Google Scholar]
  99. 99.
    Pan X, MacPhail R. 1993. A Raman-study of cyclopentane-d9 pseudorotation dynamics as a function of pressure. Chem. Phys. Lett. 212:1–264–70
    [Google Scholar]
  100. 100.
    Kowalewski P, Frey HM, Infanger D, Leutwyler S. 2015. Probing the structure, pseudorotation, and radial vibrations of cyclopentane by femtosecond rotational Raman coherence spectroscopy. J. Phys. Chem. A 119:4511215–25
    [Google Scholar]
  101. 101.
    Strauss HL. 1983. Pseudorotation: a large amplitude molecular motion. Annu. Rev. Phys. Chem. 34:301–28
    [Google Scholar]
  102. 102.
    Sibert EL, Bernath PF. 2022. A local mode study of ring puckering effects in the infrared spectra of cyclopentane. J. Chem. Phys. 156:214305
    [Google Scholar]
  103. 103.
    Sax AF. 2008. On pseudorotation. Chem. Phys. 349:1–39–31
    [Google Scholar]
  104. 104.
    Ho KL, Lee LY, Katada M, Fujii A, Kuo JL. 2016. An ab initio anharmonic approach to study vibrational spectra of small ammonia clusters. Phys. Chem. Chem. Phys. 18:4430498–506
    [Google Scholar]
  105. 105.
    Mishra S, Kuo JL, Patwari GN. 2018. Hydrogen bond induced enhancement of Fermi resonances in N–H … N hydrogen bonded complexes of anilines. Phys. Chem. Chem. Phys. 20:3321557–66
    [Google Scholar]
  106. 106.
    Zhang B, Huang QR, Jiang S, Chen LW, Hsu PJ et al. 2019. Infrared spectra of neutral dimethylamine clusters: an infrared-vacuum ultraviolet spectroscopic and anharmonic vibrational calculation study. J. Chem. Phys. 150:6064317
    [Google Scholar]
  107. 107.
    Lin C, Huang Q, Hayashi M, Kuo J. 2021. An ab initio anharmonic approach to IR, Raman and SFG spectra of the solvated methylammonium ion. Phys. Chem. Chem. Phys. 23:4525736–47
    [Google Scholar]
  108. 108.
    Lin C, Huang Q, Li Y, Nguyen H, Kuo J, Fujii A. 2021. Anharmonic coupling revealed by the vibrational spectra of solvated protonated methanol: Fermi resonance, combination bands, and isotope effect. J. Phys. Chem. A 125:91910–18
    [Google Scholar]
  109. 109.
    Feng J, Lee Y, Witek HA, Hsu P, Kuo J, Ebata T. 2021. Structures of pyridine–water clusters studied with infrared–vacuum ultraviolet spectroscopy. J. Phys. Chem. A 125:34, SI7489–501
    [Google Scholar]
  110. 110.
    Zhang B, Kong X, Jiang S, Zhao Z, Yang D et al. 2017. Infrared-vacuum ultraviolet spectroscopic and theoretical study of neutral methylamine dimer. J. Phys. Chem. A 121:387176–82
    [Google Scholar]
  111. 111.
    Christiansen O. 2012. Selected new developments in vibrational structure theory: potential construction and vibrational wave function calculations. Phys. Chem. Chem. Phys. 14:196672–87
    [Google Scholar]
  112. 112.
    Jung J, Gerber R. 1996. Vibrational wave functions and energy levels of large anharmonic clusters: a vibrational SCF study of Ar13. J. Chem. Phys. 105:2410682–90
    [Google Scholar]
  113. 113.
    Chaban G, Jung J, Gerber R 1999. Ab initio calculation of anharmonic vibrational states of polyatomic systems: electronic structure combined with vibrational self-consistent field. J. Chem. Phys 111:51823–29
    [Google Scholar]
  114. 114.
    Heindel JP, Xantheas SS. 2020. The many-body expansion for aqueous systems revisited: I. Water–water interactions. J. Chem. Theory Comp. 16:116843–55
    [Google Scholar]
  115. 115.
    Kallullathil SD, Carrington T Jr. 2021. Computing vibrational energy levels by solving linear equations using a tensor method with an imposed rank. J. Chem. Phys. 155:23234105
    [Google Scholar]
  116. 116.
    Simmons J, Carrington T Jr. 2021. Using collocation and solutions for a sum-of-product potential to compute vibrational energy levels for general potentials. Chem. Phys. Lett. 781:138967
    [Google Scholar]
  117. 117.
    Wodraszka R, Carrington T Jr. 2021. A rectangular collocation multi-configuration time-dependent Hartree (MCTDH) approach with time-independent points for calculations on general potential energy surfaces. J. Chem. Phys. 154:11114107
    [Google Scholar]
  118. 118.
    Flynn SW, Mandelshtam VA. 2021. Molecular spectra calculations using an optimized quasi-regular Gaussian basis and the collocation method. J. Chem. Theory Comp. 17:117169–77
    [Google Scholar]
  119. 119.
    Huang QR, Shishido R, Lin CK, Tsai CW, Tan JA et al. 2021. Strong Fermi resonance associated with proton motions revealed by vibrational spectra of asymmetric proton-bound dimers. Angew. Chem. Int. Ed. 60:41936–41
    [Google Scholar]
  120. 120.
    Roscioli JR, McCunn LR, Johnson MA. 2007. Quantum structure of the intermolecular proton bond. Science 316:5822249–54
    [Google Scholar]
  121. 121.
    Kuo J. 2021. Disentangling the complex vibrational spectra of hydrogen-bonded clusters of 2-pyridone with ab initio structural search and anharmonic analysis. J. Phys. Chem. A 125:204306–12
    [Google Scholar]
  122. 122.
    Wang Y, Bowman JM. 2011. Ab initio potential and dipole moment surfaces for water. II. Local-monomer calculations of the infrared spectra of water clusters. J. Chem. Phys. 134:15154510
    [Google Scholar]
  123. 123.
    Wang Y, Bowman JM. 2012. Coupled-monomers in molecular assemblies: theory and application to the water tetramer, pentamer, and ring hexamer. J. Chem. Phys. 136:14144113
    [Google Scholar]
  124. 124.
    Liu H, Wang Y, Bowman JM. 2014. Local-monomer calculations of the intramolecular IR spectra of the cage and prism isomers of HOD(D2O)5 and HOD and D2O ice Ih. J. Phys. Chem. B 118:4914124–31
    [Google Scholar]
  125. 125.
    Yu Q, Bowman JM. 2020. Tracking hydronium/water stretches in magic H3O+(H2O)20 clusters through high-level quantum VSCF/VCI calculations. J. Phys. Chem. A 124:6, SI1167–75
    [Google Scholar]
  126. 126.
    Wang Y, Huang X, Shepler BC, Braams BJ, Bowman JM. 2011. Flexible, ab initio potential, and dipole moment surfaces for water. I. Tests and applications for clusters up to the 22-mer. J. Chem. Phys. 134:9094509
    [Google Scholar]
  127. 127.
    Bowman JM. 1978. Self-consistent field energies and wavefunctions for coupled oscillators. J. Chem. Phys. 68:2608–10
    [Google Scholar]
  128. 128.
    Gerber R, Ratner M. 1979. A semiclassical self-consistent field (SC-SCF) approximation for eigenvalues of coupled-vibration systems. Chem. Phys. Lett. 68:195–98
    [Google Scholar]
  129. 129.
    Meyer KAE, Suhm MA. 2019. Stretching of cis-formic acid: warm-up and cool-down as molecular work-out. Chem. Sci. 10:256285–94
    [Google Scholar]
  130. 130.
    Nejad A, Suhm MA, Meyer KAE. 2020. Increasing the weights in the molecular work-out of cis- and trans-formic acid: extension of the vibrational database via deuteration. J. Chem. Phys. 22:4425492–501
    [Google Scholar]
  131. 131.
    Mata RA, Suhm MA. 2017. Benchmarking quantum chemical methods: Are we heading in the right direction?. Angew. Chem. Int. Ed. 56:37, SI11011–18
    [Google Scholar]
  132. 132.
    Tew DP, Mizukami W. 2016. Ab initio vibrational spectroscopy of cis- and trans-formic acid from a global potential energy surface. J. Phys. Chem. A 120:499815–28
    [Google Scholar]
  133. 133.
    Pandey A, Poirier B. 2020. Plumbing potentials for molecules with up to tens of atoms: how to find saddle points and fix leaky holes. J. Phys. Chem. Lett. 11:156468–74
    [Google Scholar]
  134. 134.
    Pandey A, Poirier B. 2020. An algorithm to find (and plug) “holes” in multi-dimensional surfaces. J. Chem. Phys. 152:21214102
    [Google Scholar]
  135. 135.
    Hoy A, Mills I, Strey G. 1972. Anharmonic force constant calculations. Mol. Phys. 24:61265–90
    [Google Scholar]
  136. 136.
    Richter F, Carbonniere P, Pouchan C. 2014. Toward linear scaling: locality of potential energy surface coupling in valence coordinates. Int. J. Quantum Chem. 114:20, SI1401–11
    [Google Scholar]
  137. 137.
    Richter F, Carbonniere P, Dargelos A, Pouchan C. 2012. An adaptive potential energy surface generation method using curvilinear valence coordinates. J. Chem. Phys. 136:22224105
    [Google Scholar]
  138. 138.
    Richter F, Carbonnière P. 2022. Vibrational treatment of hydroxylamine in valence coordinates. J. Chem. Phys. 156:8084306
    [Google Scholar]
  139. 139.
    Richter F, Thaunay F, Lauvergnat D, Carbonnière P. 2015. Anharmonic vibrational treatment exclusively in coordinates: the case of formamide curvilinear valence. J. Phys. Chem. A 119:4811719–28
    [Google Scholar]
  140. 140.
    Aerts A, Carbonnière P, Richter F, Brown A. 2020. Vibrational states of deuterated trans- and cis-formic acid: DCOOH, HCOOD, and DCOOD. J. Chem. Phys. 152:2024305
    [Google Scholar]
  141. 141.
    McCoy AB, Burleigh DC, Sibert EL. 1991. Rotation-vibration interactions in highly excited states of SO2 and H2CO. J. Chem. Phys. 95:107449–65
    [Google Scholar]
  142. 142.
    Luckhaus D. 2000. 6D vibrational quantum dynamics: generalized coordinate discrete variable representation and (a)diabatic contraction. J. Chem. Phys. 113:41329–47
    [Google Scholar]
  143. 143.
    Vogt E, Simkó I, Császár AG, Kjaergaard HG. 2022. Reduced-dimensional vibrational models of the water dimer. J. Chem. Phys. 156:16164304
    [Google Scholar]
  144. 144.
    Richter F, Carbonnière P. 2018. Vibrational treatment of the formic acid double minimum case in valence coordinates. J. Chem. Phys. 148:6064303
    [Google Scholar]
  145. 145.
    Gatti F, Iung C. 2009. Exact and constrained kinetic energy operators for polyatomic molecules: the polyspherical approach. Phys. Rep. 484:1–21–69
    [Google Scholar]
  146. 146.
    Bowman JM, Carrington T Jr., Meyer HD. 2008. Variational quantum approaches for computing vibrational energies of polyatomic molecules. Mol. Phys. 106:16–182145–82
    [Google Scholar]
  147. 147.
    Tibshirani R. 1996. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Meth. 58:267–88
    [Google Scholar]
  148. 148.
    Hougen J, Bunker P, Johns J. 1970. Vibration-rotation problem in triatomic molecules allowing for a large-amplitude bending vibration. J. Mol. Spec. 34:136–72
    [Google Scholar]
  149. 149.
    Nejad A, Sibert EL. 2021. The Raman jet spectrum of trans-formic acid and its deuterated isotopologs: combining theory and experiment to extend the vibrational database. J. Chem. Phys. 154:6064301
    [Google Scholar]
  150. 150.
    Simons G, Parr RG, Finlan JM. 1973. New alternative to the Dunham potential for diatomic molecules. J. Chem. Phys. 59:63229–34
    [Google Scholar]
  151. 151.
    Pickett HM. 1972. Vibration–rotation interactions and the choice of rotating axes for polyatomic molecules. J. Chem. Phys. 56:41715–23
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-062422-021306
Loading
/content/journals/10.1146/annurev-physchem-062422-021306
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error