1932

Abstract

By superlocalizing the positions of millions of single molecules over many camera frames, a class of super-resolution fluorescence microscopy methods known as single-molecule localization microscopy (SMLM) has revolutionized how we understand subcellular structures over the past decade. In this review, we highlight emerging studies that transcend the outstanding structural (shape) information offered by SMLM to extract and map physicochemical parameters in living mammalian cells at single-molecule and super-resolution levels. By encoding/decoding high-dimensional information—such as emission and excitation spectra, motion, polarization, fluorescence lifetime, and beyond—for every molecule, and mass accumulating these measurements for millions of molecules, such multidimensional and multifunctional super-resolution approaches open new windows into intracellular architectures and dynamics, as well as their underlying biophysical rules, far beyond the diffraction limit.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-070623-034225
2024-06-28
2025-04-22
Loading full text...

Full text loading...

/deliver/fulltext/physchem/75/1/annurev-physchem-070623-034225.html?itemId=/content/journals/10.1146/annurev-physchem-070623-034225&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Liu Z, Lavis LD, Betzig E. 2015.. Imaging live-cell dynamics and structure at the single-molecule level. . Mol. Cell 58::64459
    [Crossref] [Google Scholar]
  2. 2.
    Sahl SJ, Hell SW, Jakobs S. 2017.. Fluorescence nanoscopy in cell biology. . Nat. Rev. Mol. Cell Biol. 18::685701
    [Crossref] [Google Scholar]
  3. 3.
    Sigal YM, Zhou R, Zhuang X. 2018.. Visualizing and discovering cellular structures with super-resolution microscopy. . Science 361::88087
    [Crossref] [Google Scholar]
  4. 4.
    Möckl L, Moerner WE. 2020.. Super-resolution microscopy with single molecules in biology and beyond–essentials, current trends, and future challenges. . J. Am. Chem. Soc. 142::1782844
    [Crossref] [Google Scholar]
  5. 5.
    Lelek M, Gyparaki MT, Beliu G, Schueder F, Griffié J, et al. 2021.. Single-molecule localization microscopy. . Nat. Rev. Methods Primers 1::39
    [Crossref] [Google Scholar]
  6. 6.
    Xiang L, Chen K, Xu K. 2021.. Single molecules are your quanta: a bottom-up approach toward multidimensional super-resolution microscopy. . ACS Nano 15::1248396
    [Crossref] [Google Scholar]
  7. 7.
    Yan R, Wang B, Xu K. 2019.. Functional super-resolution microscopy of the cell. . Curr. Opin. Chem. Biol. 51::9297
    [Crossref] [Google Scholar]
  8. 8.
    Weiss S. 1999.. Fluorescence spectroscopy of single biomolecules. . Science 283::167683
    [Crossref] [Google Scholar]
  9. 9.
    Moerner WE, Fromm DP. 2003.. Methods of single-molecule fluorescence spectroscopy and microscopy. . Rev. Sci. Instrum. 74::3597619
    [Crossref] [Google Scholar]
  10. 10.
    Xie XS, Choi PJ, Li GW, Lee NK, Lia G. 2008.. Single-molecule approach to molecular biology in living bacterial cells. . Annu. Rev. Biophys. 37::41744
    [Crossref] [Google Scholar]
  11. 11.
    Joo C, Balci H, Ishitsuka Y, Buranachai C, Ha T. 2008.. Advances in single-molecule fluorescence methods for molecular biology. . Annu. Rev. Biochem. 77::5176
    [Crossref] [Google Scholar]
  12. 12.
    Klymchenko AS. 2017.. Solvatochromic and fluorogenic dyes as environment-sensitive probes: design and biological applications. . Acc. Chem. Res. 50::36675
    [Crossref] [Google Scholar]
  13. 13.
    Sharonov A, Hochstrasser RM. 2006.. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. . PNAS 103::1891116
    [Crossref] [Google Scholar]
  14. 14.
    Lew MD, Lee SF, Ptacin JL, Lee MK, Twieg RJ, et al. 2011.. Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus. . PNAS 108::E110210
    [Crossref] [Google Scholar]
  15. 15.
    Bongiovanni MN, Godet J, Horrocks MH, Tosatto L, Carr AR, et al. 2016.. Multi-dimensional super-resolution imaging enables surface hydrophobicity mapping. . Nat. Commun. 7::13544
    [Crossref] [Google Scholar]
  16. 16.
    Moon S, Yan R, Kenny SJ, Shyu Y, Xiang L, et al. 2017.. Spectrally resolved, functional super-resolution microscopy reveals nanoscale compositional heterogeneity in live-cell membranes. . J. Am. Chem. Soc. 139::1094447
    [Crossref] [Google Scholar]
  17. 17.
    Lee JE, Sang JC, Rodrigues M, Carr AR, Horrocks MH, et al. 2018.. Mapping surface hydrophobicity of α-synuclein oligomers at the nanoscale. . Nano Lett. 18::7494501
    [Crossref] [Google Scholar]
  18. 18.
    Ding T, Wu T, Mazidi H, Zhang O, Lew MD. 2020.. Single-molecule orientation localization microscopy for resolving structural heterogeneities between amyloid fibrils. . Optica 7::6027
    [Crossref] [Google Scholar]
  19. 19.
    He C, Wu CY, Li W, Xu K. 2023.. Multidimensional super-resolution microscopy unveils nanoscale surface aggregates in the aging of FUS condensates. . J. Am. Chem. Soc. 145::2424048
    [Crossref] [Google Scholar]
  20. 20.
    Ries J, Udayar V, Soragni A, Hornemann S, Nilsson KP, et al. 2013.. Superresolution imaging of amyloid fibrils with binding-activated probes. . ACS Chem. Neurosci. 4::105761
    [Crossref] [Google Scholar]
  21. 21.
    Shaban HA, Valades-Cruz CA, Savatier J, Brasselet S. 2017.. Polarized super-resolution structural imaging inside amyloid fibrils using Thioflavine T. . Sci. Rep. 7::12482
    [Crossref] [Google Scholar]
  22. 22.
    Needham LM, Weber J, Varela JA, Fyfe JWB, Do DT, et al. 2020.. ThX – a next-generation probe for the early detection of amyloid aggregates. . Chem. Sci. 11::457883
    [Crossref] [Google Scholar]
  23. 23.
    Torra J, Viela F, Megias D, Sot B, Flors C. 2022.. Versatile near-infrared super-resolution imaging of amyloid fibrils with the fluorogenic probe CRANAD-2. . Chemistry 28::e202200026
    [Crossref] [Google Scholar]
  24. 24.
    Morten MJ, Sirvio L, Rupawala H, Mee Hayes E, Franco A, et al. 2022.. Quantitative super-resolution imaging of pathological aggregates reveals distinct toxicity profiles in different synucleinopathies. . PNAS 119::e2205591119
    [Crossref] [Google Scholar]
  25. 25.
    Liu B, Stone OJ, Pablo M, Herron JC, Nogueira AT, et al. 2021.. Biosensors based on peptide exposure show single molecule conformations in live cells. . Cell 184::567085
    [Crossref] [Google Scholar]
  26. 26.
    Chan J, Dodani SC, Chang CJ. 2012.. Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. . Nat. Chem. 4::97384
    [Crossref] [Google Scholar]
  27. 27.
    Halabi EA, Thiel Z, Trapp N, Pinotsi D, Rivera-Fuentes P. 2017.. A photoactivatable probe for super-resolution imaging of enzymatic activity in live cells. . J. Am. Chem. Soc. 139::132007
    [Crossref] [Google Scholar]
  28. 28.
    Chai X, Han HH, Sedgwick AC, Li N, Zang Y, et al. 2020.. Photochromic fluorescent probe strategy for the super-resolution imaging of biologically important biomarkers. . J. Am. Chem. Soc. 142::1800513
    [Crossref] [Google Scholar]
  29. 29.
    Tang AH, Chen H, Li TP, Metzbower SR, MacGillavry HD, Blanpied TA. 2016.. A trans-synaptic nanocolumn aligns neurotransmitter release to receptors. . Nature 536::21014
    [Crossref] [Google Scholar]
  30. 30.
    Ellefsen KL, Holt JR, Chang AC, Nourse JL, Arulmoli J, et al. 2019.. Myosin-II mediated traction forces evoke localized Piezo1-dependent Ca2+ flickers. . Commun. Biol. 2::298
    [Crossref] [Google Scholar]
  31. 31.
    Newman ZL, Bakshinskaya D, Schultz R, Kenny SJ, Moon S, et al. 2022.. Determinants of synapse diversity revealed by super-resolution quantal transmission and active zone imaging. . Nat. Commun. 13::229
    [Crossref] [Google Scholar]
  32. 32.
    Zhao Y, Pal K, Tu Y, Wang X. 2020.. Cellular force nanoscopy with 50 nm resolution based on integrin molecular tension imaging and localization. . J. Am. Chem. Soc. 142::693034
    [Crossref] [Google Scholar]
  33. 33.
    Brockman JM, Su H, Blanchard AT, Duan Y, Meyer T, et al. 2020.. Live-cell super-resolved PAINT imaging of piconewton cellular traction forces. . Nat. Methods 17::101824
    [Crossref] [Google Scholar]
  34. 34.
    Nickerson A, Huang T, Lin LJ, Nan X. 2014.. Photoactivated localization microscopy with bimolecular fluorescence complementation (BiFC-PALM) for nanoscale imaging of protein-protein interactions in cells. . PLOS ONE 9::e100589
    [Crossref] [Google Scholar]
  35. 35.
    Liu Z, Xing D, Su QP, Zhu Y, Zhang J, et al. 2014.. Super-resolution imaging and tracking of protein-protein interactions in sub-diffraction cellular space. . Nat. Commun. 5::4443
    [Crossref] [Google Scholar]
  36. 36.
    Mo GCH, Ross B, Hertel F, Manna P, Yang XX, et al. 2017.. Genetically encoded biosensors for visualizing live-cell biochemical activity at super-resolution. . Nat. Methods 14::42734
    [Crossref] [Google Scholar]
  37. 37.
    Lin W, Mo GCH, Mehta S, Zhang J. 2021.. DrFLINC contextualizes super-resolution activity imaging. . J. Am. Chem. Soc. 143::1495155
    [Crossref] [Google Scholar]
  38. 38.
    Bossi M, Folling J, Belov VN, Boyarskiy VP, Medda R, et al. 2008.. Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species. . Nano Lett. 8::246368
    [Crossref] [Google Scholar]
  39. 39.
    Testa I, Wurm CA, Medda R, Rothermel E, von Middendorf C, et al. 2010.. Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength. . Biophys. J. 99::268694
    [Crossref] [Google Scholar]
  40. 40.
    Gunewardene MS, Subach FV, Gould TJ, Penoncello GP, Gudheti MV, et al. 2011.. Superresolution imaging of multiple fluorescent proteins with highly overlapping emission spectra in living cells. . Biophys. J. 101::152228
    [Crossref] [Google Scholar]
  41. 41.
    Brasselet S, Moerner WE. 2000.. Fluorescence behavior of single-molecule pH-sensors. . Single Mol. 1::1723
    [Crossref] [Google Scholar]
  42. 42.
    Sun X, Xie J, Xu J, Higgins DA, Hohn KL. 2015.. Single-molecule studies of acidity distributions in mesoporous aluminosilicate thin films. . Langmuir 31::566775
    [Crossref] [Google Scholar]
  43. 43.
    Algar WR, Hildebrandt N, Vogel SS, Medintz IL. 2019.. FRET as a biomolecular research tool – understanding its potential while avoiding pitfalls. . Nat. Methods 16::81529
    [Crossref] [Google Scholar]
  44. 44.
    Lerner E, Barth A, Hendrix J, Ambrose B, Birkedal V, et al. 2021.. FRET-based dynamic structural biology: challenges, perspectives and an appeal for open-science practices. . eLife 10::e60416
    [Crossref] [Google Scholar]
  45. 45.
    Greenwald EC, Mehta S, Zhang J. 2018.. Genetically encoded fluorescent biosensors illuminate the spatiotemporal regulation of signaling networks. . Chem. Rev. 118::1170794
    [Crossref] [Google Scholar]
  46. 46.
    Wu L, Huang C, Emery BP, Sedgwick AC, Bull SD, et al. 2020.. Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. . Chem. Soc. Rev. 49::511039
    [Crossref] [Google Scholar]
  47. 47.
    Roy R, Hohng S, Ha T. 2008.. A practical guide to single-molecule FRET. . Nat. Methods 5::50716
    [Crossref] [Google Scholar]
  48. 48.
    Lerner E, Cordes T, Ingargiola A, Alhadid Y, Chung S, et al. 2018.. Toward dynamic structural biology: two decades of single-molecule Förster resonance energy transfer. . Science 359::eaan1133
    [Crossref] [Google Scholar]
  49. 49.
    Sustarsic M, Kapanidis AN. 2015.. Taking the ruler to the jungle: single-molecule FRET for understanding biomolecular structure and dynamics in live cells. . Curr. Opin. Struct. Biol. 34::5259
    [Crossref] [Google Scholar]
  50. 50.
    Murakoshi H, Iino R, Kobayashi T, Fujiwara T, Ohshima C, et al. 2004.. Single-molecule imaging analysis of Ras activation in living cells. . PNAS 101::731722
    [Crossref] [Google Scholar]
  51. 51.
    Sakon JJ, Weninger KR. 2010.. Detecting the conformation of individual proteins in live cells. . Nat. Methods 7::2035
    [Crossref] [Google Scholar]
  52. 52.
    König I, Zarrine-Afsar A, Aznauryan M, Soranno A, Wunderlich B, et al. 2015.. Single-molecule spectroscopy of protein conformational dynamics in live eukaryotic cells. . Nat. Methods 12::77379
    [Crossref] [Google Scholar]
  53. 53.
    Fessl T, Adamec F, Polívka T, Foldynová-Trantírková S, Vácha F, Trantírek L. 2012.. Towards characterization of DNA structure under physiological conditions in vivo at the single-molecule level using single-pair FRET. . Nucleic Acids Res. 40::e121
    [Crossref] [Google Scholar]
  54. 54.
    Crawford R, Torella JP, Aigrain L, Plochowietz A, Gryte K, et al. 2013.. Long-lived intracellular single-molecule fluorescence using electroporated molecules. . Biophys. J. 105::243950
    [Crossref] [Google Scholar]
  55. 55.
    Okamoto K, Hibino K, Sako Y. 2020.. In-cell single-molecule FRET measurements reveal three conformational state changes in RAF protein. . Biochim. Biophys. Acta Gen. Subj. 1864::129358
    [Crossref] [Google Scholar]
  56. 56.
    Sako Y, Minoghchi S, Yanagida T. 2000.. Single-molecule imaging of EGFR signalling on the surface of living cells. . Nat. Cell Biol. 2::16872
    [Crossref] [Google Scholar]
  57. 57.
    Winckler P, Lartigue L, Giannone G, De Giorgi F, Ichas F, et al. 2013.. Identification and super-resolution imaging of ligand-activated receptor dimers in live cells. . Sci. Rep. 3::2387
    [Crossref] [Google Scholar]
  58. 58.
    Asher WB, Geggier P, Holsey MD, Gilmore GT, Pati AK, et al. 2021.. Single-molecule FRET imaging of GPCR dimers in living cells. . Nat. Methods 18::397405
    [Crossref] [Google Scholar]
  59. 59.
    Michalet X, Siegmund OHW, Vallerga JV, Jelinsky P, Millaud JE, Weiss S. 2007.. Detectors for single-molecule fluorescence imaging and spectroscopy. . J. Mod. Opt. 54::23981
    [Crossref] [Google Scholar]
  60. 60.
    Zhang Z, Kenny SJ, Hauser M, Li W, Xu K. 2015.. Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy. . Nat. Methods 12::93538
    [Crossref] [Google Scholar]
  61. 61.
    Yan R, Moon S, Kenny SJ, Xu K. 2018.. Spectrally resolved and functional super-resolution microscopy via ultrahigh-throughput single-molecule spectroscopy. . Acc. Chem. Res. 51::697705
    [Crossref] [Google Scholar]
  62. 62.
    Mlodzianoski MJ, Curthoys NM, Gunewardene MS, Carter S, Hess ST. 2016.. Super-resolution imaging of molecular emission spectra and single molecule spectral fluctuations. . PLOS ONE 11::e0147506
    [Crossref] [Google Scholar]
  63. 63.
    Dong B, Almassalha L, Urban BE, Nguyen TQ, Khuon S, et al. 2016.. Super-resolution spectroscopic microscopy via photon localization. . Nat. Commun. 7::12290
    [Crossref] [Google Scholar]
  64. 64.
    Huang T, Phelps C, Wang J, Lin LJ, Bittel A, et al. 2018.. Simultaneous multicolor single-molecule tracking with single-laser excitation via spectral imaging. . Biophys. J. 114::30110
    [Crossref] [Google Scholar]
  65. 65.
    Kakizuka T, Ikezaki K, Kaneshiro J, Fujita H, Watanabe TM, Ichimura T. 2016.. Simultaneous nano-tracking of multiple motor proteins via spectral discrimination of quantum dots. . Biomed. Opt. Express 7::247593
    [Crossref] [Google Scholar]
  66. 66.
    Davis JL, Zhang Y, Yi SJ, Du FF, Song KH, et al. 2020.. Super-resolution imaging of self-assembled nanocarriers using quantitative spectroscopic analysis for cluster extraction. . Langmuir 36::229199
    [Crossref] [Google Scholar]
  67. 67.
    Xiang L, Wojcik M, Kenny SJ, Yan R, Moon S, et al. 2018.. Optical characterization of surface adlayers and their compositional demixing at the nanoscale. . Nat. Commun. 9::1435
    [Crossref] [Google Scholar]
  68. 68.
    Archontakis E, Deng L, Zijlstra P, Palmans ARA, Albertazzi L. 2022.. Spectrally PAINTing a single chain polymeric nanoparticle at super-resolution. . J. Am. Chem. Soc. 144::23698707
    [Crossref] [Google Scholar]
  69. 69.
    Danylchuk DI, Moon S, Xu K, Klymchenko AS. 2019.. Switchable solvatochromic probes for live-cell super-resolution imaging of plasma membrane organization. . Angew. Chem. Int. Ed. 58::1492024
    [Crossref] [Google Scholar]
  70. 70.
    Prifti E, Reymond L, Umebayashi M, Hovius R, Riezman H, Johnsson K. 2014.. A fluorogenic probe for SNAP-tagged plasma membrane proteins based on the solvatochromic molecule Nile red. . ACS Chem. Biol. 9::60612
    [Crossref] [Google Scholar]
  71. 71.
    Pelletier R, Danylchuk DI, Benaissa H, Broch F, Vauchelles R, et al. 2023.. Genetic targeting of solvatochromic dyes for probing nanoscale environments of proteins in organelles. . Anal. Chem. 95::851221
    [Crossref] [Google Scholar]
  72. 72.
    Garini Y, Young IT, McNamara G. 2006.. Spectral imaging: principles and applications. . Cytom. A 69A::73547
    [Crossref] [Google Scholar]
  73. 73.
    Gao L, Smith RT. 2015.. Optical hyperspectral imaging in microscopy and spectroscopy – a review of data acquisition. . J. Biophotonics 8::44156
    [Crossref] [Google Scholar]
  74. 74.
    Favreau PF, Hernandez C, Heaster T, Alvarez DF, Rich TC, et al. 2014.. Excitation-scanning hyperspectral imaging microscope. . J. Biomed. Opt. 19::046010
    [Crossref] [Google Scholar]
  75. 75.
    Valm AM, Cohen S, Legant WR, Melunis J, Hershberg U, et al. 2017.. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. . Nature 546::16267
    [Crossref] [Google Scholar]
  76. 76.
    Chen K, Yan R, Xiang L, Xu K. 2021.. Excitation spectral microscopy for highly multiplexed fluorescence imaging and quantitative biosensing. . Light Sci. Appl. 10::97
    [Crossref] [Google Scholar]
  77. 77.
    Chen K, Li W, Xu K. 2022.. Super-multiplexing excitation spectral microscopy with multiple fluorescence bands. . Biomed. Opt. Express 13::604860
    [Crossref] [Google Scholar]
  78. 78.
    Wu W, Luo S, Fan C, Yang T, Zhang S, et al. 2023.. Tetra-color superresolution microscopy based on excitation spectral demixing. . Light Sci. Appl. 12::9
    [Crossref] [Google Scholar]
  79. 79.
    Kusumi A, Tsunoyama TA, Hirosawa KM, Kasai RS, Fujiwara TK. 2014.. Tracking single molecules at work in living cells. . Nat. Chem. Biol. 10::52432
    [Crossref] [Google Scholar]
  80. 80.
    Machan R, Wohland T. 2014.. Recent applications of fluorescence correlation spectroscopy in live systems. . FEBS Lett. 588::357184
    [Crossref] [Google Scholar]
  81. 81.
    Manzo C, Garcia-Parajo MF. 2015.. A review of progress in single particle tracking: from methods to biophysical insights. . Rep. Prog. Phys. 78::124601
    [Crossref] [Google Scholar]
  82. 82.
    Shen H, Tauzin LJ, Baiyasi R, Wang WX, Moringo N, et al. 2017.. Single particle tracking: from theory to biophysical applications. . Chem. Rev. 117::733176
    [Crossref] [Google Scholar]
  83. 83.
    Lippincott-Schwartz J, Snapp EL, Phair RD. 2018.. The development and enhancement of FRAP as a key tool for investigating protein dynamics. . Biophys. J. 115::114655
    [Crossref] [Google Scholar]
  84. 84.
    Elf J, Barkefors I. 2019.. Single-molecule kinetics in living cells. . Annu. Rev. Biochem. 88::63559
    [Crossref] [Google Scholar]
  85. 85.
    Mogre SS, Brown AI, Koslover EF. 2020.. Getting around the cell: physical transport in the intracellular world. . Phys. Biol. 17::061003
    [Crossref] [Google Scholar]
  86. 86.
    Yu L, Lei Y, Ma Y, Liu M, Zheng J, et al. 2021.. A comprehensive review of fluorescence correlation spectroscopy. . Front. Phys. 9::644450
    [Crossref] [Google Scholar]
  87. 87.
    Mütze J, Ohrt T, Schwille P. 2011.. Fluorescence correlation spectroscopy in vivo. . Laser Photonics Rev. 5::5267
    [Crossref] [Google Scholar]
  88. 88.
    Krieger JW, Singh AP, Bag N, Garbe CS, Saunders TE, et al. 2015.. Imaging fluorescence (cross-) correlation spectroscopy in live cells and organisms. . Nat. Protoc. 10::194874
    [Crossref] [Google Scholar]
  89. 89.
    Sezgin E, Schneider F, Galiani S, Urbancic I, Waithe D, et al. 2019.. Measuring nanoscale diffusion dynamics in cellular membranes with super-resolution STED-FCS. . Nat. Protoc. 14::105483
    [Google Scholar]
  90. 90.
    Bag N, Wohland T. 2014.. Imaging fluorescence fluctuation spectroscopy: new tools for quantitative bioimaging. . Annu. Rev. Phys. Chem. 65::22548
    [Crossref] [Google Scholar]
  91. 91.
    Cognet L, Leduc C, Lounis B. 2014.. Advances in live-cell single-particle tracking and dynamic super-resolution imaging. . Curr. Opin. Chem. Biol. 20::7885
    [Crossref] [Google Scholar]
  92. 92.
    Balzarotti F, Eilers Y, Gwosch KC, Gynnå AH, Westphal V, et al. 2017.. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. . Science 355::60612
    [Crossref] [Google Scholar]
  93. 93.
    Deguchi T, Iwanski MK, Schentarra E-M, Heidebrecht C, Schmidt L, et al. 2023.. Direct observation of motor protein stepping in living cells using MINFLUX. . Science 379::101015
    [Crossref] [Google Scholar]
  94. 94.
    Manley S, Gillette JM, Patterson GH, Shroff H, Hess HF, et al. 2008.. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. . Nat. Methods 5::15557
    [Crossref] [Google Scholar]
  95. 95.
    Giannone G, Hosy E, Levet F, Constals A, Schulze K, et al. 2010.. Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. . Biophys. J. 99::130310
    [Crossref] [Google Scholar]
  96. 96.
    Shim SH, Xia C, Zhong G, Babcock HP, Vaughan JC, et al. 2012.. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. . PNAS 109::1397883
    [Crossref] [Google Scholar]
  97. 97.
    El Beheiry M, Dahan M, Masson JB. 2015.. InferenceMAP: mapping of single-molecule dynamics with Bayesian inference. . Nat. Methods 12::59495
    [Crossref] [Google Scholar]
  98. 98.
    Xiang L, Chen K, Yan R, Li W, Xu K. 2020.. Single-molecule displacement mapping unveils nanoscale heterogeneities in intracellular diffusivity. . Nat. Methods 17::52430
    [Crossref] [Google Scholar]
  99. 99.
    Yan R, Chen K, Xu K. 2020.. Probing nanoscale diffusional heterogeneities in cellular membranes through multidimensional single-molecule and super-resolution microscopy. . J. Am. Chem. Soc. 142::1886673
    [Crossref] [Google Scholar]
  100. 100.
    Choi AA, Xiang L, Li W, Xu K. 2023.. Single-molecule displacement mapping indicates unhindered intracellular diffusion of small (≲1 kDa) solutes. . J. Am. Chem. Soc. 145::851016
    [Crossref] [Google Scholar]
  101. 101.
    Xiang L, Yan R, Chen K, Li W, Xu K. 2023.. Single-molecule displacement mapping unveils sign-asymmetric protein charge effects on intraorganellar diffusion. . Nano Lett. 23::171116
    [Crossref] [Google Scholar]
  102. 102.
    Moon S, Li W, Hauser M, Xu K. 2020.. Graphene-enabled, spatially controlled electroporation of adherent cells for live-cell super-resolution microscopy. . ACS Nano 14::560917
    [Crossref] [Google Scholar]
  103. 103.
    Choi AA, Park HH, Chen K, Yan R, Li W, Xu K. 2022.. Displacement statistics of unhindered single molecules show no enhanced diffusion in enzymatic reactions. . J. Am. Chem. Soc. 144::483944
    [Crossref] [Google Scholar]
  104. 104.
    Park HH, Choi AA, Xu K. 2023.. Size-dependent suppression of molecular diffusivity in expandable hydrogels: a single-molecule study. . J. Phys. Chem. B 127::333339
    [Crossref] [Google Scholar]
  105. 105.
    Śmigiel WM, Mantovanelli L, Linnik DS, Punter M, Silberberg J, et al. 2022.. Protein diffusion in Escherichia coli cytoplasm scales with the mass of the complexes and is location dependent. . Sci. Adv. 8::eabo5387
    [Crossref] [Google Scholar]
  106. 106.
    Tran BM, Linnik DS, Punter CM, Śmigiel WM, Mantovanelli L, et al. 2023.. Super-resolving microscopy reveals the localizations and movement dynamics of stressosome proteins in Listeria monocytogenes. . Commun. Biol. 6::51
    [Crossref] [Google Scholar]
  107. 107.
    Jameson DM, Ross JA. 2010.. Fluorescence polarization/anisotropy in diagnostics and imaging. . Chem. Rev. 110::2685708
    [Crossref] [Google Scholar]
  108. 108.
    Shroder DY, Lippert LG, Goldman YE. 2016.. Single molecule optical measurements of orientation and rotations of biological macromolecules. . Methods Appl. Fluoresc. 4::042004
    [Crossref] [Google Scholar]
  109. 109.
    Gould TJ, Gunewardene MS, Gudheti MV, Verkhusha VV, Yin SR, et al. 2008.. Nanoscale imaging of molecular positions and anisotropies. . Nat. Methods 5::102730
    [Crossref] [Google Scholar]
  110. 110.
    Testa I, Schonle A, Middendorff CV, Geisler C, Medda R, et al. 2008.. Nanoscale separation of molecular species based on their rotational mobility. . Opt. Express 16::21093104
    [Crossref] [Google Scholar]
  111. 111.
    Backer AS, Lee MY, Moerner WE. 2016.. Enhanced DNA imaging using super-resolution microscopy and simultaneous single-molecule orientation measurements. . Optica 3::65966
    [Crossref] [Google Scholar]
  112. 112.
    Valades Cruz CA, Shaban HA, Kress A, Bertaux N, Monneret S, et al. 2016.. Quantitative nanoscale imaging of orientational order in biological filaments by polarized superresolution microscopy. . PNAS 113::E82028
    [Crossref] [Google Scholar]
  113. 113.
    Backer AS, Biebricher AS, King GA, Wuite GJL, Heller I, Peterman EJG. 2019.. Single-molecule polarization microscopy of DNA intercalators sheds light on the structure of S-DNA. . Sci. Adv. 5::eaav1083
    [Crossref] [Google Scholar]
  114. 114.
    Mehta SB, McQuilken M, La Riviere PJ, Occhipinti P, Verma A, et al. 2016.. Dissection of molecular assembly dynamics by tracking orientation and position of single molecules in live cells. . PNAS 113::E635261
    [Google Scholar]
  115. 115.
    Rimoli CV, Valades-Cruz CA, Curcio V, Mavrakis M, Brasselet S. 2022. 4polar-STORM polarized super-resolution imaging of actin filament organization in cells. . Nat. Commun. 13::301
    [Crossref] [Google Scholar]
  116. 116.
    Lu J, Mazidi H, Ding T, Zhang O, Lew MD. 2020.. Single-molecule 3D orientation imaging reveals nanoscale compositional heterogeneity in lipid membranes. . Angew. Chem. Int. Ed. 59::1757279
    [Crossref] [Google Scholar]
  117. 117.
    Zhang O, Guo Z, He Y, Wu T, Vahey MD, Lew MD. 2023.. Six-dimensional single-molecule imaging with isotropic resolution using a multi-view reflector microscope. . Nat. Photonics 17::17986
    [Crossref] [Google Scholar]
  118. 118.
    Berezin MY, Achilefu S. 2010.. Fluorescence lifetime measurements and biological imaging. . Chem. Rev. 110::264184
    [Crossref] [Google Scholar]
  119. 119.
    Sarder P, Maji D, Achilefu S. 2015.. Molecular probes for fluorescence lifetime imaging. . Bioconjugate Chem. 26::96374
    [Crossref] [Google Scholar]
  120. 120.
    Rupsa D, Tiffany MH, Joe TS, Amani AG, Melissa CS. 2020.. Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications. . J. Biomed. Opt. 25::071203
    [Google Scholar]
  121. 121.
    Thiele JC, Helmerich DA, Oleksiievets N, Tsukanov R, Butkevich E, et al. 2020.. Confocal fluorescence-lifetime single-molecule localization microscopy. . ACS Nano 14::14190200
    [Crossref] [Google Scholar]
  122. 122.
    Oleksiievets N, Mathew C, Thiele JC, Gallea JI, Nevskyi O, et al. 2022.. Single-molecule fluorescence lifetime imaging using wide-field and confocal-laser scanning microscopy: a comparative analysis. . Nano Lett. 22::645461
    [Crossref] [Google Scholar]
  123. 123.
    Bowman AJ, Kasevich MA. 2021.. Resonant electro-optic imaging for microscopy at nanosecond resolution. . ACS Nano 15::1604354
    [Crossref] [Google Scholar]
  124. 124.
    Masullo LA, Steiner F, Zähringer J, Lopez LF, Bohlen J, et al. 2021.. Pulsed interleaved MINFLUX. . Nano Lett. 21::84046
    [Crossref] [Google Scholar]
  125. 125.
    Zaza C, Chiarelli G, Zweifel LP, Pilo-Pais M, Sisamakis E, et al. 2023.. Super-resolved FRET imaging by confocal fluorescence-lifetime single-molecule localization microscopy. . Small Methods 7::2201565
    [Crossref] [Google Scholar]
  126. 126.
    Thiele JC, Jungblut M, Helmerich DA, Tsukanov R, Chizhik A, et al. 2022.. Isotropic three-dimensional dual-color super-resolution microscopy with metal-induced energy transfer. . Sci. Adv. 8::eabo2506
    [Crossref] [Google Scholar]
  127. 127.
    Zähringer J, Cole F, Bohlen J, Steiner F, Kamińska I, Tinnefeld P. 2023.. Combining pMINFLUX, graphene energy transfer and DNA-PAINT for nanometer precise 3D super-resolution microscopy. . Light Sci. Appl. 12::70
    [Crossref] [Google Scholar]
  128. 128.
    Arroyo JO, Kukura P. 2015.. Non-fluorescent schemes for single-molecule detection, imaging and spectroscopy. . Nat. Photonics 10::1117
    [Crossref] [Google Scholar]
  129. 129.
    Leighton RE, Alperstein AM, Frontiera RR. 2022.. Label-free super-resolution imaging techniques. . Annu. Rev. Anal. Chem. 15::3755
    [Crossref] [Google Scholar]
  130. 130.
    Tang M, Han Y, Jia D, Yang Q, Cheng J-X. 2023.. Far-field super-resolution chemical microscopy. . Light Sci. Appl. 12::137
    [Crossref] [Google Scholar]
  131. 131.
    Wang G, Stender AS, Sun W, Fang N. 2010.. Optical imaging of non-fluorescent nanoparticle probes in live cells. . Analyst 135::21521
    [Crossref] [Google Scholar]
  132. 132.
    Adhikari S, Spaeth P, Kar A, Baaske MD, Khatua S, Orrit M. 2020.. Photothermal microscopy: imaging the optical absorption of single nanoparticles and single molecules. . ACS Nano 14::1641445
    [Crossref] [Google Scholar]
  133. 133.
    Young G, Kukura P. 2019.. Interferometric scattering microscopy. . Annu. Rev. Phys. Chem. 70::30122
    [Crossref] [Google Scholar]
  134. 134.
    Taylor RW, Mahmoodabadi RG, Rauschenberger V, Giessl A, Schambony A, Sandoghdar V. 2019.. Interferometric scattering microscopy reveals microsecond nanoscopic protein motion on a live cell membrane. . Nat. Photonics 13::48087
    [Crossref] [Google Scholar]
  135. 135.
    Priest L, Peters JS, Kukura P. 2021.. Scattering-based light microscopy: from metal nanoparticles to single proteins. . Chem. Rev. 121::1193770
    [Crossref] [Google Scholar]
  136. 136.
    Dahmardeh M, Mirzaalian Dastjerdi H, Mazal H, Köstler H, Sandoghdar V. 2023.. Self-supervised machine learning pushes the sensitivity limit in label-free detection of single proteins below 10kDa. . Nat. Methods 20::44247
    [Crossref] [Google Scholar]
  137. 137.
    Zipfel WR, Williams RM, Webb WW. 2003.. Nonlinear magic: multiphoton microscopy in the biosciences. . Nat. Biotechnol. 21::136977
    [Crossref] [Google Scholar]
  138. 138.
    Min W, Freudiger CW, Lu S, Xie XS. 2011.. Coherent nonlinear optical imaging: beyond fluorescence microscopy. . Annu. Rev. Phys. Chem. 62::50730
    [Crossref] [Google Scholar]
  139. 139.
    Parodi V, Jacchetti E, Osellame R, Cerullo G, Polli D, Raimondi MT. 2020.. Nonlinear optical microscopy: from fundamentals to applications in live bioimaging. . Front. Bioeng. Biotechnol. 8::585363
    [Crossref] [Google Scholar]
  140. 140.
    Qian C, Miao K, Lin L-E, Chen X, Du J, Wei L. 2021.. Super-resolution label-free volumetric vibrational imaging. . Nat. Commun. 12::3648
    [Crossref] [Google Scholar]
  141. 141.
    Shi L, Klimas A, Gallagher B, Cheng Z, Fu F, et al. 2022.. Super-resolution vibrational imaging using expansion stimulated Raman scattering microscopy. . Adv. Sci. 9::2200315
    [Crossref] [Google Scholar]
  142. 142.
    Xiong H, Qian N, Miao Y, Zhao Z, Chen C, Min W. 2021.. Super-resolution vibrational microscopy by stimulated Raman excited fluorescence. . Light Sci. Appl. 10::87
    [Crossref] [Google Scholar]
  143. 143.
    Steves MA, Knappenberger KL. 2023.. Improving spectral, spatial, and mechanistic resolution using Fourier transform nonlinear optics: a tutorial review. . ACS Phys. Chem. Au 3::13042
    [Crossref] [Google Scholar]
  144. 144.
    Wang M, Li M, Jiang S, Gao J, Xi P. 2020.. Plasmonics meets super-resolution microscopy in biology. . Micron 137::102916
    [Crossref] [Google Scholar]
  145. 145.
    Zrimsek AB, Chiang N, Mattei M, Zaleski S, McAnally MO, et al. 2017.. Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy. . Chem. Rev. 117::7583613
    [Crossref] [Google Scholar]
  146. 146.
    Itoh T, Procházka M, Dong Z-C, Ji W, Yamamoto YS, et al. 2023.. Toward a new era of SERS and TERS at the nanometer scale: from fundamentals to innovative applications. . Chem. Rev. 123::1552634
    [Crossref] [Google Scholar]
  147. 147.
    Ayas S, Cinar G, Ozkan AD, Soran Z, Ekiz O, et al. 2013.. Label-free nanometer-resolution imaging of biological architectures through surface enhanced Raman scattering. . Sci. Rep. 3::2624
    [Crossref] [Google Scholar]
  148. 148.
    Olson AP, Ertsgaard CT, Elliott SN, Lindquist NC. 2016.. Super-resolution chemical imaging with plasmonic substrates. . ACS Photonics 3::32936
    [Crossref] [Google Scholar]
  149. 149.
    Hauser M, Wojcik M, Kim D, Mahmoudi M, Li W, Xu K. 2017.. Correlative super-resolution microscopy: new dimensions and new opportunities. . Chem. Rev. 117::742856
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physchem-070623-034225
Loading
/content/journals/10.1146/annurev-physchem-070623-034225
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error