1932

Abstract

Large strides have been made in designing an ever-increasing set of modern organic materials of high functionality and thus, often, of high complexity, including semiconducting polymers, organic ferroelectrics, light-emitting small molecules, and beyond. Here, we review how broadly applied thermal analysis methodologies, especially differential scanning calorimetry, can be utilized to provide unique information on the assembly and solid-state structure of this extensive class of materials, as well as the phase behavior of intrinsically intricate multicomponent systems. Indeed, highly relevant insights can be gained that are useful, e.g., for further materials-discovery activities and the establishment of reliable processing protocols, in particular if combined with X-ray diffraction techniques, spectroscopic tools, and scanning electron microscopy enabled by vapor-phase infiltration staining. We, hence, illustrate that insights far richer than simple melting point– and glass-transition identification can be obtained with differential scanning calorimetry, rendering it a critical methodology to understand complex matter, including functional macromolecules and blends.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-070723-035427
2024-06-28
2025-02-09
Loading full text...

Full text loading...

/deliver/fulltext/physchem/75/1/annurev-physchem-070723-035427.html?itemId=/content/journals/10.1146/annurev-physchem-070723-035427&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. 1995.. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunction. . Science 270::178991
    [Crossref] [Google Scholar]
  2. 2.
    Ruderer MA, Müller-Buschbaum P. 2011.. Morphology of polymer-based bulk heterojunction films for organic photovoltaics. . Soft Matter 7::548293
    [Crossref] [Google Scholar]
  3. 3.
    Fan B, Zhang D, Li M, Zhong W, Zeng Z, et al. 2019.. Achieving over 16% efficiency for single-junction organic solar cells. . Sci. China Chem. 62::74652
    [Crossref] [Google Scholar]
  4. 4.
    Lee H, Park C, Sin DH, Park JH, Cho K. 2018.. Recent advances in morphology optimization for organic photovoltaics. . Adv. Mater. 30::1800453
    [Crossref] [Google Scholar]
  5. 5.
    Jiao X, Ye L, Ade H. 2017.. Quantitative morphology–performance correlations in organic solar cells: insights from soft X-ray scattering. . Adv. Energy Mater. 7::1700084
    [Crossref] [Google Scholar]
  6. 6.
    Huang Y, Kramer EJ, Heeger AJ, Bazan GC. 2014.. Bulk heterojunction solar cells: morphology and performance relationships. . Chem. Rev. 114::700643
    [Crossref] [Google Scholar]
  7. 7.
    Mukherjee S, Jiao X, Ade H. 2016.. Charge creation and recombination in multi-length scale polymer:fullerene BHJ solar cell morphologies. . Adv. Energy Mater. 6::1600699
    [Crossref] [Google Scholar]
  8. 8.
    Lin Y, Zhao F, He Q, Huo L, Wu Y, et al. 2016.. High-performance electron acceptor with thienyl side chains for organic photovoltaics. . J. Am. Chem. Soc. 138::495561
    [Crossref] [Google Scholar]
  9. 9.
    Nahor O, Khirbat A, Schneider SA, Toney MF, Stingelin N, Frey GL. 2022.. Coexisting glassy phases with different compositions in NFA-based bulk heterojunctions. . ACS Mater. Lett. 4::212533
    [Crossref] [Google Scholar]
  10. 10.
    Levitsky A, Matrone GM, Khirbat A, Bargigia I, Chu X, et al. 2020.. Toward fast screening of organic solar cell blends. . Adv. Sci. 7::2000960
    [Crossref] [Google Scholar]
  11. 11.
    Khirbat A, Nahor O, Kantrow H, Bakare O, Levitsky A, et al. 2023.. Mission immiscible: overcoming the miscibility limit of semiconducting:ferroelectric polymer blends via vitrification. . J. Mater. Chem. C 11::83006
    [Crossref] [Google Scholar]
  12. 12.
    Pouriamanesh N, Le Goupil F, Stingelin N, Hadziioannou G. 2022.. Limiting relative permittivity “burn-in” in polymer ferroelectrics via phase stabilization. . ACS Macro Lett. 11::41014
    [Crossref] [Google Scholar]
  13. 13.
    Le Goupil F, Kallitsis K, Tencé-Girault S, Pouriamanesh N, Brochon C, et al. 2020.. Enhanced electrocaloric response of vinylidene fluoride–based polymers via one-step molecular engineering. . Adv. Funct. Mater. 31::2007043
    [Crossref] [Google Scholar]
  14. 14.
    Marina S, Scaccabarozzi AD, Gutierrez-Fernandez E, Solano E, Khirbat A, et al. 2021.. Polymorphism in non-fullerene acceptors based on indacenodithienothiophene. . Adv. Funct. Mater. 31::2103784
    [Crossref] [Google Scholar]
  15. 15.
    Yu L, Li X, Pavlica E, Koch F, Portale F, et al. 2013.. Influence of solid-state microstructure on the electronic performance of 5,11-bis(triethylsilylethynyl) anthradithiophene. . Chem. Mater. 25::182328
    [Crossref] [Google Scholar]
  16. 16.
    Yu L, Portale G, Stingelin N. 2021.. Solution-processing of semiconducting organic small molecules: what we have learnt from 5,11-bis(triethylsilylethynyl)anthradithiophene. . J. Mater. Chem. C 9::1054756
    [Crossref] [Google Scholar]
  17. 17.
    Westacott P, Tumbleston JR, Shoaee S, Fearn S, Bannock JH, et al. 2013.. On the role of intermixed phases in organic photovoltaic blends. . Energy Environ. Sci. 6::275664
    [Crossref] [Google Scholar]
  18. 18.
    Ye L, Hu H, Ghasemi M, Wang T, Collins BA, et al. 2018.. Quantitative relations between interaction parameter, miscibility and function in organic solar cells. . Nat. Mater. 17::25360
    [Crossref] [Google Scholar]
  19. 19.
    Lin Y, Zhan X. 2014.. Non-fullerene acceptors for organic photovoltaics: an emerging horizon. . Mater. Horiz. 1::47088
    [Crossref] [Google Scholar]
  20. 20.
    Cui Y, Yao H, Hong L, Zhang T, Tang Y, et al. 2020.. Organic photovoltaic cell with 17% efficiency and superior processability. . Natl. Sci. Rev. 7::123946
    [Crossref] [Google Scholar]
  21. 21.
    Cui Y, Yao H, Zhang J, Zhang T, Wang Z, et al. 2019.. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. . Nat. Commun. 10::2515
    [Crossref] [Google Scholar]
  22. 22.
    Lin Y, Wang J, Zhang Z-G, Bai H, Li Y, et al. 2015.. An electron acceptor challenging fullerenes for efficient polymer solar cells. . Adv. Mater. 27::117074
    [Crossref] [Google Scholar]
  23. 23.
    Yu L, Qiang D, Marina S, Nugroho FAA, Sharma A, et al. 2019.. Diffusion-limited crystallization: a rationale for the thermal stability of non-fullerene solar cells. . ACS Appl. Mater. Interfaces 11::2176674
    [Crossref] [Google Scholar]
  24. 24.
    Zhao W, Qian D, Zhang S, Li S, Inganäs O, et al. 2016.. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. . Adv. Mater. 28::473439
    [Crossref] [Google Scholar]
  25. 25.
    Swick SM, Gebraad T, Jones L, Fu B, Aldrich TJ, et al. 2019.. Building blocks for high-efficiency organic photovoltaics: interplay of molecular, crystal, and electronic properties in post-fullerene ITIC ensembles. . Chem. Phys. Chem. 20::260826
    [Crossref] [Google Scholar]
  26. 26.
    Ghasemi M, Hu H, Peng Z, Rech JJ, Angunawela I, et al. 2019.. Delineation of thermodynamic and kinetic factors that control stability in non-fullerene organic solar cells. . Joule 3::132848
    [Crossref] [Google Scholar]
  27. 27.
    O'Hara KA, Ostrowksi DP, Koldemir U, Takacs CJ, Shaheen SE, et al. 2017.. Role of crystallization in the morphology of polymer:non-fullerene acceptor bulk heterojunctions. . ACS Appl. Mater. Interfaces 9::1902129
    [Crossref] [Google Scholar]
  28. 28.
    Rezasoltani E, Guilbert A-AY, Yan J, Rodriguez-Marinez X, Azzouzi M, et al. 2020.. Correlating the phase behavior with the device performance in binary poly-3-hexylthiophene:non-fullerene acceptor blend using optical probes of the microstructure. . Chem. Mater. 32::8294305
    [Crossref] [Google Scholar]
  29. 29.
    Stingelin-Stutzmann N, Smits E, Wondergem H, Tanase C, Blom P, et al. 2005.. Organic thin-film electronics from vitreous solution-processed rubrene hypereutectics. . Nat. Mater. 4::6016
    [Crossref] [Google Scholar]
  30. 30.
    Payne MM, Parkin SR, Anthony JE, Kuo C, Jackson TN. 2005.. Organic field-effect transistors from solution-deposited functionalized acenes with mobilities as high as 1 cm2/V·s. . J. Am. Chem. Soc. 127::498687
    [Crossref] [Google Scholar]
  31. 31.
    Yu L, Li X, Pavlica E, Loth MA, Anthony JE, et al. 2011.. Single-step solution processing of small-molecule organic semiconductor field-effect transistors at high yield. . Appl. Phys. Lett. 99::263304
    [Crossref] [Google Scholar]
  32. 32.
    Lee WH, Lim JA, Kim DH, Cho JH, Jang Y, et al. 2008.. Room-temperature self-organizing characteristics of soluble acene field-effect transistor. . Adv. Funct. Mater. 18::56065
    [Crossref] [Google Scholar]
  33. 33.
    Chen J, Shao M, Xiao K, Rondinone AJ, Loo Y-L, et al. 2014.. Solvent-type-dependent polymorphism and charge transport in a long fused-ring organic semiconductor. . Nanoscale 6::44956
    [Crossref] [Google Scholar]
  34. 34.
    Su Y, Zheng L, Liu J, Han Y. 2013.. A morphological transition from sheet crystals to r crystals of triethylsilylethynyl anthradithiophene based on thermal annealing. . RSC Adv. 3::552938
    [Crossref] [Google Scholar]
  35. 35.
    Westacott P, Treat ND, Fearn S, Bannock J, de Mello J, et al. 2017.. Origin of fullerene-induced vitrification of fullerene:donor polymer photovoltaic blends and its impact on solar cell performance. . J. Mater. Chem. A 6::2689700
    [Crossref] [Google Scholar]
  36. 36.
    Peng Z, Stingelin N, Ade H, Michels JJ. 2023.. A materials physics perspective on structure–processing–function relations in blends of organic semiconductors. . Nat. Rev. Mater. 8::43955
    [Crossref] [Google Scholar]
  37. 37.
    Flory PJ. 1942.. Thermodynamics of high polymer solutions. . J. Chem. Phys. 10::5161
    [Crossref] [Google Scholar]
  38. 38.
    Huggins ML. 1942.. Theory of solutions of high polymers. . J. Am. Chem. Soc. 64::171219
    [Crossref] [Google Scholar]
  39. 39.
    Liu Y, Zhao J, Li Z, Mu C, Ma W, et al. 2014.. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. . Nat. Commun. 5::5293
    [Crossref] [Google Scholar]
  40. 40.
    Müller C, Ferenczi TAM, Campoy-Quiles M, Frost JM, Bradley DDC, et al. 2008.. Binary organic photovoltaic blends: a simple rationale for optimum compositions. . Adv. Mater. 20::351015
    [Crossref] [Google Scholar]
  41. 41.
    Leng CZ, Losego MD. 2017.. Vapor phase infiltration (VPI) for transforming polymers into organic–inorganic hybrid materials: a critical review of current progress and future challenges. . Mater. Horiz. 4::74771
    [Crossref] [Google Scholar]
  42. 42.
    Obuchovsky S, Frankenstein H, Vinokur J, Hailey AK, Loo Y-L, Frey GL. 2016.. Mechanism of metal oxide deposition from atomic layer deposition inside non-reactive polymer matrices: effects of polymer crystallinity and temperature. . Chem. Mater. 28::266876
    [Crossref] [Google Scholar]
  43. 43.
    Obuchovsky S, Levin M, Levitsky A, Frey GL. 2017.. Morphology visualization of P3HT:fullerene blends by using subsurface atomic layer deposition. . Org. Electron. 49::23441
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physchem-070723-035427
Loading
/content/journals/10.1146/annurev-physchem-070723-035427
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error