1932

Abstract

The structure–function relationships of biomolecules have captured the interest and imagination of the scientific community and general public since the field of structural biology emerged to enable the molecular understanding of life processes. Proteins that play numerous functional roles in cellular processes have remained in the forefront of research, inspiring new characterization techniques. In this review, we present key theoretical concepts and recent experimental strategies using femtosecond stimulated Raman spectroscopy (FSRS) to map the structural dynamics of proteins, highlighting the flexible chromophores on ultrafast timescales. In particular, wavelength-tunable FSRS exploits dynamic resonance conditions to track transient-species-dependent vibrational motions, enabling rational design to alter functions. Various ways of capturing excited-state chromophore structural snapshots in the time and/or frequency domains are discussed. Continuous development of experimental methodologies, synergistic correlation with theoretical modeling, and the expansion to other nonequilibrium, photoswitchable, and controllable protein systems will greatly advance the chemical, physical, and biological sciences.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-071119-040154
2020-04-20
2024-09-13
Loading full text...

Full text loading...

/deliver/fulltext/physchem/71/1/annurev-physchem-071119-040154.html?itemId=/content/journals/10.1146/annurev-physchem-071119-040154&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Boehr DD, Nussinov R, Wright PE 2009. The role of dynamic conformational ensembles in biomolecular recognition. Nat. Chem. Biol. 5:789–96
    [Google Scholar]
  2. 2. 
    Fang C, Frontiera RR, Tran R, Mathies RA 2009. Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy. Nature 462:200–4Groundbreaking report of FSRS on wild-type GFP with an intrinsic 2D-FSRS approach.
    [Google Scholar]
  3. 3. 
    Cho HS, Schotte F, Dashdorj N, Kyndt J, Henning R, Anfinrud PA 2016. Picosecond photobiology: watching a signaling protein function in real time via time-resolved small- and wide-angle X-ray scattering. J. Am. Chem. Soc. 138:8815–23
    [Google Scholar]
  4. 4. 
    Ghosh A, Ostrander JS, Zanni MT 2017. Watching proteins wiggle: mapping structures with two-dimensional infrared spectroscopy. Chem. Rev. 117:10726–59
    [Google Scholar]
  5. 5. 
    Hochstrasser RM. 2007. Two-dimensional spectroscopy at infrared and optical frequencies. PNAS 104:14190–96
    [Google Scholar]
  6. 6. 
    Vos MH, Rappaport F, Lambry J-C, Breton J, Martin J-L 1993. Visualization of coherent nuclear motion in a membrane protein by femtosecond spectroscopy. Nature 363:320–25
    [Google Scholar]
  7. 7. 
    Zewail AH. 1994. Femtochemistry: Ultrafast Dynamics of the Chemical Bond Singapore: World Sci.
    [Google Scholar]
  8. 8. 
    Johnson PJM, Farag MH, Halpin A, Morizumi T, Prokhorenko VI et al. 2017. The primary photochemistry of vision occurs at the molecular speed limit. J. Phys. Chem. B 121:4040–47
    [Google Scholar]
  9. 9. 
    Hoffman DP, Mathies RA. 2016. Femtosecond stimulated Raman exposes the role of vibrational coherence in condensed-phase photoreactivity. Acc. Chem. Res. 49:616–25
    [Google Scholar]
  10. 10. 
    Kukura P, McCamant DW, Yoon S, Wandschneider DB, Mathies RA 2005. Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman. Science 310:1006–9
    [Google Scholar]
  11. 11. 
    McCamant DW, Kukura P, Mathies RA 2005. Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin. J. Phys. Chem. B 109:10449–57
    [Google Scholar]
  12. 12. 
    Kukura P, McCamant DW, Mathies RA 2007. Femtosecond stimulated Raman spectroscopy. Annu. Rev. Phys. Chem. 58:461–88
    [Google Scholar]
  13. 13. 
    Dasgupta J, Frontiera RR, Taylor KC, Lagarias JC, Mathies RA 2009. Ultrafast excited-state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy. PNAS 106:1784–89
    [Google Scholar]
  14. 14. 
    Frontiera RR, Fang C, Dasgupta J, Mathies RA 2012. Probing structural evolution along multidimensional reaction coordinates with femtosecond stimulated Raman spectroscopy. Phys. Chem. Chem. Phys. 14:405–14
    [Google Scholar]
  15. 15. 
    Nakamura R, Hamada N, Abe K, Yoshizawa M 2012. Ultrafast hydrogen-bonding dynamics in the electronic excited state of photoactive yellow protein revealed by femtosecond stimulated Raman spectroscopy. J. Phys. Chem. B 116:14768–75
    [Google Scholar]
  16. 16. 
    Oscar BG, Liu W, Zhao Y, Tang L, Wang Y et al. 2014. Excited-state structural dynamics of a dual-emission calmodulin-green fluorescent protein sensor for calcium ion imaging. PNAS 111:10191–96First application of FSRS on FP-based calcium biosensors, uncovering a functional low-frequency mode different from wild-type GFP.
    [Google Scholar]
  17. 17. 
    Tang L, Liu W, Wang Y, Zhao Y, Oscar BG et al. 2015. Unraveling ultrafast photoinduced proton transfer dynamics in a fluorescent protein biosensor for Ca2+ imaging. Chem. Eur. J. 21:6481–90First report of tunable FSRS on FP-based biosensors, demonstrating feasibility of tracking transient molecular species in proteins.
    [Google Scholar]
  18. 18. 
    Wang Y, Tang L, Liu W, Zhao Y, Oscar BG et al. 2015. Excited state structural events of a dual-emission fluorescent protein biosensor for Ca2+ imaging studied by femtosecond stimulated Raman spectroscopy. J. Phys. Chem. B 119:2204–18
    [Google Scholar]
  19. 19. 
    Tang L, Liu W, Wang Y, Zhu L, Han F, Fang C 2016. Ultrafast structural evolution and chromophore inhomogeneity inside a green-fluorescent-protein-based Ca2+ biosensor. J. Phys. Chem. Lett. 7:1225–30
    [Google Scholar]
  20. 20. 
    Schnedermann C, Muders V, Ehrenberg D, Schlesinger R, Kukura P, Heberle J 2016. Vibronic dynamics of the ultrafast all-trans to 13-cis photoisomerization of retinal in Channelrhodopsin-1. J. Am. Chem. Soc. 138:4757–62
    [Google Scholar]
  21. 21. 
    Ferrante C, Pontecorvo E, Cerullo G, Vos MH, Scopigno T 2016. Direct observation of subpicosecond vibrational dynamics in photoexcited myoglobin. Nat. Chem. 8:1137–43Demonstrates power of resonance FSRS to track mode-specific vibrational cooling and energy redistribution in heme proteins.
    [Google Scholar]
  22. 22. 
    Fujisawa T, Kuramochi H, Hosoi H, Takeuchi S, Tahara T 2016. Role of coherent low-frequency motion in excited-state proton transfer of green fluorescent protein studied by time-resolved impulsive stimulated Raman spectroscopy. J. Am. Chem. Soc. 138:3942–45
    [Google Scholar]
  23. 23. 
    Batignani G, Pontecorvo E, Giovannetti G, Ferrante C, Fumero G, Scopigno T 2016. Electronic resonances in broadband stimulated Raman spectroscopy. Sci. Rep. 6:18445
    [Google Scholar]
  24. 24. 
    Tachibana SR, Tang L, Wang Y, Zhu L, Liu W, Fang C 2017. Tuning calcium biosensors with a single-site mutation: structural dynamics insights from femtosecond Raman spectroscopy. Phys. Chem. Chem. Phys. 19:7138–46
    [Google Scholar]
  25. 25. 
    Tang L, Wang Y, Liu W, Zhao Y, Campbell RE, Fang C 2017. Illuminating photochemistry of an excitation ratiometric fluorescent protein calcium biosensor. J. Phys. Chem. B 121:3016–23
    [Google Scholar]
  26. 26. 
    Kuramochi H, Takeuchi S, Yonezawa K, Kamikubo H, Kataoka M, Tahara T 2017. Probing the early stages of photoreception in photoactive yellow protein with ultrafast time-domain Raman spectroscopy. Nat. Chem. 9:660–66
    [Google Scholar]
  27. 27. 
    Tachibana SR, Tang L, Zhu L, Liu W, Wang Y, Fang C 2018. Watching an engineered calcium biosensor glow: altered reaction pathways before emission. J. Phys. Chem. B 122:11986–95
    [Google Scholar]
  28. 28. 
    Tang L, Zhu L, Taylor MA, Wang Y, Remington SJ, Fang C 2018. Excited state structural evolution of a GFP single-site mutant tracked by tunable femtosecond-stimulated Raman spectroscopy. Molecules 23:2226First application of anti-Stokes FSRS with tunable Raman pump on proteins.
    [Google Scholar]
  29. 29. 
    Frontiera RR, Dasgupta J, Mathies RA 2009. Probing interfacial electron transfer in Coumarin 343 sensitized TiO2 nanoparticles with femtosecond stimulated Raman. J. Am. Chem. Soc. 131:15630–32
    [Google Scholar]
  30. 30. 
    Provencher F, Bérubé N, Parker AW, Greetham GM, Towrie M et al. 2014. Direct observation of ultrafast long-range charge separation at polymer-fullerene heterojunctions. Nat. Commun. 5:4288
    [Google Scholar]
  31. 31. 
    Hoffman DP, Ellis SR, Mathies RA 2014. Characterization of a conical intersection in a charge-transfer dimer with two-dimensional time-resolved stimulated Raman spectroscopy. J. Phys. Chem. A 118:4955–65
    [Google Scholar]
  32. 32. 
    Bragg AE, Yu W, Zhou J, Magnanelli T 2016. Ultrafast Raman spectroscopy as a probe of local structure and dynamics in photoexcited conjugated materials. J. Phys. Chem. Lett. 7:3990–4000
    [Google Scholar]
  33. 33. 
    Tang L, Zhu L, Ener ME, Gao H, Wang Y et al. 2019. Photoinduced charge flow inside an iron porphyrazine complex. Chem. Commun. 55:13606–9
    [Google Scholar]
  34. 34. 
    Dietze DR, Mathies RA. 2016. Femtosecond stimulated Raman spectroscopy. ChemPhysChem 17:1224–51Comprehensive review on FSRS history, technical advances, and various applications up to 2016.
    [Google Scholar]
  35. 35. 
    Liu W, Tang L, Oscar BG, Wang Y, Chen C, Fang C 2017. Tracking ultrafast vibrational cooling during excited state proton transfer reaction with anti-Stokes and Stokes femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 8:997–1003
    [Google Scholar]
  36. 36. 
    Oscar BG, Chen C, Liu W, Zhu L, Fang C 2017. Dynamic Raman line shapes on an evolving excited-state landscape: insights from tunable femtosecond stimulated Raman spectroscopy. J. Phys. Chem. A 121:5428–41Introduces dynamic mode-specific line shapes in anti-Stokes FSRS of a photoexcited chromophore in solution.
    [Google Scholar]
  37. 37. 
    Zhu L, Liu W, Fang C 2014. A versatile femtosecond stimulated Raman spectroscopy setup with tunable pulses in the visible to near infrared. Appl. Phys. Lett. 105:041106First technical report on an integrated tunable FSRS setup with BUMA as the Raman probe.
    [Google Scholar]
  38. 38. 
    Liu W, Wang Y, Tang L, Oscar BG, Zhu L, Fang C 2016. Panoramic portrait of primary molecular events preceding excited state proton transfer in water. Chem. Sci. 7:5484–94Tunable FSRS-enabled direct tracking of low-frequency modes and coherent oscillations of organic chromophores in water.
    [Google Scholar]
  39. 39. 
    Lee J, Challa JR, McCamant DW 2017. Ultraviolet light makes dGMP floppy: femtosecond stimulated Raman spectroscopy of 2′-deoxyguanosine 5′-monophosphate. J. Phys. Chem. B 121:4722–32
    [Google Scholar]
  40. 40. 
    Roy K, Kayal S, Ariese F, Beeby A, Umapathy S 2017. Mode specific excited state dynamics study of bis(phenylethynyl)benzene from ultrafast Raman loss spectroscopy. J. Chem. Phys. 146:064303
    [Google Scholar]
  41. 41. 
    Chen C, Liu W, Baranov MS, Baleeva NS, Yampolsky IV et al. 2017. Unveiling structural motions of a highly fluorescent superphotoacid by locking and fluorinating the GFP chromophore in solution. J. Phys. Chem. Lett. 8:5921–28
    [Google Scholar]
  42. 42. 
    Tang L, Wang Y, Zhu L, Lee C, Fang C 2018. Correlated molecular structural motions for photoprotection after deep-UV irradiation. J. Phys. Chem. Lett. 9:2311–19
    [Google Scholar]
  43. 43. 
    Westlake BC, Brennaman MK, Concepcion JJ, Paul JJ, Bettis SE et al. 2011. Concerted electron-proton transfer in the optical excitation of hydrogen-bonded dyes. PNAS 108:8554–58
    [Google Scholar]
  44. 44. 
    Han F, Liu W, Fang C 2013. Excited-state proton transfer of photoexcited pyranine in water observed by femtosecond stimulated Raman spectroscopy. Chem. Phys. 422:204–19
    [Google Scholar]
  45. 45. 
    Yang KR, Xu X, Zheng J, Truhlar DG 2014. Full-dimensional potentials and state couplings and multidimensional tunneling calculations for the photodissociation of phenol. Chem. Sci. 5:4661–80
    [Google Scholar]
  46. 46. 
    Yoshizawa M, Kurosawa M. 1999. Femtosecond time-resolved Raman spectroscopy using stimulated Raman scattering. Phys. Rev. A 61:013808
    [Google Scholar]
  47. 47. 
    McCamant DW, Kukura P, Yoon S, Mathies RA 2004. Femtosecond broadband stimulated Raman spectroscopy: apparatus and methods. Rev. Sci. Instrum. 75:4971–80
    [Google Scholar]
  48. 48. 
    Laimgruber S, Schachenmayr H, Schmidt B, Zinth W, Gilch P 2006. A femtosecond stimulated Raman spectrograph for the near ultraviolet. Appl. Phys. B 85:557–64
    [Google Scholar]
  49. 49. 
    Weigel A, Dobryakov A, Klaumünzer B, Sajadi M, Saalfrank P, Ernsting NP 2011. Femtosecond stimulated Raman spectroscopy of flavin after optical excitation. J. Phys. Chem. B 115:3656–80
    [Google Scholar]
  50. 50. 
    Wang W, Liu W, Chang I-Y, Wills LA, Zakharov LN et al. 2013. Electrolytic synthesis of aqueous aluminum nanoclusters and in situ characterization by femtosecond Raman spectroscopy and computations. PNAS 110:18397–401
    [Google Scholar]
  51. 51. 
    Zhu L, Saha S, Wang Y, Keszler DA, Fang C 2016. Monitoring photochemical reaction pathways of tungsten hexacarbonyl in solution from femtoseconds to minutes. J. Phys. Chem. B 120:13161–68
    [Google Scholar]
  52. 52. 
    Fang C, Tang L, Oscar BG, Chen C 2018. Capturing structural snapshots during photochemical reactions with ultrafast Raman spectroscopy: from materials transformation to biosensor responses. J. Phys. Chem. Lett. 9:3253–63Recent perspective on tunable FSRS development and implementations for biological and materials science and engineering.
    [Google Scholar]
  53. 53. 
    Liu W, Han F, Smith C, Fang C 2012. Ultrafast conformational dynamics of pyranine during excited state proton transfer in aqueous solution revealed by femtosecond stimulated Raman spectroscopy. J. Phys. Chem. B 116:10535–50
    [Google Scholar]
  54. 54. 
    Dorfman KE, Fingerhut BP, Mukamel S 2013. Time-resolved broadband Raman spectroscopies: a unified six-wave-mixing representation. J. Chem. Phys. 139:124113
    [Google Scholar]
  55. 55. 
    Fang C, Tang L, Chen C 2019. Unveiling coupled electronic and vibrational motions of chromophores in condensed phase. J. Chem. Phys. 151:200901
    [Google Scholar]
  56. 56. 
    Lee S-Y, Zhang D, McCamant DW, Kukura P, Mathies RA 2004. Theory of femtosecond stimulated Raman spectroscopy. J. Chem. Phys. 121:3632–42
    [Google Scholar]
  57. 57. 
    Zhu L, Liu W, Fang C 2013. Tunable sideband laser from cascaded four-wave mixing in thin glass for ultra-broadband femtosecond stimulated Raman spectroscopy. Appl. Phys. Lett. 103:061110
    [Google Scholar]
  58. 58. 
    Molesky BP, Guo Z, Moran AM 2015. Femtosecond stimulated Raman spectroscopy by six-wave mixing. J. Chem. Phys. 142:212405
    [Google Scholar]
  59. 59. 
    Zhu L, Liu W, Wang Y, Fang C 2015. Sum-frequency-generation-based laser sidebands for tunable femtosecond Raman spectroscopy in the ultraviolet. Appl. Sci. 5:48–61
    [Google Scholar]
  60. 60. 
    Monacelli L, Batignani G, Fumero G, Ferrante C, Mukamel S, Scopigno T 2017. Manipulating impulsive stimulated Raman spectroscopy with a chirped probe pulse. J. Phys. Chem. Lett. 8:966–74
    [Google Scholar]
  61. 61. 
    Liu W, Zhu L, Fang C 2012. Observation of sum-frequency-generation-induced cascaded four-wave mixing using two crossing femtosecond laser pulses in a 0.1 mm beta-barium-borate crystal. Opt. Lett. 37:3783–85
    [Google Scholar]
  62. 62. 
    Liu W, Zhu L, Wang L, Fang C 2013. Cascaded four-wave mixing for broadband tunable laser sideband generation. Opt. Lett. 38:1772–74
    [Google Scholar]
  63. 63. 
    Han F, Liu W, Zhu L, Wang Y, Fang C 2016. Initial hydrogen-bonding dynamics of photoexcited coumarin in solution with femtosecond stimulated Raman spectroscopy. J. Mater. Chem. C 4:2954–63
    [Google Scholar]
  64. 64. 
    Yan Y-X, Gamble EB, Nelson KA 1985. Impulsive stimulated scattering: general importance in femtosecond laser pulse interactions with matter, and spectroscopic applications. J. Chem. Phys. 83:5391–99
    [Google Scholar]
  65. 65. 
    Takeuchi S, Ruhman S, Tsuneda T, Chiba M, Taketsugu T, Tahara T 2008. Spectroscopic tracking of structural evolution in ultrafast stilbene photoisomerization. Science 322:1073–77
    [Google Scholar]
  66. 66. 
    Johnson PJM, Halpin A, Morizumi T, Prokhorenko VI, Ernst OP, Miller RJD 2015. Local vibrational coherences drive the primary photochemistry of vision. Nat. Chem. 7:980–86
    [Google Scholar]
  67. 67. 
    Rao BJ, Gelin MF, Domcke W 2016. Resonant femtosecond stimulated Raman spectra: theory and simulations. J. Phys. Chem. A 120:3286–95
    [Google Scholar]
  68. 68. 
    Dean JC, Mirkovic T, Toa ZSD, Oblinsky DG, Scholes GD 2016. Vibronic enhancement of algae light harvesting. Chem 1:858–72
    [Google Scholar]
  69. 69. 
    Batignani G, Fumero G, Mukamel S, Scopigno T 2015. Energy flow between spectral components in 2D broadband stimulated Raman spectroscopy. Phys. Chem. Chem. Phys. 17:10454–61
    [Google Scholar]
  70. 70. 
    Wang L, Liu W, Fang C 2015. Elucidating low-frequency vibrational dynamics in calcite and water with time-resolved third-harmonic generation spectroscopy. Phys. Chem. Chem. Phys. 17:17034–40
    [Google Scholar]
  71. 71. 
    Quick M, Dobryakov AL, Kovalenko SA, Ernsting NP 2015. Resonance femtosecond-stimulated Raman spectroscopy without actinic excitation showing low-frequency vibrational activity in the S2 state of all-trans β-carotene. J. Phys. Chem. Lett. 6:1216–20
    [Google Scholar]
  72. 72. 
    Chen C, Zhu L, Fang C 2018. Femtosecond stimulated Raman line shapes: dependence on resonance conditions of pump and probe pulses. Chin. J. Chem. Phys. 31:492–502
    [Google Scholar]
  73. 73. 
    Liebel M, Schnedermann C, Wende T, Kukura P 2015. Principles and applications of broadband impulsive vibrational spectroscopy. J. Phys. Chem. A 119:9506–17
    [Google Scholar]
  74. 74. 
    Hamm P, Lim M, Hochstrasser RM 1998. Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy. J. Phys. Chem. B 102:6123–38
    [Google Scholar]
  75. 75. 
    Fang C, Wang J, Charnley AK, Barber-Armstrong W, Smith AB III et al. 2003. Two-dimensional infrared measurements of the coupling between amide modes of an α-helix. Chem. Phys. Lett. 382:586–92
    [Google Scholar]
  76. 76. 
    Zheng J, Kwak K, Asbury J, Chen X, Piletic IR, Fayer MD 2005. Ultrafast dynamics of solute-solvent complexation observed at thermal equilibrium in real time. Science 309:1338–43
    [Google Scholar]
  77. 77. 
    Fang C, Senes A, Cristian L, DeGrado WF, Hochstrasser RM 2006. Amide vibrations are delocalized across the hydrophobic interface of a transmembrane helix dimer. PNAS 103:16740–45
    [Google Scholar]
  78. 78. 
    Fang C, Bauman JD, Das K, Remorino A, Arnold E, Hochstrasser RM 2008. Two-dimensional infrared spectra reveal relaxation of the nonnucleoside inhibitor TMC278 complexed with the HIV-1 reverse transcriptase. PNAS 105:1472–77
    [Google Scholar]
  79. 79. 
    Kratochvil HT, Carr JK, Matulef K, Annen AW, Li H et al. 2016. Instantaneous ion configurations in the K+ ion channel selectivity filter revealed by 2D IR spectroscopy. Science 353:1040–44
    [Google Scholar]
  80. 80. 
    Zhao B, Sun Z, Lee S-Y 2011. Quantum theory of time-resolved femtosecond stimulated Raman spectroscopy: direct versus cascade processes and application to CDCl3. J. Chem. Phys. 134:024307
    [Google Scholar]
  81. 81. 
    Dunlap B, Wilson KC, McCamant DW 2013. Phase-matching and dilution effects in two-dimensional femtosecond stimulated Raman spectroscopy. J. Phys. Chem. A 117:6205–16
    [Google Scholar]
  82. 82. 
    Tonge PJ, Meech SR. 2009. Excited state dynamics in the green fluorescent protein. J. Photochem. Photobiol. A Chem. 205:1–11
    [Google Scholar]
  83. 83. 
    Meech SR. 2009. Excited state reactions in fluorescent proteins. Chem. Soc. Rev. 38:2922–34
    [Google Scholar]
  84. 84. 
    Polli D, Altoè P, Weingart O, Spillane KM, Manzoni C et al. 2010. Conical intersection dynamics of the primary photoisomerization event in vision. Nature 467:440–43
    [Google Scholar]
  85. 85. 
    Hall CR, Conyard J, Heisler IA, Jones G, Frost J et al. 2017. Ultrafast dynamics in light-driven molecular rotary motors probed by femtosecond stimulated Raman spectroscopy. J. Am. Chem. Soc. 139:7408–14
    [Google Scholar]
  86. 86. 
    Taylor MA, Zhu L, Rozanov ND, Stout KT, Chen C, Fang C 2019. Delayed vibrational modulation of the solvated GFP chromophore into a conical intersection. Phys. Chem. Chem. Phys. 21:9728–39
    [Google Scholar]
  87. 87. 
    Lian T, Locke B, Kholodenko Y, Hochstrasser RM 1994. Energy flow from solute to solvent probed by femtosecond IR spectroscopy: malachite green and heme protein solutions. J. Phys. Chem. 98:11648–56
    [Google Scholar]
  88. 88. 
    Laage D, Elsaesser T, Hynes JT 2017. Water dynamics in the hydration shells of biomolecules. Chem. Rev. 117:10694–725
    [Google Scholar]
  89. 89. 
    Frauenfelder H, Sligar SG, Wolynes PG 1991. The energy landscapes and motions of proteins. Science 254:1598–603
    [Google Scholar]
  90. 90. 
    Feynman RP. 1970. The Feynman Lectures on Physics Boston, MA: Addison Wesley Longman
    [Google Scholar]
  91. 91. 
    Chattoraj M, King BA, Bublitz GU, Boxer SG 1996. Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. PNAS 93:8362–67
    [Google Scholar]
  92. 92. 
    Brejc K, Sixma TK, Kitts PA, Kain SR, Tsien RY et al. 1997. Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. PNAS 94:2306–11
    [Google Scholar]
  93. 93. 
    Champion PM. 2005. Following the flow of energy in biomolecules. Science 310:980–82
    [Google Scholar]
  94. 94. 
    Schnedermann C, Yang X, Liebel M, Spillane KM, Lugtenburg J et al. 2018. Evidence for a vibrational phase-dependent isotope effect on the photochemistry of vision. Nat. Chem. 10:449–55
    [Google Scholar]
  95. 95. 
    Chen C, Zhu L, Baranov MS, Tang L, Baleeva NS et al. 2019. Photoinduced proton transfer of GFP-inspired fluorescent superphotoacids: principles and design. J. Phys. Chem. B 123:3804–21
    [Google Scholar]
  96. 96. 
    Cellmer T, Buscaglia M, Henry ER, Hofrichter J, Eaton WA 2011. Making connections between ultrafast protein folding kinetics and molecular dynamics simulations. PNAS 108:6103–8
    [Google Scholar]
  97. 97. 
    Zimmer M. 2002. Green fluorescent protein (GFP): applications, structure, and related photophysical behavior. Chem. Rev. 102:759–81
    [Google Scholar]
  98. 98. 
    Tsien RY. 1998. The green fluorescent protein. Annu. Rev. Biochem. 67:509–44
    [Google Scholar]
  99. 99. 
    Shimomura O, Johnson FH, Saiga Y 1962. Extraction, purification and properties of Aequorin, a bioluminescent protein from the luminous hydromedusan. Aequorea. J. Cell. Comp. Physiol. 59:223–39
    [Google Scholar]
  100. 100. 
    Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC 1994. Green fluorescent protein as a marker for gene expression. Science 263:802–5
    [Google Scholar]
  101. 101. 
    Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA et al. 1997. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–87
    [Google Scholar]
  102. 102. 
    Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ 1996. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392–95
    [Google Scholar]
  103. 103. 
    Kennis JTM, Larsen DS, van Stokkum IHM, Vengris M, van Thor JJ, van Grondelle R 2004. Uncovering the hidden ground state of green fluorescent protein. PNAS 101:17988–93
    [Google Scholar]
  104. 104. 
    Zhao Y, Araki S, Wu J, Teramoto T, Chang Y-F et al. 2011. An expanded palette of genetically encoded Ca2+ indicators. Science 333:1888–91
    [Google Scholar]
  105. 105. 
    Wang Q, Shui B, Kotlikoff MI, Sondermann H 2008. Structural basis for calcium sensing by GCaMP2. Structure 16:1817–27
    [Google Scholar]
  106. 106. 
    Akerboom J, Rivera JDV, Guilbe MMR, Malavé ECA, Hernandez HH et al. 2009. Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design. J. Biol. Chem. 284:6455–64
    [Google Scholar]
  107. 107. 
    Pédelacq J-D, Cabantous S, Tran T, Terwilliger TC, Waldo GS 2005. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24:79–88
    [Google Scholar]
  108. 108. 
    Petrone A, Cimino P, Donati G, Hratchian HP, Frisch MJ, Rega N 2016. On the driving force of the excited-state proton shuttle in the green fluorescent protein: a time-dependent density functional theory (TD-DFT) study of the intrinsic reaction path. J. Chem. Theory Comput. 12:4925–33
    [Google Scholar]
  109. 109. 
    Scholes GD, Fleming GR, Chen LX, Aspuru-Guzik A, Buchleitner A et al. 2017. Using coherence to enhance function in chemical and biophysical systems. Nature 543:647–56
    [Google Scholar]
  110. 110. 
    Park JW, Rhee YM. 2016. Electric field keeps chromophore planar and produces high yield fluorescence in green fluorescent protein. J. Am. Chem. Soc. 138:13619–29
    [Google Scholar]
  111. 111. 
    Conyard J, Heisler IA, Chan Y, Bulman Page PC, Meech SR, Blancafort L 2018. A new twist in the photophysics of the GFP chromophore: a volume-conserving molecular torsion couple. Chem. Sci. 9:1803–12
    [Google Scholar]
  112. 112. 
    Tang L, Wang Y, Zhu L, Kallio K, Remington SJ, Fang C 2018. Photoinduced proton transfer inside an engineered green fluorescent protein: a stepwise-concerted-hybrid reaction. Phys. Chem. Chem. Phys. 20:12517–26
    [Google Scholar]
  113. 113. 
    Schnedermann C, Liebel M, Kukura P 2015. Mode-specificity of vibrationally coherent internal conversion in rhodopsin during the primary visual event. J. Am. Chem. Soc. 137:2886–91
    [Google Scholar]
  114. 114. 
    Liebel M, Kukura P. 2017. Lack of evidence for phase-only control of retinal photoisomerization in the strict one-photon limit. Nat. Chem. 9:45–49
    [Google Scholar]
  115. 115. 
    Chudakov DM, Belousov VV, Zaraisky AG, Novoselov VV, Staroverov DB et al. 2003. Kindling fluorescent proteins for precise in vivo photolabeling. Nat. Biotechnol. 21:191–94
    [Google Scholar]
  116. 116. 
    Henderson JN, Ai HW, Campbell RE, Remington SJ 2007. Structural basis for reversible photobleaching of a green fluorescent protein homologue. PNAS 104:6672–77
    [Google Scholar]
  117. 117. 
    Zhou XX, Lin MZ. 2013. Photoswitchable fluorescent proteins: ten years of colorful chemistry and exciting applications. Curr. Opin. Chem. Biol. 17:682–90
    [Google Scholar]
  118. 118. 
    Acharya A, Bogdanov AM, Grigorenko BL, Bravaya KB, Nemukhin AV et al. 2016. Photoinduced chemistry in fluorescent proteins: curse or blessing. Chem. Rev. 117:758–95
    [Google Scholar]
  119. 119. 
    Stiel AC, Trowitzsch S, Weber G, Andresen M, Eggeling C et al. 2007. 1.8 Å bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochem. J. 402:35–42
    [Google Scholar]
  120. 120. 
    Mizuno H, Mal TK, Walchli M, Kikuchi A, Fukano T et al. 2008. Light-dependent regulation of structural flexibility in a photochromic fluorescent protein. PNAS 105:9227–32
    [Google Scholar]
  121. 121. 
    Fron E, Flors C, Schweitzer G, Habuchi S, Mizuno H et al. 2007. Ultrafast excited-state dynamics of the photoswitchable protein Dronpa. J. Am. Chem. Soc. 129:4870–71
    [Google Scholar]
  122. 122. 
    Warren MM, Kaucikas M, Fitzpatrick A, Champion PM, Sage JT, van Thor JJ 2013. Ground-state proton transfer in the photoswitching reactions of the fluorescent protein Dronpa. Nat. Commun. 4:1461
    [Google Scholar]
  123. 123. 
    Fron E, Sliwa M, Adam V, Michiels J, Rocha S et al. 2014. Excited state dynamics of the photoconvertible fluorescent protein Kaede revealed by ultrafast spectroscopy. Photochem. Photobiol. Sci. 13:867–74
    [Google Scholar]
  124. 124. 
    Krueger TD, Tang L, Zhu L, Breen IL, Wachter RM, Fang C 2020. Dual illumination enhances transformation of an engineered green-to-red photoconvertible fluorescent protein. Angew. Chem. Int. Ed. 59:1644–52
    [Google Scholar]
  125. 125. 
    Adam V, Lelimousin M, Boehme S, Desfonds G, Nienhaus K et al. 2008. Structural characterization of IrisFP, an optical highlighter undergoing multiple photo-induced transformations. PNAS 105:18343–48
    [Google Scholar]
  126. 126. 
    Duan C, Adam V, Byrdin M, Ridard J, Kieffer-Jaquinod S et al. 2013. Structural evidence for a two-regime photobleaching mechanism in a reversibly switchable fluorescent protein. J. Am. Chem. Soc. 135:15841–50
    [Google Scholar]
  127. 127. 
    Colletier J-P, Sliwa M, Gallat F-X, Sugahara M, Guillon V et al. 2016. Serial femtosecond crystallography and ultrafast absorption spectroscopy of the photoswitchable fluorescent protein IrisFP. J. Phys. Chem. Lett. 7:882–87
    [Google Scholar]
  128. 128. 
    Bourgeois D, Adam V. 2012. Reversible photoswitching in fluorescent proteins: a mechanistic view. IUBMB Life 64:482–91
    [Google Scholar]
  129. 129. 
    Kim H, Grunkemeyer TJ, Modi C, Chen L, Fromme R et al. 2013. Acid-base catalysis and crystal structures of a least evolved ancestral GFP-like protein undergoing green-to-red photoconversion. Biochemistry 52:8048–59
    [Google Scholar]
  130. 130. 
    Arpin PC, Turner DB, McClure SD, Jumper CC, Mirkovic T et al. 2015. Spectroscopic studies of cryptophyte light harvesting proteins: vibrations and coherent oscillations. J. Phys. Chem. B 119:10025–34
    [Google Scholar]
  131. 131. 
    Hontani Y, Kloz M, Polívka T, Shukla MK, Sobotka R, Kennis JTM 2018. Molecular origin of photoprotection in cyanobacteria probed by watermarked femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 9:1788–92
    [Google Scholar]
  132. 132. 
    Hontani Y, Inoue K, Kloz M, Kato Y, Kandori H, Kennis JTM 2016. The photochemistry of sodium ion pump rhodopsin observed by watermarked femto- to submillisecond stimulated Raman spectroscopy. Phys. Chem. Chem. Phys. 18:24729–36
    [Google Scholar]
  133. 133. 
    Pecourt JM, Peon J, Kohler B 2001. DNA excited-state dynamics: ultrafast internal conversion and vibrational cooling in a series of nucleosides. J. Am. Chem. Soc. 123:10370–78
    [Google Scholar]
  134. 134. 
    Baker LA, Horbury MD, Greenough SE, Coulter PM, Karsili TNV et al. 2015. Probing the ultrafast energy dissipation mechanism of the sunscreen oxybenzone after UVA irradiation. J. Phys. Chem. Lett. 6:1363–68
    [Google Scholar]
  135. 135. 
    Miller RJD. 1991. Vibrational energy relaxation and structural dynamics of heme proteins. Annu. Rev. Phys. Chem. 42:581–614
    [Google Scholar]
  136. 136. 
    Zhu L, Sage JT, Champion PM 1994. Observation of coherent reaction dynamics in heme proteins. Science 266:629–32
    [Google Scholar]
  137. 137. 
    Mizutani Y, Kitagawa T. 1997. Direct observation of cooling of heme upon photodissociation of carbonmonoxy myoglobin. Science 278:443–46
    [Google Scholar]
  138. 138. 
    Sagnella DE, Straub JE, Jackson TA, Lim M, Anfinrud PA 1999. Vibrational population relaxation of carbon monoxide in the heme pocket of photolyzed carbonmonoxy myoglobin: comparison of time-resolved mid-IR absorbance experiments and molecular dynamics simulations. PNAS 96:14324–29
    [Google Scholar]
  139. 139. 
    Kruglik SG, Lambry J-C, Martin J-L, Vos MH, Negrerie M 2011. Sub-picosecond Raman spectrometer for time-resolved studies of structural dynamics in heme proteins. J. Raman Spectrosc. 42:265–75
    [Google Scholar]
  140. 140. 
    Pontecorvo E, Ferrante C, Elles CG, Scopigno T 2013. Spectrally tailored narrowband pulses for femtosecond stimulated Raman spectroscopy in the range 330–750 nm. Opt. Express 21:6866–72
    [Google Scholar]
  141. 141. 
    Kuramochi H, Fujisawa T, Takeuchi S, Tahara T 2017. Broadband stimulated Raman spectroscopy in the deep ultraviolet region. Chem. Phys. Lett. 683:543–46
    [Google Scholar]
  142. 142. 
    Englman R, Jortner J. 1970. The energy gap law for radiationless transitions in large molecules. Mol. Phys. 18:145–64
    [Google Scholar]
  143. 143. 
    Saar BG, Freudiger CW, Reichman J, Stanley CM, Holtom GR, Xie XS 2010. Video-rate molecular imaging in vivo with stimulated Raman scattering. Science 330:1368–70
    [Google Scholar]
  144. 144. 
    Opilik L, Schmid T, Zenobi R 2013. Modern Raman imaging: vibrational spectroscopy on the micrometer and nanometer scales. Annu. Rev. Anal. Chem. 6:379–98
    [Google Scholar]
  145. 145. 
    Wei L, Chen Z, Shi L, Long R, Anzalone AV et al. 2017. Super-multiplex vibrational imaging. Nature 544:465–70
    [Google Scholar]
  146. 146. 
    Ploetz E, Laimgruber S, Berner S, Zinth W, Gilch P 2007. Femtosecond stimulated Raman microscopy. Appl. Phys. B 87:389–93
    [Google Scholar]
  147. 147. 
    Min W, Freudiger CW, Lu S, Xie XS 2011. Coherent nonlinear optical imaging: beyond fluorescence microscopy. Annu. Rev. Phys. Chem. 62:507–30
    [Google Scholar]
  148. 148. 
    Ortega-Arroyo J, Kukura P. 2016. Non-fluorescent schemes for single-molecule detection, imaging and spectroscopy. Nat. Photon. 10:11–17
    [Google Scholar]
  149. 149. 
    Tipping WJ, Lee M, Serrels A, Brunton VG, Hulme AN 2016. Stimulated Raman scattering microscopy: an emerging tool for drug discovery. Chem. Soc. Rev. 45:2075–89
    [Google Scholar]
  150. 150. 
    Fu D. 2017. Quantitative chemical imaging with stimulated Raman scattering microscopy. Curr. Opin. Chem. Biol. 39:24–31
    [Google Scholar]
  151. 151. 
    Chen C, Baranov MS, Zhu L, Baleeva NS, Smirnov AY et al. 2019. Designing redder and brighter fluorophores by synergistic tuning of ground and excited states. Chem. Commun. 55:2537–40
    [Google Scholar]
  152. 152. 
    Wang L, Xie JM, Deniz AA, Schultz PG 2003. Unnatural amino acid mutagenesis of green fluorescent protein. J. Org. Chem. 68:174–76
    [Google Scholar]
  153. 153. 
    Peeler JC, Mehl RA. 2012. Site-specific incorporation of unnatural amino acids as probes for protein conformational changes. Unnatural Amino Acids: Methods and Protocols L Pollegioni, S Servi 125–34 New York: Humana
    [Google Scholar]
  154. 154. 
    Miller RJD. 2014. Femtosecond crystallography with ultrabright electrons and X-rays: capturing chemistry in action. Science 343:1108–16
    [Google Scholar]
  155. 155. 
    Nogly P, Weinert T, James D, Carbajo S, Ozerov D et al. 2018. Retinal isomerization in bacteriorhodopsin captured by a femtosecond X-ray laser. Science 361:eaat0094
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-071119-040154
Loading
/content/journals/10.1146/annurev-physchem-071119-040154
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error