1932

Abstract

Molecular polaritons result from light-matter coupling between optical resonances and molecular electronic or vibrational transitions. When the coupling is strong enough, new hybridized states with mixed photon-material character are observed spectroscopically, with resonances shifted above and below the uncoupled frequency. These new modes have unique optical properties and can be exploited to promote or inhibit physical and chemical processes. One remarkable result is that vibrational strong coupling to cavities can alter reaction rates and product branching ratios with no optical excitation whatsoever. In this work we review the ability of vibration-cavity polaritons to modify chemical and physical processes including chemical reactivity, as well as steady-state and transient spectroscopy. We discuss the larger context of these works and highlight their most important contributions and implications. Our goal is to provide insight for systematically manipulating molecular polaritons in photonic and chemical applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-082620-014627
2022-04-20
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/physchem/73/1/annurev-physchem-082620-014627.html?itemId=/content/journals/10.1146/annurev-physchem-082620-014627&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Crim FF. 1999. Vibrational state control of bimolecular reactions: discovering and directing the chemistry. Acc. Chem. Res. 32:877–84
    [Google Scholar]
  2. 2. 
    Kohler B, Krause JL, Raksi F, Wilson KR, Yakovlev VV et al. 1995. Controlling the future of matter. Acc. Chem. Res. 28:133–40
    [Google Scholar]
  3. 3. 
    Heyne K, Kuhn O. 2019. Infrared laser excitation controlled reaction acceleration in the electronic ground state. J. Am. Chem. Soc. 141:11730–38
    [Google Scholar]
  4. 4. 
    Shin JY, Shaloski MA, Crim FF, Case AS. 2017. First evidence of vibrationally driven bimolecular reactions in solution: reactions of Br atoms with dimethylsulfoxide and methanol. J. Phys. Chem. B 121:2486–94
    [Google Scholar]
  5. 5. 
    Oxtoby DW. 1981. Vibrational relaxation in liquids. Annu. Rev. Phys. Chem. 32:77–101
    [Google Scholar]
  6. 6. 
    Stratt RM, Maroncelli M. 1996. Nonreactive dynamics in solution: the emerging molecular view of solvation dynamics and vibrational relaxation. J. Phys. Chem. 100:12981–96
    [Google Scholar]
  7. 7. 
    Hutchison JA, Schwartz T, Genet C, Devaux E, Ebbesen TW 2012. Modifying chemical landscapes by coupling to vacuum fields. Angew. Chem. Int. Ed. 51:1592–96
    [Google Scholar]
  8. 8. 
    Munkhbat B, Wersall M, Baranov DG, Antosiewicz TJ, Shegai T. 2018. Suppression of photo-oxidation of organic chromophores by strong coupling to plasmonic nanoantennas. Sci. Adv. 4:eaaas9552
    [Google Scholar]
  9. 9. 
    Peters VN, Faruk MO, Asane J, Alexander R, Peters DA et al. 2019. Effect of strong coupling on photodegradation of the semiconducting polymer P3HT. Optica 6:318–25
    [Google Scholar]
  10. 10. 
    Thomas A, George J, Shalabney A, Dryzhakov M, Varma SJ et al. 2016. Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field. Angew. Chem. Int. Ed. 55:11462–66
    [Google Scholar]
  11. 11. 
    Thomas A, Lethuillier-Karl L, Nagarajan K, Vergauwe RMA, George J et al. 2019. Tilting a ground-state reactivity landscape by vibrational strong coupling. Science 363:615–19
    [Google Scholar]
  12. 12. 
    Ebbesen TW. 2016. Hybrid light-matter states in a molecular and material science perspective. Acc. Chem. Res. 49:2403–12
    [Google Scholar]
  13. 13. 
    Khitrova G, Gibbs HM, Jahnke F, Kira M, Koch SW 1999. Nonlinear optics of normal-mode-coupling semiconductor microcavities. Rev. Mod. Phys. 71:1591–639
    [Google Scholar]
  14. 14. 
    Tischler JR, Bradley MS, Zhang Q, Atay T, Nurmikko A, Bulovic V 2007. Solid state cavity QED: strong coupling in organic thin films. Org. Electron. 8:94–113
    [Google Scholar]
  15. 15. 
    Skolnick MS, Fisher TA, Whittaker DM. 1998. Strong coupling phenomena in quantum microcavity structures. Semicond. Sci. Technol. 13:645–69
    [Google Scholar]
  16. 16. 
    Galego J, Garcia-Vidal FJ, Feist J. 2016. Suppressing photochemical reactions with quantized light fields. Nat. Commun. 7:13841
    [Google Scholar]
  17. 17. 
    Yuen-Zhou J, Menon VM. 2019. Polariton chemistry: thinking inside the (photon) box. PNAS 116:5214–16
    [Google Scholar]
  18. 18. 
    Kena-Cohen S, Yuen-Zhou J. 2019. Polariton chemistry: action in the dark. ACS Cent. Sci. 5:386–88
    [Google Scholar]
  19. 19. 
    Herrera F, Spano FC. 2016. Cavity-controlled chemistry in molecular ensembles. Phys. Rev. Lett. 116:238301
    [Google Scholar]
  20. 20. 
    del Pino J, Feist J, Garcia-Vidal FJ. 2015. Quantum theory of collective strong coupling of molecular vibrations with a microcavity mode. New J. Phys. 17:053040
    [Google Scholar]
  21. 21. 
    Gonzalez-Ballestero C, Feist J, Badia EG, Moreno E, Garcia-Vidal FJ. 2016. Uncoupled dark states can inherit polaritonic properties. Phys. Rev. Lett. 117:156402
    [Google Scholar]
  22. 22. 
    Herrera F, Spano FC. 2017. Dark vibronic polaritons and the spectroscopy of organic microcavities. Phys. Rev. Lett. 118:223601
    [Google Scholar]
  23. 23. 
    Savona V, Andreani LC, Schwendimann P, Quattropani A. 1995. Quantum-well excitons in semiconductor microcavities—unified treatment of weak and strong coupling regimes. Solid State Commun 93:733–39
    [Google Scholar]
  24. 24. 
    Torma P, Barnes WL. 2015. Strong coupling between surface plasmon polaritons and emitters: a review. Rep. Prog. Phys. 78:013901
    [Google Scholar]
  25. 25. 
    Du M, Yuen-Zhou J. 2021. Can dark states explain vibropolaritonic chemistry?. arXiv:2104.07214v2 [quant-ph]
  26. 26. 
    Galego J, Garcia-Vidal FJ, Feist J. 2015. Cavity-induced modifications of molecular structure in the strong-coupling regime. Phys. Rev. X 5:041022
    [Google Scholar]
  27. 27. 
    Herrera F, Spano FC. 2017. Absorption and photoluminescence in organic cavity QED. Phys. Rev. A 95:053867
    [Google Scholar]
  28. 28. 
    Litinskaya M, Reineker P. 2006. Loss of coherence of exciton polaritons in inhomogeneous organic microcavities. Phys. Rev. B 74:165320
    [Google Scholar]
  29. 29. 
    Litinskaya M, Reineker P, Agranovich VM. 2004. Fast polariton relaxation in strongly coupled organic microcavities. J. Lumin. 110:364–72
    [Google Scholar]
  30. 30. 
    Wang H, Wang HY, Sun HB, Cerea A, Toma A et al. 2018. Dynamics of strongly coupled hybrid states by transient absorption spectroscopy. Adv. Funct. Mater. 28:22
    [Google Scholar]
  31. 31. 
    Hertzog M, Wang M, Mony J, Borjesson K. 2019. Strong light-matter interactions: a new direction within chemistry. Chem. Soc. Rev. 48:937–61
    [Google Scholar]
  32. 32. 
    Flick J, Rivera N, Narang P. 2018. Strong light-matter coupling in quantum chemistry and quantum photonics. Nanophotonics 7:1479–501
    [Google Scholar]
  33. 33. 
    Dovzhenko DS, Ryabchuk SV, Rakovich YP, Nabiev IR. 2018. Light-matter interaction in the strong coupling regime: configurations, conditions, and applications. Nanoscale 10:3589–605
    [Google Scholar]
  34. 34. 
    Ribeiro RF, Martínez-Martínez LA, Du M, Campos-Gonzalez-Angulo J, Yuen-Zhou J. 2018. Polariton chemistry: controlling molecular dynamics with optical cavities. Chem. Sci. 9:6325–39
    [Google Scholar]
  35. 35. 
    Cao E, Lin WH, Sun MT, Liang WJ, Song YZ. 2018. Exciton-plasmon coupling interactions: from principle to applications. Nanophotonics 7:145–67
    [Google Scholar]
  36. 36. 
    Lidzey DG, Coles DM 2015. Strong coupling in organic and hybrid-semiconductor microcavity structures. Organic and Hybrid Photonic Crystals D Commoretto 243–73 Cham, Switz: Springer
    [Google Scholar]
  37. 37. 
    Kaluzny Y, Goy P, Gross M, Raimond JM, Haroche S. 1983. Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: the ringing regime of superradiance. Phys. Rev. Lett. 51:1175
    [Google Scholar]
  38. 38. 
    Raizen MG, Thompson RJ, Brecha RJ, Kimble HJ, Carmichael HJ. 1989. Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity. Phys. Rev. Lett. 63:240
    [Google Scholar]
  39. 39. 
    Weisbuch C, Nishioka M, Ishikawa A, Arakawa Y. 1992. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69:3314
    [Google Scholar]
  40. 40. 
    Daskalakis KS, Maier SA, Murray R, Kena-Cohen S 2014. Nonlinear interactions in an organic polariton condensate. Nat. Mater. 13:271–78
    [Google Scholar]
  41. 41. 
    Plumhof JD, Stoeferle T, Mai L, Scherf U, Mahrt RF. 2014. Room-temperature Bose-Einstein condensation of cavity exciton-polaritons in a polymer. Nat. Mater. 13:247–52
    [Google Scholar]
  42. 42. 
    Lidzey DG, Bradley DDC, Virgili T, Armitage A, Skolnick MS, Walker S. 1999. Room temperature polariton emission from strongly coupled organic semiconductor microcavities. Phys. Rev. Lett. 82:3316
    [Google Scholar]
  43. 43. 
    Lidzey DG, Bradley DDC, Skolnick MS, Virgili T, Walker S, Whittaker DM 1998. Strong exciton-photon coupling in an organic semiconductor microcavity. Nature 395:53–55
    [Google Scholar]
  44. 44. 
    George J, Wang SJ, Chervy T, Canaguier-Durand A, Schaeffer G et al. 2015. Ultra-strong coupling of molecular materials: spectroscopy and dynamics. Faraday Discuss 178:281–94
    [Google Scholar]
  45. 45. 
    Schwartz T, Hutchison JA, Leonard J, Genet C, Haacke S, Ebbesen TW. 2013. Polariton dynamics under strong light-molecule coupling. ChemPhysChem 14:125–31
    [Google Scholar]
  46. 46. 
    Agranovich VM, Litinskaia M, Lidzey DG. 2003. Cavity polaritons in microcavities containing disordered organic semiconductors. Phys. Rev. B 67:085311
    [Google Scholar]
  47. 47. 
    Michetti P, La Rocca GC. 2008. Simulation of J-aggregate microcavity photoluminescence. Phys. Rev. B 77:195301
    [Google Scholar]
  48. 48. 
    Virgili T, Coles D, Adawi AM, Clark C, Michetti P et al. 2011. Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity. Phys. Rev. B 83:245309
    [Google Scholar]
  49. 49. 
    Groenhof G, Climent C, Feist J, Morozov D, Toppari JJ 2019. Tracking polariton relaxation with multiscale molecular dynamics simulations. J. Phys. Chem. Lett. 10:5476–83
    [Google Scholar]
  50. 50. 
    Coles DM, Michetti P, Clark C, Adawi AM, Lidzey DG. 2011. Temperature dependence of the upper-branch polariton population in an organic semiconductor microcavity. Phys. Rev. B 84:205214
    [Google Scholar]
  51. 51. 
    Coles DM, Michetti P, Clark C, Tsoi WC, Adawi AM et al. 2011. Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities. Adv. Funct. Mater. 21:3691–96
    [Google Scholar]
  52. 52. 
    Cwik JA, Reja S, Littlewood PB, Keeling J. 2014. Polariton condensation with saturable molecules dressed by vibrational modes. EPL 105:47009
    [Google Scholar]
  53. 53. 
    Herrera F, Spano FC. 2018. Theory of nanoscale organic cavities: the essential role of vibration-photon dressed states. ACS Photonics 5:65–79
    [Google Scholar]
  54. 54. 
    Hutchison JA, Liscio A, Schwartz T, Canaguier-Durand A, Genet C et al. 2013. Tuning the work-function via strong coupling. Adv. Mater. 25:2481–85
    [Google Scholar]
  55. 55. 
    Genet C, Faist J, Ebbesen TW. 2021. Inducing new material properties with hybrid light-matter states. Phys. Today 74:42
    [Google Scholar]
  56. 56. 
    Sentef MA, Ruggenthaler M, Rubio A. 2018. Cavity quantum-electrodynamical polaritonically enhanced electron-phonon coupling and its influence on superconductivity. Sci. Adv. 4:eaau6969
    [Google Scholar]
  57. 57. 
    Eizner E, Martínez-Martínez LA, Yuen-Zhou J, Kena-Cohen S. 2019. Inverting singlet and triplet excited states using strong light-matter coupling. Sci. Adv. 5:eaax4482
    [Google Scholar]
  58. 58. 
    Martínez-Martínez LA, Du M, Ribeiro RF, Kena-Cohen S, Yuen-Zhou J. 2018. Polariton-assisted singlet fission in acene aggregates. J. Phys. Chem. Lett. 9:1951–57
    [Google Scholar]
  59. 59. 
    Stranius K, Hertzog M, Borjesson K. 2018. Selective manipulation of electronically excited states through strong light-matter interactions. Nat. Commun. 9:2273
    [Google Scholar]
  60. 60. 
    Polak D, Jayaprakash R, Lyons TP, Martínez-Martínez LA, Leventis A et al. 2020. Manipulating molecules with strong coupling: harvesting triplet excitons in organic exciton microcavities. Chem. Sci. 11:343–54
    [Google Scholar]
  61. 61. 
    Kasprzak J, Richard M, Kundermann S, Baas A, Jeambrun P et al. 2006. Bose-Einstein condensation of exciton polaritons. Nature 443:409–14
    [Google Scholar]
  62. 62. 
    Byrnes T, Kim NY, Yamamoto Y. 2014. Exciton-polariton condensates. Nat. Phys. 10:803–13
    [Google Scholar]
  63. 63. 
    Keeling J, Kena-Cohen S. 2020. Bose-Einstein condensation of exciton-polaritons in organic microcavities. Annu. Rev. Phys. Chem. 71:435–59
    [Google Scholar]
  64. 64. 
    Lagoudakis PG, Martin MD, Baumberg JJ, Malpuech G, Kavokin A 2004. Coexistence of low threshold lasing and strong coupling in microcavities. J. Appl. Phys. 95:2487
    [Google Scholar]
  65. 65. 
    Strashko A, Kirton P, Keeling J. 2018. Organic polariton lasing and the weak to strong coupling crossover. Phys. Rev. Lett. 121:193601
    [Google Scholar]
  66. 66. 
    Juggins RT, Keeling J, Szymanska MH. 2018. Coherently driven microcavity-polaritons and the question of superfluidity. Nat. Commun. 9:4062
    [Google Scholar]
  67. 67. 
    Lerario G, Fieramosca A, Barachati F, Ballarini D, Daskalakis KS et al. 2017. Room-temperature superfluidity in a polariton condensate. Nat. Phys. 13:837
    [Google Scholar]
  68. 68. 
    Schachenmayer J, Genes C, Tignone E, Pupillo G 2015. Cavity-enhanced transport of excitons. Phys. Rev. Lett. 114:196403
    [Google Scholar]
  69. 69. 
    Orgiu E, George J, Hutchison JA, Devaux E, Dayen JF et al. 2015. Conductivity in organic semiconductors hybridized with the vacuum field. Nat. Mater 14:1123
    [Google Scholar]
  70. 70. 
    Feist J, Garcia-Vidal FJ. 2015. Extraordinary exciton conductance induced by strong coupling. Phys. Rev. Lett. 114:196402
    [Google Scholar]
  71. 71. 
    Reitz M, Mineo F, Genes C. 2018. Energy transfer and correlations in cavity-embedded donor-acceptor configurations. Sci. Rep. 8:9050
    [Google Scholar]
  72. 72. 
    Zhong XL, Chervy T, Zhang L, Thomas A, George J et al. 2017. Energy transfer between spatially separated entangled molecules. Angew. Chem. Int. Ed. 56:9034–38
    [Google Scholar]
  73. 73. 
    Zhong XL, Chervy T, Wang SJ, George J, Thomas A et al. 2016. Non-radiative energy transfer mediated by hybrid light-matter states. Angew. Chem. Int. Ed. 55:6202–6
    [Google Scholar]
  74. 74. 
    Coles DM, Somaschi N, Michetti P, Clark C, Lagoudakis PG et al. 2014. Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity. Nat. Mater. 13:712–19
    [Google Scholar]
  75. 75. 
    Shelton DJ, Brener I, Ginn JC, Sinclair MB, Peters DW et al. 2011. Strong coupling between nanoscale metamaterials and phonons. Nano Lett 11:2104–8
    [Google Scholar]
  76. 76. 
    Mason JA, Allen G, Podolskiy VA, Wasserman D 2012. Strong coupling of molecular and mid-infrared perfect absorber resonances. IEEE Photonics Technol. Lett. 24:31–33
    [Google Scholar]
  77. 77. 
    Luxmoore IJ, Gan CH, Liu PQ, Valmorra F, Li PL et al. 2014. Strong coupling in the far-infrared between graphene plasmons and the surface optical phonons of silicon dioxide. ACS Photonics 1:1151–55
    [Google Scholar]
  78. 78. 
    Shalabney A, George J, Hutchison J, Pupillo G, Genet C, Ebbesen TW. 2015. Coherent coupling of molecular resonators with a microcavity mode. Nat. Commun. 6:5981
    [Google Scholar]
  79. 79. 
    Long JP, Simpkins BS. 2015. Coherent coupling between a molecular vibration and Fabry–Perot optical cavity to give hybridized states in the strong coupling limit. ACS Photonics 2:130–36
    [Google Scholar]
  80. 80. 
    Muallem M, Palatnik A, Nessim GD, Tischler YR. 2016. Strong light-matter coupling between a molecular vibrational mode in a PMMA film and a low-loss mid-IR microcavity. Ann. Phys. 528:313–20
    [Google Scholar]
  81. 81. 
    George J, Shalabney A, Hutchison JA, Genet C, Ebbesen TW. 2015. Liquid-phase vibrational strong coupling. J. Phys. Chem. Lett. 6:1027–31
    [Google Scholar]
  82. 82. 
    Simpkins BS, Fears KP, Dressick WJ, Spann BT, Dunkelberger AD, Owrutsky JC 2015. Spanning strong to weak normal mode coupling between vibrational and Fabry–Pérot cavity modes through tuning of vibrational absorption strength. ACS Photonics 2:1460–67
    [Google Scholar]
  83. 83. 
    Dintinger J, Klein S, Bustos F, Barnes WL, Ebbesen TW. 2005. Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays. Phys. Rev. B 71:035424
    [Google Scholar]
  84. 84. 
    Casey SR, Sparks JR. 2016. Vibrational strong coupling of organometallic complexes. J. Phys. Chem. C 120:28138–43
    [Google Scholar]
  85. 85. 
    Kockum AF, Miranowicz A, De Liberato S, Savasta S, Nori F. 2019. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1:19–40
    [Google Scholar]
  86. 86. 
    George J, Chervy T, Shalabney A, Devaux E, Hiura H et al. 2016. Multiple Rabi splittings under ultrastrong vibrational coupling. Phys. Rev. Lett. 117:153601
    [Google Scholar]
  87. 87. 
    Coles DM, Yang YS, Wang YY, Grant RT, Taylor RA et al. 2014. Strong coupling between chlorosomes of photosynthetic bacteria and a confined optical cavity mode. Nat. Commun. 5:5561
    [Google Scholar]
  88. 88. 
    Grant RT, Jayaprakash R, Coles DM, Musser A, De Liberato S et al. 2018. Strong coupling in a microcavity containing beta-carotene. Opt. Express 26:3320–27
    [Google Scholar]
  89. 89. 
    Vergauwe RMA, George J, Chervy T, Hutchison JA, Shalabney A et al. 2016. Quantum strong coupling with protein vibrational modes. J. Phys. Chem. Lett. 7:4159–64
    [Google Scholar]
  90. 90. 
    Vergauwe RMA, Thomas A, Nagarajan K, Shalabney A, George J et al. 2019. Modification of enzyme activity by vibrational strong coupling of water. Angew. Chem. Int. Ed. 58:15324–28
    [Google Scholar]
  91. 91. 
    Li TE, Subotnik JE, Nitzan A. 2020. Cavity molecular dynamics simulations of liquid water under vibrational ultrastrong coupling. PNAS 117:18324–31
    [Google Scholar]
  92. 92. 
    Crum VF, Casey SR, Sparks JR 2018. Photon-mediated hybridization of molecular vibrational states. Phys. Chem. Chem. Phys. 20:850–57
    [Google Scholar]
  93. 93. 
    Imran I, Nicolai GE, Stavinski ND, Sparks JR. 2019. Tuning vibrational strong coupling with co-resonators. ACS Photonics 6:2405–12
    [Google Scholar]
  94. 94. 
    Menghrajani KS, Fernandez HA, Nash GR, Barnes WL. 2019. Hybridization of multiple vibrational modes via strong coupling using confined light fields. Adv. Opt. Mater. 7:190040
    [Google Scholar]
  95. 95. 
    Muallem M, Palatnik A, Nessim GD, Tischler YR. 2016. Strong light-matter coupling and hybridization of molecular vibrations in a low-loss infrared microcavity. J. Phys. Chem. Lett. 7:2002–8
    [Google Scholar]
  96. 96. 
    Holmes RJ, Kena-Cohen S, Menon VM, Forrest SR. 2006. Strong coupling and hybridization of Frenkel and Wannier-Mott excitons in an organic-inorganic optical microcavity. Phys. Rev. B 74:235211
    [Google Scholar]
  97. 97. 
    Lidzey DG, Bradley DDC, Armitage A, Walker S, Skolnick MS 2000. Photon-mediated hybridization of Frenkel excitons in organic semiconductor microcavities. Science 288:1620–23
    [Google Scholar]
  98. 98. 
    Wenus J, Parashkov R, Ceccarelli S, Brehier A, Lauret JS et al. 2006. Hybrid organic-inorganic exciton-polaritons in a strongly coupled microcavity. Phys. Rev. B 74:235212
    [Google Scholar]
  99. 99. 
    Du M, Ribeiro RF, Yuen-Zhou J. 2019. Remote control of chemistry in optical cavities. Chemistry 5:1167–81
    [Google Scholar]
  100. 100. 
    Du M, Martínez-Martínez LA, Ribeiro RF, Hu ZX, Menon VM, Yuen-Zhou J. 2018. Theory for polariton-assisted remote energy transfer. Chem. Sci. 9:6659–69
    [Google Scholar]
  101. 101. 
    Ahn W, Vurgaftman I, Dunkelberger AD, Owrutsky JC, Simpkins BS. 2018. Vibrational strong coupling controlled by spatial distribution of molecules within the optical cavity. ACS Photonics 5:158–66
    [Google Scholar]
  102. 102. 
    Hertzog M, Rudquist P, Hutchison JA, George J, Ebbesen TW, Borjesson K 2017. Voltage-controlled switching of strong light-matter interactions using liquid crystals. Chem. Eur. J. 23:18166–70
    [Google Scholar]
  103. 103. 
    Pietron JJ, Fears KP, Owrutsky JC, Simpkins BS. 2020. Electrochemical modulation of strong vibration-cavity coupling. ACS Photonics 7:165–73
    [Google Scholar]
  104. 104. 
    Herrera F, Owrutsky J. 2020. Molecular polaritons for controlling chemistry with quantum optics. J. Chem. Phys. 152:100902
    [Google Scholar]
  105. 105. 
    Garcia-Vidal FJ, Ciuti C, Ebbesen TW 2021. Manipulating matter by strong coupling to vacuum fields. Science 373:eabd0336
    [Google Scholar]
  106. 106. 
    Du M, Campos-Gonzalez-Angulo JA, Yuen-Zhou J. 2021. Nonequilibrium effects of cavity leakage and vibrational dissipation in thermally activated polariton chemistry. J. Chem. Phys. 154:084108
    [Google Scholar]
  107. 107. 
    Li XY, Mandal A, Huo PF. 2021. Cavity frequency-dependent theory for vibrational polariton chemistry. Nat. Commun. 12:1315
    [Google Scholar]
  108. 108. 
    Thomas A, Jayachandran A, Lethuillier-Karl L, Vergauwe RMA, Nagarajan K et al. 2020. Ground state chemistry under vibrational strong coupling: dependence of thermodynamic parameters on the Rabi splitting energy. Nanophotonics 9:249–55
    [Google Scholar]
  109. 109. 
    Campos-Gonzalez-Angulo JA, Yuen-Zhou J. 2020. Polaritonic normal modes in transition state theory. J. Chem. Phys. 152:161101
    [Google Scholar]
  110. 110. 
    Galego J, Climent C, Garcia-Vidal FJ, Feist J. 2019. Cavity Casimir-Polder forces and their effects in ground-state chemical reactivity. Phys. Rev. X 9:021057
    [Google Scholar]
  111. 111. 
    Li TE, Nitzan A, Subotnik JE 2020. On the origin of ground-state vacuum-field catalysis: equilibrium consideration. J. Chem. Phys. 152:234107
    [Google Scholar]
  112. 112. 
    Climent C, Feist J. 2020. On the S(N)2 reactions modified in vibrational strong coupling experiments: reaction mechanisms and vibrational mode assignments. Phys. Chem. Chem. Phys. 22:23545–52
    [Google Scholar]
  113. 113. 
    Pang YT, Thomas A, Nagarajan K, Vergauwe RMA, Joseph K et al. 2020. On the role of symmetry in vibrational strong coupling: the case of charge-transfer complexation. Angew. Chem. Int. Ed. 59:10436–40
    [Google Scholar]
  114. 114. 
    Sau A, Nagarajan K, Patrahau B, Lethuillier-Karl L, Vergauwe RMA et al. 2021. Modifying Woodward–Hoffmann stereoselectivity under vibrational strong coupling. Angew. Chem. Int. Ed. 60:5712–17
    [Google Scholar]
  115. 115. 
    Houdre R, Stanley RP, Ilegems M. 1996. Vacuum-field Rabi splitting in the presence of inhomogeneous broadening: resolution of a homogeneous linewidth in an inhomogeneously broadened system. Phys. Rev. A 53:2711
    [Google Scholar]
  116. 116. 
    Stenger J, Madsen D, Hamm P, Nibbering ETJ, Elsaesser T. 2001. Ultrafast vibrational dephasing of liquid water. Phys. Rev. Lett. 87:027401
    [Google Scholar]
  117. 117. 
    Hirai K, Ishikawa H, Chervy T, Hutchison JA, Uji-i H 2020. Selective crystallization via vibrational strong coupling. Chem. Sci. 12:11986–94
    [Google Scholar]
  118. 118. 
    Hiura H, Shalabney A, George J. 2019. Vacuum-field catalysis: accelerated reactions by vibrational ultra strong coupling. ChemRxiv. https://doi.org/10.26434/chemrxiv.7234721.v4
    [Crossref]
  119. 119. 
    Imperatore MV, Asbury JB, Giebink NC. 2021. Reproducibility of cavity-enhanced chemical reaction rates in the vibrational strong coupling regime. J. Chem. Phys. 154:191103
    [Google Scholar]
  120. 120. 
    Hirai K, Takeda R, Hutchison JA Uji-i H. 2020. Modulation of Prins cyclization by vibrational strong coupling. Angew. Chem. Int. Ed. 59:5332–35
    [Google Scholar]
  121. 121. 
    Lather J, Bhatt P, Thomas A, Ebbesen TW, George J 2019. Cavity catalysis by cooperative vibrational strong coupling of reactant and solvent molecules. Angew. Chem. Int. Ed. 58:10635–38
    [Google Scholar]
  122. 122. 
    Lather J, George J. 2021. Improving enzyme catalytic efficiency by co-operative vibrational strong coupling of water. J. Phys. Chem. Lett. 12:379–84
    [Google Scholar]
  123. 123. 
    Campos-Gonzalez-Angulo JA, Ribeiro RF, Yuen-Zhou J. 2019. Resonant catalysis of thermally activated chemical reactions with vibrational polaritons. Nat. Commun. 10:4685
    [Google Scholar]
  124. 124. 
    Zhdanov VP. 2020. Vacuum field in a cavity, light-mediated vibrational coupling, and chemical reactivity. Chem. Phys. 535:110767
    [Google Scholar]
  125. 125. 
    Li TE, Cui B, Subotnik JE, Nitzan A. 2022. Molecular polaritonics: chemical dynamics under strong light–matter coupling. Annu. Rev. Phys. Chem. 73:4366
    [Google Scholar]
  126. 126. 
    Vurgaftman I, Simpkins BS, Dunkelberger AD, Owrutsky JC. 2020. Negligible effect of vibrational polaritons on chemical reaction rates via the density of states pathway. J. Phys. Chem. Lett. 11:3557–62
    [Google Scholar]
  127. 127. 
    Scholes GD, DelPo CA, Kudisch B. 2020. Entropy reorders polariton states. J. Phys. Chem. Lett. 11:6389–95
    [Google Scholar]
  128. 128. 
    Schafer C, Flick J, Ronca E, Narang P, Rubio A 2021. Shining light on the microscopic resonant mechanism responsible for cavity-mediated chemical reactivity. arXiv:2104.12429v2 [quant-ph]
  129. 129. 
    Sidler D, Schafer C, Ruggenthaler M, Rubio A 2021. Polaritonic chemistry: Collective strong coupling implies strong local modification of chemical properties. J. Phys. Chem. Lett. 12:508–16
    [Google Scholar]
  130. 130. 
    Flick J, Ruggenthaler M, Appel H, Rubio A. 2017. Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry. PNAS 114:3026–34
    [Google Scholar]
  131. 131. 
    Flick J, Schafer C, Ruggenthaler M, Appel H, Rubio A. 2018. Ab initio optimized effective potentials for real molecules in optical cavities: photon contributions to the molecular ground state. ACS Photonics 5:992–1005
    [Google Scholar]
  132. 132. 
    Li TE, Nitzan A, Subotnik JE 2021. Collective vibrational strong coupling effects on molecular vibrational relaxation and energy transfer: numerical insights via cavity molecular dynamics simulations. Angew. Chem. Int. Ed. 60:15533–40
    [Google Scholar]
  133. 133. 
    Botzung T, Hagenmuller D, Schutz S, Dubail J, Pupillo G, Schachenmayer J 2020. Dark state semilocalization of quantum emitters in a cavity. Phys. Rev. B 102:144202
    [Google Scholar]
  134. 134. 
    Scholes GD. 2020. Polaritons and excitons: Hamiltonian design for enhanced coherence. Proc. Math. Phys. Eng. Sci. 476:20200278
    [Google Scholar]
  135. 135. 
    Mills DL, Burstein E. 1974. Polaritons: the electromagnetic modes of media. Rep. Prog. Phys. 37:817–926
    [Google Scholar]
  136. 136. 
    Canales A, Baranov DG, Antosiewicz TJ, Shegai T. 2021. Abundance of cavity-free polaritonic states in resonant materials and nanostructures. J. Chem. Phys. 154:024701
    [Google Scholar]
  137. 137. 
    Dunkelberger AD, Davidson RB, Ahn W, Simpkins BS, Owrutsky JC. 2018. Ultrafast transmission modulation and recovery via vibrational strong coupling. J. Phys. Chem. A 122:965–71
    [Google Scholar]
  138. 138. 
    Dunkelberger AD, Grafton AB, Vurgaftman I, Soykal OO, Reinecke TL et al. 2019. Saturable absorption in solution-phase and cavity-coupled tungsten hexacarbonyl. ACS Photonics 6:2719–25
    [Google Scholar]
  139. 139. 
    Xiang B, Ribeiro RF, Chen LY, Wang JX, Du M et al. 2019. State-selective polariton to dark state relaxation dynamics. J. Phys. Chem. A 123:5918–27
    [Google Scholar]
  140. 140. 
    Li TE, Nitzan A, Subotnik JE 2021. Cavity molecular dynamics simulations of vibrational polariton-enhanced molecular nonlinear absorption. J. Chem. Phys. 154:094124
    [Google Scholar]
  141. 141. 
    Ribeiro RF, Campos-Gonzalez-Angulo JA, Giebink NC, Xiong W, Yuen-Zhou J. 2021. Enhanced optical nonlinearities under collective strong light-matter coupling. Phys. Rev. A 103:063111
    [Google Scholar]
  142. 142. 
    Dunkelberger AD, Spann BT, Fears KP, Simpkins BS, Owrutsky JC. 2016. Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons. Nat. Commun. 7:13504
    [Google Scholar]
  143. 143. 
    Xiang B, Ribeiro RF, Dunkelberger AD, Wang JX, Li YM et al. 2018. Two-dimensional infrared spectroscopy of vibrational polaritons. PNAS 115:4845–50
    [Google Scholar]
  144. 144. 
    Heilweil EJ, Cavanagh RR, Stephenson JC. 1987. Population relaxation of CO(v = 1) vibrations in solution phase metal carbonyl complexes. Chem. Phys. Lett. 134:181–88
    [Google Scholar]
  145. 145. 
    Arrivo SM, Dougherty TP, Grubbs WT, Heilweil EJ. 1995. Ultrafast infrared-spectroscopy of vibrational CO-stretch up-pumping and relaxation dynamics of W(CO)6. Chem. Phys. Lett. 235:247–54
    [Google Scholar]
  146. 146. 
    Vasa P, Pomraenke R, Cirmi G, De Re E, Wang W et al. 2010. Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures. ACS Nano 4:7559–65
    [Google Scholar]
  147. 147. 
    Grafton AB, Dunkelberger AD, Simpkins BS, Triana JF, Hernández FJ et al. 2021. Excited-state vibration-polariton transitions and dynamics in nitroprusside. Nat. Commun. 12:214
    [Google Scholar]
  148. 148. 
    Ribeiro RF, Dunkelberger AD, Xiang B, Xiong W, Simpkins BS et al. 2018. Theory for nonlinear spectroscopy of vibrational polaritons. J. Phys. Chem. Lett. 9:3766–71
    [Google Scholar]
  149. 149. 
    Xiang B, Ribeiro RF, Li YM, Dunkelberger AD, Simpkins BB et al. 2019. Manipulating optical nonlinearities of molecular polaritons by delocalization. Sci. Adv. 5:eaax5196
    [Google Scholar]
  150. 150. 
    Yang ZM, Xiang B, Xiong W. 2020. Controlling quantum pathways in molecular vibrational polaritons. ACS Photonics 7:919–24
    [Google Scholar]
  151. 151. 
    Hernández FJ, Herrera F. 2019. Multi-level quantum Rabi model for anharmonic vibrational polaritons. J. Chem. Phys. 151:144116
    [Google Scholar]
  152. 152. 
    Xiang B, Ribeiro RF, Du M, Chen LY, Yang ZM et al. 2020. Intermolecular vibrational energy transfer enabled by microcavity strong light-matter coupling. Science 368:665
    [Google Scholar]
  153. 153. 
    Xiang B, Wang JX, Yang ZM, Xiong W 2021. Nonlinear infrared polaritonic interaction between cavities mediated by molecular vibrations at ultrafast time scale. Sci. Adv. 7:6
    [Google Scholar]
  154. 154. 
    Pannir-Sivajothi S, Campos-Gonzalez-Angulo JA, Martínez-Martínez LA, Sinha S, Yuen-Zhou J. 2021. Driving chemical reactions with polariton condensates. arXiv:2106.12156v1 [physics.chem-ph]
/content/journals/10.1146/annurev-physchem-082620-014627
Loading
/content/journals/10.1146/annurev-physchem-082620-014627
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error