1932

Abstract

Surface-enhanced Raman scattering (SERS), a powerful technique for trace molecular detection, depends on chemical and electromagnetic enhancements. While recent advances in instrumentation and substrate design have expanded the utility, reproducibility, and quantitative capabilities of SERS, some challenges persist. In this review, advances in quantitative SERS detection are discussed as they relate to intermolecular interactions, surface selection rules, and target molecule solubility and accessibility. After a brief introduction to Raman scattering and SERS, impacts of surface selection rules and enhancement mechanisms are discussed as they relate to the observation of activation and deactivation of normal Raman modes in SERS. Next, experimental conditions that can be used to tune molecular affinity to and density near SERS substrates are summarized and considered while tuning these parameters is conveyed. Finally, successful examples of quantitative SERS detection are discussed, and future opportunities are outlined.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-082720-033751
2022-04-20
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/physchem/73/1/annurev-physchem-082720-033751.html?itemId=/content/journals/10.1146/annurev-physchem-082720-033751&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Skoog DA, Holler FJ, Crouch SR. 2018. Principles of Instrumental Analysis S. Melb. Aust.: Cengage Learn., 7th ed..
    [Google Scholar]
  2. 2. 
    McCreery RL. 2000. Magnitude of Raman scattering. Raman Spectroscopy for Chemical Analysis15–33 Chem. Anal . Vol. 157 New York: John Wiley & Sons
    [Google Scholar]
  3. 3. 
    Xi W, Volkert AA, Boller MC, Haes AJ. 2018. Vibrational frequency shifts for monitoring noncovalent interactions between molecular imprinted polymers and analgesics. J. Phys. Chem. C 122:4023068–77
    [Google Scholar]
  4. 4. 
    Takahashi M, Niwa M, Ito M. 1987. Vibrational frequency shifts of adsorbed pyridazine on a silver electrode studied by SERS. J. Phys. Chem. 91:111–14
    [Google Scholar]
  5. 5. 
    Xi W, Shrestha BK, Haes AJ. 2017. Promoting intra- and intermolecular interactions in surface-enhanced Raman scattering. Anal. Chem. 90:1128–43
    [Google Scholar]
  6. 6. 
    Erasmus RM, Comins JD 2019. Raman scattering. Handbook of Advanced Nondestructive Evaluation N Ida, N Meyendorf 541–94 Cham, Switz.: Springer Int.
    [Google Scholar]
  7. 7. 
    Quimby RS. 2006. Photonics and Lasers New York: John Wiley & Sons
    [Google Scholar]
  8. 8. 
    Pilot R, Signorini R, Durante C, Orian L, Bhamidipati M, Fabris L. 2019. A review on surface-enhanced Raman scattering. Biosensors 9:257
    [Google Scholar]
  9. 9. 
    Trivedi DJ, Barrow B, Schatz GC. 2020. Understanding the chemical contribution to the enhancement mechanism in SERS: connection with Hammett parameters. J. Chem. Phys. 153:12124706
    [Google Scholar]
  10. 10. 
    Moskovits M. 2013. Persistent misconceptions regarding SERS. Phys. Chem. Chem. Phys. 15:5301–11
    [Google Scholar]
  11. 11. 
    Pierre MCS, Haes AJ. 2012. Purification implications on SERS activity of silica coated gold nanospheres. Anal. Chem. 84:187906–11
    [Google Scholar]
  12. 12. 
    Phan HT, Haes AJ. 2019. What does nanoparticle stability mean?. J. Phys. Chem. C 123:2716495–507
    [Google Scholar]
  13. 13. 
    Jahn IJ, Mühlig A, Cialla-May D. 2020. Application of molecular SERS nanosensors: where we stand and where we are headed towards?. Anal. Bioanal. Chem. 412:245999–6007
    [Google Scholar]
  14. 14. 
    Xu Y, Liu H, Jiang T. 2019. Reliable quantitative SERS analysis mediated by Ag nano coix seeds with internal standard molecule. J. Nanopart. Res. 21:5107
    [Google Scholar]
  15. 15. 
    Zhao F, Wang W, Zhong H, Yang F, Fu W et al. 2021. Robust quantitative SERS analysis with relative Raman scattering intensities. Talanta 221:121465
    [Google Scholar]
  16. 16. 
    Zhang X-Q, Li S-X, Chen Z-P, Chen Y, Yu R-Q 2018. Quantitative SERS analysis based on multiple-internal-standard embedded core-shell nanoparticles and spectral shape deformation quantitative theory. Chemom. Intell. Lab. Syst. 177:47–54
    [Google Scholar]
  17. 17. 
    Lorén A, Engelbrektsson J, Eliasson C, Josefson M, Abrahamsson J et al. 2004. Internal standard in surface-enhanced Raman spectroscopy. Anal. Chem. 76:247391–95
    [Google Scholar]
  18. 18. 
    Chio W-IK, Davison G, Jones T, Liu J, Parkin IP, Lee TC. 2020. Quantitative SERS detection of uric acid via formation of precise plasmonic nanojunctions within aggregates of gold nanoparticles and cucurbit[n]uril. J. Vis. Exp. 164:e61682
    [Google Scholar]
  19. 19. 
    Viehrig M, Rajendran ST, Sanger K, Schmidt MS, Alstrm TS et al. 2020. Quantitative SERS assay on a single chip enabled by electrochemically assisted regeneration: a method for detection of melamine in milk. Anal. Chem. 92:64317–25
    [Google Scholar]
  20. 20. 
    Bell SEJ, Charron G, Cortés E, Kneipp J, de la Chapelle ML et al. 2020. Towards reliable and quantitative surface-enhanced Raman scattering (SERS): from key parameters to good analytical practice. Angew. Chem. Int. Ed. 59:145454–62
    [Google Scholar]
  21. 21. 
    Cialla-May D, Zheng XS, Weber K, Popp J 2017. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chem. Soc. Rev. 46:3945–61
    [Google Scholar]
  22. 22. 
    Shrestha BK, Haes AJ. 2015. Improving surface enhanced Raman signal reproducibility using gold-coated silver nanospheres encapsulated in silica membranes. J. Opt. 17:11114017
    [Google Scholar]
  23. 23. 
    Phan HT, Haes AJ. 2018. Impacts of pH and intermolecular interactions on surface-enhanced Raman scattering chemical enhancements. J. Phys. Chem. C 122:2614846–56
    [Google Scholar]
  24. 24. 
    Li L, Si Y, He B, Li J. 2019. Au-Ag alloy/porous-SiO2 core/shell nanoparticle-based surface-enhanced Raman scattering nanoprobe for ratiometric imaging analysis of nitric oxide in living cells. Talanta 205:120116
    [Google Scholar]
  25. 25. 
    Donoso-González O, Lodeiro L, Aliaga ÁE, Laguna-Bercero MA, Bollo S et al. 2021. Functionalization of gold nanostars with cationic β-cyclodextrin-based polymer for drug co-loading and SERS monitoring. Pharmaceutics 13:2261
    [Google Scholar]
  26. 26. 
    Oliveira MJ, de Almeida MP, Nunes D, Fortunato E, Martins R et al. 2019. Design and simple assembly of gold nanostar bioconjugates for surface-enhanced Raman spectroscopy immunoassays. Nanomaterials 9:111561
    [Google Scholar]
  27. 27. 
    Shen W, Lin X, Jiang C, Li C, Lin H et al. 2015. Reliable quantitative SERS analysis facilitated by core–shell nanoparticles with embedded internal standards. Angew. Chem. Int. Ed. 54:257308–12
    [Google Scholar]
  28. 28. 
    Le Ru EC, Meyer SA, Artur C, Etchegoin PG, Grand J et al. 2011. Experimental demonstration of surface selection rules for SERS on flat metallic surfaces. Chem. Commun. 47:3903–5
    [Google Scholar]
  29. 29. 
    Harris DC, Bertolucci MD. 1989. Symmetry and Spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy Dover Books Chem. Ser New York: Dover Publ.
    [Google Scholar]
  30. 30. 
    Moskovits M, Suh JS. 1984. Surface selection rules for surface-enhanced Raman spectroscopy: calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver. J. Phys. Chem. 88:235526–30
    [Google Scholar]
  31. 31. 
    Kim J, Jang Y, Kim N-J, Kim H, Yi G-C et al. 2019. Study of chemical enhancement mechanism in non-plasmonic surface enhanced Raman spectroscopy (SERS). Front. Chem. 7:582
    [Google Scholar]
  32. 32. 
    Wang X, Zhong J-H, Zhang M, Liu Z, Wu D-Y, Ren B. 2016. Revealing intermolecular interaction and surface restructuring of an aromatic thiol assembling on Au(111) by tip-enhanced Raman spectroscopy. J. Anal. Chem. 88:1915–21
    [Google Scholar]
  33. 33. 
    Xi W, Haes AJ. 2019. Elucidation of HEPES affinity to and structure on gold nanostars. J. Am. Chem. Soc. 141:94034–42
    [Google Scholar]
  34. 34. 
    Zhao H, Fu H, Zhao T, Wang L, Tan T 2012. Fabrication of small-sized silver NPs/graphene sheets for high-quality surface-enhanced Raman scattering. J. Colloid Interface Sci. 375:130–34
    [Google Scholar]
  35. 35. 
    Lu G, Shrestha B, Haes AJ. 2016. Importance of tilt angles of adsorbed aromatic molecules on nanoparticle rattle SERS substrates. J. Phys. Chem. C 120:3720759–67
    [Google Scholar]
  36. 36. 
    Schatz GC, Van Duyne RP 2006. Electromagnetic mechanism of surface-enhanced spectroscopy. Handbook of Vibrational Spectroscopy, Vol. 1 P Griffiths, JM Chalmers 1–15 New York: John Wiley & Sons
    [Google Scholar]
  37. 37. 
    Jensen L, Aikens CM, Schatz GC. 2008. Electronic structure methods for studying surface-enhanced Raman scattering. Chem. Soc. Rev. 37:1061–73
    [Google Scholar]
  38. 38. 
    Zhang Q, He L, Rani KK, Wu D, Han J et al. 2021. Colorimetric detection of neomycin sulfate in tilapia based on plasmonic core–shell Au@PVP nanoparticles. Food Chem. 356:129612
    [Google Scholar]
  39. 39. 
    Wang Y, Quinsaat JEQ, Ono T, Maeki M, Tokeshi M et al. 2020. Enhanced dispersion stability of gold nanoparticles by the physisorption of cyclic poly(ethylene glycol). Nat. Commun. 11:16089
    [Google Scholar]
  40. 40. 
    Garcia-Hernandez C, Freese AK, Rodriguez-Mendez ML, Wanekaya AK. 2019. In situ synthesis, stabilization and activity of protein-modified gold nanoparticles for biological applications. Biomater. Sci. 7:2511–19
    [Google Scholar]
  41. 41. 
    Phan HT, Heiderscheit TS, Haes AJ. 2020. Understanding time-dependent surface-enhanced Raman scattering from gold nanosphere aggregates using collision theory. J. Phys. Chem. C 124:2614287–96
    [Google Scholar]
  42. 42. 
    Jiang J, Wang S, Deng H, Wu H, Chen J, Liao J 2018. Rapid and sensitive detection of uranyl ion with citrate-stabilized silver nanoparticles by the surface-enhanced Raman scattering technique. R. Soc. Open Sci. 5:11181099
    [Google Scholar]
  43. 43. 
    Lu G, Forbes TZ, Haes AJ 2016. SERS detection of uranyl using functionalized gold nanostars promoted by nanoparticle shape and size. Analyst 141:175137–43
    [Google Scholar]
  44. 44. 
    Sperling RA, Parak WJ. 2010. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. Trans. R. Soc. A 368:19151333–83
    [Google Scholar]
  45. 45. 
    Pérez-Jiménez AI, Lyu D, Lu Z, Liu G, Ren B 2020. Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments. Chem. Sci. 11:4563–77
    [Google Scholar]
  46. 46. 
    Xue Y, Li X, Li H, Zhang W 2014. Quantifying thiol–gold interactions towards the efficient strength control. Nat. Commun. 5:4348
    [Google Scholar]
  47. 47. 
    Xi W, Phan HT, Haes AJ. 2018. How to accurately predict solution-phase gold nanostar stability. Anal. Bioanal. Chem. 410:246113–23
    [Google Scholar]
  48. 48. 
    Moran CH, Rycenga M, Zhang Q, Xia Y. 2011. Replacement of poly(vinyl pyrrolidone) by thiols: a systematic study of Ag nanocube functionalization by surface-enhanced Raman scattering. J. Phys. Chem. C 115:4421852–57
    [Google Scholar]
  49. 49. 
    Pierre MCS, Mackie PM, Roca M, Haes AJ 2011. Correlating molecular surface coverage and solution-phase nanoparticle concentration to surface-enhanced Raman scattering intensities. J. Phys. Chem. C 115:3818511–17
    [Google Scholar]
  50. 50. 
    Wiedemair J, Le TNL, van den Berg A, Carlen ET. 2014. Surface-enhanced Raman spectroscopy of self-assembled monolayer conformation and spatial uniformity on silver surfaces. J. Phys. Chem. C 118:2211857–68
    [Google Scholar]
  51. 51. 
    Brewer SH, Glomm WR, Johnson MC, Knag MK, Franzen S. 2005. Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 21:209303–7
    [Google Scholar]
  52. 52. 
    Wang Y, Ji W, Sui H, Kitahama Y, Ruan W et al. 2014. Exploring the effect of intermolecular H-bonding: a study on charge-transfer contribution to surface-enhanced Raman scattering of p-mercaptobenzoic acid. J. Phys. Chem. C 118:1910191–97
    [Google Scholar]
  53. 53. 
    Mosquera J, Zhao Y, Jang H-J, Xie N, Xu C et al. 2019. Plasmonic nanoparticles with supramolecular recognition. Adv. Funct. Mater. 30:21902082
    [Google Scholar]
  54. 54. 
    Lu G, Forbes TZ, Haes AJ 2016. SERS detection of uranyl using functionalized gold nanostars promoted by nanoparticle shape and size. Analyst 141:5137–43
    [Google Scholar]
  55. 55. 
    Phan HT, Geng S, Haes AJ 2020. Microporous silica membranes promote plasmonic nanoparticle stability for SERS detection of uranyl. Nanoscale 12:23700–8
    [Google Scholar]
  56. 56. 
    Lu G, Johns AJ, Neupane B, Phan HT, Cwiertny DM et al. 2018. Matrix-independent surface-enhanced Raman scattering detection of uranyl using electrospun amidoximated polyacrylonitrile mats and gold nanostars. Anal. Chem. 90:116766–72
    [Google Scholar]
  57. 57. 
    Xi W, Haes AJ. 2020. Elucidation of pH impacts on monosubstituted benzene derivatives using normal Raman and surface-enhanced Raman scattering. J. Chem. Phys. 153:18184707
    [Google Scholar]
  58. 58. 
    Huang L, Tang F, Shen J, Hu B, Meng Q, Yu T 2001. A simple method for measuring the SERS spectra of water-insoluble organic compounds. Vib. Spectrosc. 26:115–22
    [Google Scholar]
  59. 59. 
    Mukherjee KM, Misra NT. 2000. Solvent effect on surface-enhanced Raman activity of copperphthalocyanine on colloidal silver. Colloids Surf. B 17:3139–43
    [Google Scholar]
  60. 60. 
    Lu G, Haes AJ, Forbes TZ. 2018. Detection and identification of solids, surfaces, and solutions of uranium using vibrational spectroscopy. Coord. Chem. Rev. 374:314–44
    [Google Scholar]
  61. 61. 
    Hidi IJ, Heidler J, Weber K, Cialla-May D, Popp J 2016. Ciprofloxacin: pH-dependent SERS signal and its detection in spiked river water using LoC-SERS. Anal. Bioanal. Chem. 408:298393–401
    [Google Scholar]
  62. 62. 
    Suryanarayana C. 1995. Nanocrystalline materials. Int. Mater. Rev. 40:241–64
    [Google Scholar]
  63. 63. 
    Shi H, Bi H, Yao B, Zhang L. 2000. Dissolution of Au nanoparticles in hydrochloric acid solution as studied by optical absorption. Appl. Surf. Sci. 161:1276–78
    [Google Scholar]
  64. 64. 
    Tripathy SK, Woo JY, Han CS. 2011. Highly selective colorimetric detection of hydrochloric acid using unlabeled gold nanoparticles and an oxidizing agent. Anal. Chem. 83:249206–12
    [Google Scholar]
  65. 65. 
    Wang F, He C, Han M-Y, Wu JH, Xu GQ. 2012. Chemical controlled reversible gold nanoparticles dissolution and reconstruction at room-temperature. Chem. Commun. 48:6136–38
    [Google Scholar]
  66. 66. 
    Xing W, Yin M, Lv Q, Hu Y, Liu C, Zhang J 2014. Oxygen solubility, diffusion coefficient, and solution viscosity. Rotating Electrode Methods and Oxygen Reduction Electrocatalysts W Xing, G Yin, J Zhang 1–31 Amsterdam: Elsevier
    [Google Scholar]
  67. 67. 
    Sato T, Hamada Y, Sumikawa M, Araki S, Yamamoto H 2014. Solubility of oxygen in organic solvents and calculation of the Hansen solubility parameters of oxygen. Ind. Eng. Chem. Res. 53:4919331–37
    [Google Scholar]
  68. 68. 
    Matikainen A, Nuutinen T, Itkonen T, Heinilehto S, Puustinen J et al. 2016. Atmospheric oxidation and carbon contamination of silver and its effect on surface-enhanced Raman spectroscopy (SERS). Sci. Rep. 6:37192
    [Google Scholar]
  69. 69. 
    Han Y, Lupitskyy R, Chou T-M, Stafford CM, Du H, Sukhishvili S. 2011. Effect of oxidation on surface-enhanced Raman scattering activity of silver nanoparticles: a quantitative correlation. Anal. Chem. 83:155873–80
    [Google Scholar]
  70. 70. 
    Jardón-Maximino N, Pérez-Alvarez M, Sierra-Ávila S, Ávila-Orta CA, Jiménez-Regalado E et al. 2018. Oxidation of copper nanoparticles protected with different coatings and stored under ambient conditions. J. Nanomater. 2018:9512768
    [Google Scholar]
  71. 71. 
    Nam J, Won N, Jin H, Chung H, Kim S 2009. pH-induced aggregation of gold nanoparticles for photothermal cancer therapy. J. Am. Chem. Soc. 131:3813639–45
    [Google Scholar]
  72. 72. 
    Tang B, Xu S, An J, Zhao B, Xu W, Lombardi JR. 2009. Kinetic effects of halide ions on the morphological evolution of silver nanoplates. Phys. Chem. Chem. Phys. 11:10286–92
    [Google Scholar]
  73. 73. 
    Kedia A, Kumar PS. 2014. Halide ion induced tuning and self-organization of gold nanostars. RSC Adv 4:4782–90
    [Google Scholar]
  74. 74. 
    Zhang Z, Li H, Zhang F, Wu Y, Guo Z et al. 2014. Investigation of halide-induced aggregation of Au nanoparticles into spongelike gold. Langmuir 30:102648–59
    [Google Scholar]
  75. 75. 
    Christau S, Moeller T, Genzer J, Koehler R, von Klitzing R 2017. Salt-induced aggregation of negatively charged gold nanoparticles confined in a polymer brush matrix. Macromolecules 50:187333–43
    [Google Scholar]
  76. 76. 
    Xu X, Ji J, Chen P, Wu J, Jin Y et al. 2020. Salt-induced gold nanoparticles aggregation lights up fluorescence of DNA-silver nanoclusters to monitor dual cancer markers carcinoembryonic antigen and carbohydrate antigen 125. Anal. Chim. Acta 1125:41–49
    [Google Scholar]
  77. 77. 
    Sun L, Song Y, Wang L, Guo C, Sun Y et al. 2008. Ethanol-induced formation of silver nanoparticle aggregates for highly active SERS substrates and application in DNA detection. J. Phys. Chem. C 112:51415–22
    [Google Scholar]
  78. 78. 
    Wei H, Willner MR, Marr LC, Vikesland PJ. 2016. Highly stable SERS pH nanoprobes produced by co-solvent controlled AuNP aggregation. Analyst 141:5159–69
    [Google Scholar]
  79. 79. 
    Han M, Lu H, Zhang Z. 2020. Fast and low-cost surface-enhanced Raman scattering (SERS) method for on-site detection of flumetsulam in wheat. Molecules 25:204662
    [Google Scholar]
  80. 80. 
    Liu F, Gu H, Yuan X, Lin Y, Dong X 2011. Chloride ion-dependent surface-enhanced Raman scattering study of biotin on the silver surface. J. Phys. Conf. Ser. 277:012025
    [Google Scholar]
  81. 81. 
    Zeng F, Xu D, Zhan C, Liang C, Zhao W et al. 2018. Surfactant-free synthesis of graphene oxide coated silver nanoparticles for SERS biosensing and intracellular drug delivery. ACS Appl. Nano Mater. 1:62748–53
    [Google Scholar]
  82. 82. 
    Kumar J, Thomas KG. 2018. Probing the bilayer-monolayer switching of capping agents on Au nanorods and its interaction with guest molecules. J. Chem. Sci. 130:138
    [Google Scholar]
  83. 83. 
    Doneux T, De Decker Y. 2009. A simple model to describe the effect of electrostatic interactions on the composition of mixed self-assembled monolayers. Langmuir 25:42199–203
    [Google Scholar]
  84. 84. 
    Volkert AA, Subramaniam V, Ivanov MR, Goodman AM, Haes AJ. 2011. Salt-mediated self-assembly of thioctic acid on gold nanoparticles. ACS Nano 5:64570–80
    [Google Scholar]
  85. 85. 
    West RM. 2020. Review—electrical manipulation of DNA self-assembled monolayers: electrochemical melting of surface-bound DNA. J. Electrochem. Soc. 167:3037544
    [Google Scholar]
  86. 86. 
    Chung T, Lee S-Y, Song EY, Chun H, Lee B 2011. Plasmonic nanostructures for nano-scale bio-sensing. Sensors 11:1110907–29
    [Google Scholar]
  87. 87. 
    Etchegoin PG, Le Ru EC. 2008. A perspective on single molecule SERS: current status and future challenges. Phys. Chem. Chem. Phys. 10:6079–89
    [Google Scholar]
  88. 88. 
    Zhang W, Cui X, Martin OJF 2009. Local field enhancement of an infinite conical metal tip lluminated by a focused beam. J. Raman Spectrosc. 40:101338–42
    [Google Scholar]
  89. 89. 
    Gersten J, Nitzan A. 1980. Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces. J. Chem. Phys. 73:73023–37
    [Google Scholar]
  90. 90. 
    Lal S, Grady NK, Goodrich GP, Halas NJ. 2006. Profiling the near field of a plasmonic nanoparticle with Raman-based molecular rulers. Nano Lett 6:102338–43
    [Google Scholar]
  91. 91. 
    Maher RC 2012. SERS hot spots. Raman Spectroscopy for Nanomaterials Characterization CSSR Kumar 215–60 Berlin/Heidelberg: Springer-Verlag
    [Google Scholar]
  92. 92. 
    Jain PK, Huang W, El-Sayed MA. 2007. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 7:72080–88
    [Google Scholar]
  93. 93. 
    Mao L, Li Z, Wu B, Xu H. 2009. Effects of quantum tunneling in metal nanogap on surface-enhanced Raman scattering. Appl. Phys. Lett. 94:24243102
    [Google Scholar]
  94. 94. 
    Phan HT, Vinson C, Haes AJ. 2021. Gold nanostar spatial distribution impacts the surface-enhanced Raman scattering detection of uranyl on amidoximated polymers. Langmuir 37:164891–99
    [Google Scholar]
  95. 95. 
    Cho ES, Kim J, Tejerina B, Hermans TM, Jiang H et al. 2012. Ultrasensitive detection of toxic cations through changes in the tunnelling current across films of striped nanoparticles. Nat. Mater. 11:11978–85
    [Google Scholar]
  96. 96. 
    Li M, Qiu Y, Fan C, Cui K, Zhang Y, Xiao Z. 2018. Design of SERS nanoprobes for Raman imaging: materials, critical factors and architectures. Acta Pharm. Sin. B 8:3381–89
    [Google Scholar]
  97. 97. 
    Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP. 2001. Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. JACS 123:71471–82
    [Google Scholar]
  98. 98. 
    Doering WE, Nie S. 2003. Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering. Anal. Chem. 75:226171–76
    [Google Scholar]
  99. 99. 
    Shah KW, Sreethawong T, Liu S-H, Zhang S-Y, Tan LS, Han M-Y. 2014. Aqueous route to facile, efficient and functional silica coating of metal nanoparticles at room temperature. Nanoscale 6:11273–81
    [Google Scholar]
  100. 100. 
    England CG, Huang JS, James KT, Zhang G, Gobin AM, Frieboes HB. 2015. Detection of phosphatidylcholine-coated gold nanoparticles in orthotopic pancreatic adenocarcinoma using hyperspectral imaging. PLOS ONE 10:6e0129172
    [Google Scholar]
  101. 101. 
    Qian X, Peng X-H, Ansari DO, Yin-Goen Q, Chen GZ et al. 2007. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26:83–90
    [Google Scholar]
  102. 102. 
    Capocefalo A, Mammucari D, Brasili F, Fasolato C, Bordi F et al. 2019. Exploring the potentiality of a SERS-active pH nano-biosensor. Front. Chem. 7:413
    [Google Scholar]
  103. 103. 
    Ansar SM, Chakraborty S, Kitchens CL. 2018. pH-responsive mercaptoundecanoic acid functionalized gold nanoparticles and applications in catalysis. Nanomaterials 8:5339
    [Google Scholar]
  104. 104. 
    Hu D, Li H, Wang B, Ye Z, Lei W et al. 2017. Surface-adaptive gold nanoparticles with effective adherence and enhanced photothermal ablation of methicillin-resistant Staphylococcus aureus biofilm. ACS Nano 11:99330–39
    [Google Scholar]
  105. 105. 
    Hӓbel H, Sӓrkkӓ A, Rudemo M, Blomqvist CH, Olsson E, Nordin M 2019. Colloidal particle aggregation in three dimensions. J. Microsc. 275:3149–58
    [Google Scholar]
  106. 106. 
    Fraire JC, Pérez LA, Coronado EA 2013. Cluster size effects in the surface-enhanced Raman scattering response of Ag and Au nanoparticle aggregates: experimental and theoretical insight. J. Phys. Chem. C 117:4423090–107
    [Google Scholar]
  107. 107. 
    Indrasekara DS, Swarnapali A, Thomas R, Fabris L 2015. Plasmonic properties of regiospecific core–satellite assemblies of gold nanostars and nanospheres. Phys. Chem. Chem. Phys. 17:21133–42
    [Google Scholar]
  108. 108. 
    Hernández Montoto A, Montes R, Samadi A, Gorbe M, Terrés JM et al. 2018. Gold nanostars coated with mesoporous silica are effective and nontoxic photothermal agents capable of gate keeping and laser-induced drug release. ACS Appl. Mater. Interfaces 10:3327644–56
    [Google Scholar]
  109. 109. 
    Atta S, Rangan S, Fabris L 2020. Highly tunable growth and etching of silica shells on surfactant-free gold nanostars. ChemNanoMat 6:153–57
    [Google Scholar]
  110. 110. 
    Harder RA, Wijenayaka LA, Phan HT, Haes AJ. 2021. Tuning gold nanostar morphology for the SERS detection of uranyl. J. Raman Spectrosc. 52:2497–505
    [Google Scholar]
  111. 111. 
    Chegel VI, Naum OM, Lopatynskyi AM, Lytvyn VK 2015. Plasmonic nanochips for application in surface-enhanced fluorescence spectroscopy: factor of dielectric substrate. Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies O Fesenko, L Yatsenko 395–412 Cham, Switz.: Springer Int.
    [Google Scholar]
  112. 112. 
    Zhu J, Gao J, Li J-J, Zhao J-W. 2014. Improve the surface-enhanced Raman scattering from rhodamine 6G adsorbed gold nanostars with vimineous branches. Appl. Surf. Sci. 322:136–42
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-082720-033751
Loading
/content/journals/10.1146/annurev-physchem-082720-033751
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error